
CSC 580 Principles of Machine Learning

05 Practical Considerations

Jason Pacheco

Department of Computer Science

1

*slides credit: built upon CSC 580 lecture slides by Chicheng Zhang & Kwang-Sung Jun



2

The role of feature in supervised learning



The importance of good feature representation
• Pixel representation: 

• represent an image as a w*h*3 dimensional vector 
• treat all coordinates in the same role
• throw away all locality information in the image

• Shape representation: 
• represent a colored image with a w*h black-white image

• Bag-of-words representation: 
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https://www.rsipvision.com/exploring-deep-learning/
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https://computervisionblog.wordpress.com/2016/01/23/distributed-code-or-grandmother-cells-insights-from-convolutional-neural-networks/



Irrelevant and redundant features
• Irrelevant features

• y is independent of f
• y = Road walkability, f = duck activities in the pond

• If #features is large and #examples is small ⇒ spurious correlation between some feature & label

• Redundant features
• Given 𝑓!, 𝑦 is (nearly) independent of 𝑓"

• Learning decision trees implicitly handles these two issues
• How about nearest neighbors / Perceptron?

6https://www.microsoft.com/en-us/research/blog/ppe-a-fast-and-provably-efficient-rl-algorithm-for-exogenous-noise/



Feature pruning
• Removing features that are not very useful for prediction

• E.g. text classification with bag-of-word representation, remove words that appear <= K docs
• E.g. digit classification, remove pixels with low variance 
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Example: Prostate Cancer Dataset

Best LASSO model learns to ignore 
several features (age, lcp, gleason, 

pgg45).

Wait…Is age really not a significant 
predictor of prostate cancer?  What’s 

going on here?

Age is highly correlated with other 
factors and thus not significant in the 

presence of those factors



Best-Subset Feature Selection

The optimal strategy for p features looks at models over all possible 
combinations of features, 

For k in 1,…,p:
    subset = Compute all subset of k-features (p-choose-k)
    For kfeat in subset:
        model = Train model on kfeat features
        score = Evaluate model using cross-validation
Choose the model with best cross-validation score



Best-Subset Feature Selection : Prostate Cancer Dataset
Each marker is the cross-val R2 score of a 

trained model for a subset of features

Data have 8 features, there are 
8-choose-k subsets for each 

k=1,…,8 for a total of 255 
models

Using 10-fold cross-val requires 
10 x 255 = 2,550 training runs!



Feature Selection: Prostate Cancer Dataset
Best subset has highest test accuracy (lowest variance) 

with just 2 features

[ Source: Hastie et al. (2001) ]



Forward Sequential Selection
An efficient method adds the most predictive feature one-by-one

featSel = empty

featUnsel = All features 
For iter in 1,…,p:
    For kfeat in featUnsel:
   thisFeat = featSel + kfeat

        model = Train model on thisFeat features
        score = Evaluate model using cross-validation
    featSel = featSel + best scoring feature
    featUnsel = featUnsel - best scoring feature
Choose the model with best cross-validation score



Backward Sequential Selection

featSel = All features 
For iter in 1,…,p:
    For kfeat in featSel:
   thisFeat = featSel - kfeat

        model = Train model on thisFeat features
        score = Evaluate model using cross-validation
    featSel = featSel – worst scoring feature
Choose the model with best cross-validation score

Backwards approach starts with all features and removes one-by-one



Comparing Feature Selection Methods

Example Feature selection on synthetic 
model with p=30 features with pairwise 
correlations (0.85).  True feature weights 
are all zero except for 10 features, with 

weights drawn from N(0,6.25). 

Sequential selection is greedy, but often performs well…

Sequential selection with p features takes 
O(p2) time, compared to exponential time 
for best subset

Sequential feature selection available in Scikit-Learn under:
feature_selection.SequentialFeatureSelector



Feature normalization
• Centering:

• 𝑥%,#( = 𝑥%,# − 𝜇#   ⇒ 𝜇#( = 0

• Variance scaling:
• 𝑥%,#( = 𝑥%,#/𝜎#  ⇒ (𝜎#()" = 1

• Absolute scaling 
• 𝑥%,#( = 𝑥%,#/𝑟#, where 𝑟# = max

%
	|𝑥%,#| 	⇒ range of 𝑥%,#(  ‘s in [-1,+1]

• Same transformation applied to both training set and test data

• Aside: example normalization: 𝑥%( =
)!
‖)!‖

 sometimes also can be applied
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Linear Models

Linear Regression Fit a linear function to 
the data,

[ Image: Murphy, K. (2012) ] [ Image: Hastie et al. (2001) ]

Logistic Regression Learn a decision 
boundary that is linear in the data,



Nonlinear Data

What if our data are not well-described by a 
linear function?

What if classes are not 
linearly-separable?

[Source: Murphy, K. (2012) ]



Example: Earthquake Prediction 
Suppose that we want to predict the number of earthquakes that occur of a certain magnitude.  Our 

data are given by,

Fitting a linear regression
is not very helpful

[ Source: Silver, N. (2012) ]



Example: Earthquake Prediction 
Suppose that we want to predict the number of earthquakes that occur of a certain magnitude.  Our 

data are given by,

But plotting outputs on
a logarithmic scale reveals

a strong linear relationship…

[ Source: Silver, N. (2012) ]



Example: Earthquake Prediction 
Suppose that we want to predict the number of earthquakes that occur of a certain magnitude.  Our 

data are given by,

[ Source: Silver, N. (2012) ]

Idea Instead of fitting ordinary
linear regression,

First take the logarithm of
input values x,



Basis Functions

• A basis function can be any function of the input features X
• Define a set of m basis functions
• Fit a linear regression model in terms of basis functions,

• Regression model is linear in the basis transformations
• Model is nonlinear in the data X



Common “All-Purpose” Basis Functions
• Linear basis functions recover the original linear model,

• Quadratic.                           or                             capture 2nd order interactions
• An order p polynomial                                     captures higher-order 

nonlinearities (but requires O(dp) parameters)
• Nonlinear transformation of single inputs, 

• An indicator function specifies a region of the input,

Returns mth dimension of X



Feature transformations
• Combining features into a “meta-feature”, e.g. 𝑥+, ⋅ 𝑥-./-00-+1

• Useful for e.g. Perceptron learners

• In general, 2
3  meta-features if allowed to combine 𝑘 features

• Computationally cheaper alternative: 
• train a decision tree, use the meta-feature induced by leaves

• Logarithmic feature transformation
• 𝑥#( ← log"(𝑥#) (“excellent” word count: 1->2 vs. 10->11
• 𝑥#( ←	 log"(𝑥# + 1)
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“excellent”

“no”
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Classification metrics beyond error rate



Confusion matrix
• E.g. activity recognition

• 𝑃 <𝑦 = skip 𝑦 = jump = 11%
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Class imbalance problem
• E.g., 5% pos, 95% negative.
• Baseline: always predict majority class 
• Implicit assumption: 

misclassifying positive example is more costly than misclassifying negative examples

• Standard ML algorithm aims to find ℎ that minimizes unweighted training error 

E
%&!

4

𝐼(ℎ 𝑥% ≠ 𝑦%)

• 2 alternatives: 
• Duplicate the minority class to make the positive and negative class balanced 
 repeat every positive example 𝑤 times, where 𝑤 = 𝑃(𝑦 = −1)/𝑃(𝑦 = +1)
• Importance weighted classification: minimize ∑%&!4 𝑤% 	𝐼(ℎ 𝑥% ≠ 𝑦%), 

where 𝑤! = 1 when 𝑦! = −1, 𝑤! = 𝑤 when 𝑦! = +1
26



New measures of classification performance
• True positive rate (TPR) 

    = "#
#
= $( &'()*,'()*)

$('()*)

    (aka recall, sensitivity)

• True negative rate (TNR) = "-
-

    (specificity)

• False positive rate (FPR) = .#
-

• False negative rate (FNR) = .-#

• Precision = "#
#/012234

= $( &'()*,'()*)
$( &'()*)

, P − 𝑐alled = TP + FP
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P = TP + FN N = FP + TN

Type I error

Type II error

Applications:
• Search engine: precision & recall
• Cancer classification: FNR vs. FPR
 



Adjusting TP, FP, TN, FN via thresholding
• Decision values (classification scores)

• ℎ5 𝑥 = 𝐼(𝑐 𝑥 ≥ 𝑡)
• Choice of threshold 𝑡:

• 𝑡 = ∞: ℎ5 ≡ −1 ⇒ TPR = 0,  FPR = 0
• 𝑡 = 0: ℎ5 ≡ +1 ⇒ TPR = 1,  FPR = 1
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P = TP + FN N = FP + FN

𝒄(𝒙𝒊) 𝒚𝒊
.99 +

.98 +

.72 -

.51 -

.24 +



ROC curve

29

(FP/N)

(TP/P)

𝒄(𝒙𝒊) 𝒚𝒊
.99 +

.98 +

.72 +

.51 -

.24 -

(FP/N)



ROC curve
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• Conceptually, consider every 
possible threshold, put a dot for 
each, and connect them.

• Actually, just need to care about 
when the ‘correct class’ changes
• results in staircase shape, but 

diagonal line can still happen.

• A popular alternative: just plot 
when going from + to -.
(what’s shown here)



Calculating ROC curve
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ROC curve examples
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from Wikipedia



Area under ROC curve
• The boss says “could you just give me one number?”

• AUC: Area Under the ROC curve:

                   AUC 𝑐 :=
∑ #$,$& ∈($ ∑ #),)& ∈() 7(9 )) :9 )$ )

$$⋅$)

• c(x): decision value of x

• 𝑆=: negative examples, 𝑆>: positive examples

• Idea: the slice corresponds to 𝑥= has area

  !
$$
⋅
∑ #),)& ∈() 7(9 )) :9 )$ )

$)

• Interpretation: “how well does 𝑐 distinguish between + and -?”
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Precision-Recall (PR) curve 

• This is usually a trade-off curve: 𝑡 ↓ ⇒ recall ↑,  precision ↓ 34

𝒄(𝒙𝒊) 𝒚𝒊
.99 +

.98 +

.72 +

.51 -

.24 -

𝑃(𝑦 = +1 ∣ ,𝑦 = +1)

𝑃(,𝑦 = +1 ∣ 𝑦 = +1)



PR-curve example
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Summary of precision-recall
• Reporting one number

• Take the harmonic mean: F1 score

• Recall: minimum of the two <= harmonic mean <= geometric mean <= arithmetic mean

• Emphasizes the smaller measure
• E.g. recall = 0.1, precision = 0.9	 ⇒ 	 𝐹! = 0.18   

• Area under PR-curve is also a popular metric 
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How to plot ROC/PR curve when training set is small?
• k-fold CV:

• Obtain k curves and plot them all

• Pooled prediction from k-fold CV.

37

𝑐(+) 
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Model Selection



Motivation: evaluating & comparing ML models
Example

• Your ML model 𝑓 has test set error = 6.9%
• Your nemesis, Gabe’s, ML model 𝑔 has test set error = 6.8%
• How confident are we to conclude that 𝑔 has smaller generalization error than that of 𝑓?

• Intuition: We should be more confident if the test set is larger, less if it’s smaller

• Our uncertainty can be quantified with a confidence interval

• Determining the best model can be done rigorously with hypothesis testing

39

Disclaimer: we only focus on the key ideas (standard stats courses spend >= 5 lectures on this)



In English the interval           contains  the true 
parameter value    with probability at least

Confidence Intervals
Intuition Find an interval such that we are pretty sure it encompasses the 
true parameter value (e.g. algorithm accuracy).

Given data                        and confidence
find interval           such that,

• Intervals must be computed from data                              and

• Interval (a,b) is random, parameter    is not random (it is fixed) 

• Requires that we know the distribution of the estimator



Warning
Question How should we interpret a confidence interval (e.g. 95%)?

Wrong The true parameter value lies in the interval (a,b) with 
probability at least 95%

Hint Think about what is random and what is not…

Right Interval (a,b) contains the true parameter value with 
probability at least 95%

This is commonly misinterpreted

This is NOT a probability 
statement about   .



Warning
Question How should we interpret a confidence interval (e.g. 95%)?

Wrong In this experiment there is a 95% chance that our interval 
contains the true parameter value.

Hint Think about what is random and what is not…

Right If I repeat this experiment many times the interval will contain 
the true parameter value 95% of the time. 

This is commonly misinterpreted

Note that we only have 
one dataset / experiment!



Interpretation

[ Source: Wasserman, L. 2004 ]



Knowledge Check
What is the confidence level of this estimator?
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CI construction
A standard recipe:

• Construct an estimator for 𝜃 based on 𝑆 -- call it d𝜃?
• Let 𝐼 𝑆 ≔ [ d𝜃? −𝑤, d𝜃? +𝑤], where 𝑤 is chosen such that for all 𝜃,

𝑃?∼A-. 𝜃 ∈ [ d𝜃? −𝑤, d𝜃? +𝑤] ≥ 1 − 𝛼

• Sometimes choose 𝐼 𝑆 ≔ [ d𝜃? −𝑤B, d𝜃? +𝑤C] with different 𝑤B, 𝑤C’s

Important example: confidence interval for normal mean
• 𝐷D = 𝑁 𝜇, 1 , 𝑆	 = 𝑋!, … , 𝑋4 ∼ 𝐷D4

• Define <𝜇? =
!
4
∑%&!4 𝑋%

• <𝜇? − 𝜇 ∼ 𝑁 0, !
4

• How to choose 𝑤 such that 𝑃 <𝜇? − 𝜇 ≤ 𝑤 ≥ 1 − 𝛼?

45

Known variance



Confidence Intervals of the Normal Distribution
Many estimators follow a normal distribution with enough data

(central limit theorem)
A Normal RV falls within      of 

the mean with 95% probability

The interval                    covers 
~99%, super high confidence

For various reasons, 95% has become standard confidence level



CI for normal mean (cont’d)
• <𝜇? − 𝜇 ∼ 𝑁 0, !

4

• How to choose 𝑤 such that 𝑃 <𝜇? − 𝜇 ≤ 𝑤 ≥ 1 − 𝛼?

• Note: 𝑍 = 𝑛 <𝜇? − 𝜇 ∼ 𝑁 0,1

• Suffices to find 𝑧E  such that 𝑃 𝑍 ≤ 𝑧E ≥ 1 − 𝛼, and let 𝑤 = F/
4

• Final (1 − 𝛼)-confidence interval construction for 𝜇: 𝐼 𝑆 = <𝜇? −
F/
4
, <𝜇? +

F/
4

• E.g. 95%-confidence interval for 𝜇: 𝐼 𝑆 = <𝜇? −
!.HI
4
, <𝜇? +

!.HI
4
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Central limit theorem



CI for means of general distributions, unknown variance
• Given 𝐷J with mean parameter 𝜃 with unknown variance

• <𝜎4" 	≔
∑!0&
. K!=LD. 1

4=!
 ⟹	 unbiased estimator of var(𝐷J) 

• Theorem: Let 𝑋!, … , 𝑋4~𝑁(𝜇, 𝜎"), and <𝜇4 ≔
!
4
∑%&!4 𝑋%

𝑛 ./!0/
.1.

	~ student-t (mean 0, scale 1, degrees of freedom = 𝑛 − 1)

• CI: 1𝜇5 ±
67!⋅	:"
5
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import scipy.stats as st
alpha = 0.05
st.t.ppf(1-alpha/2,df=2)
=> 4.302652729911275

st.t.ppf(1-alpha/2,df=5)
=> 2.5705818366147395

st.t.ppf(1-alpha/2,df=10)
=> 2.2281388519649385

st.t.ppf(1-alpha/2,df=30)
=> 2.0422724563012373

st.t.ppf(1-alpha/2,df=100)
=> 1.9839715184496334

How do we estimate variance
of algorithm performance?



Cross-Validation

Source: Bishop, C. PRML

K-fold Cross Validation Partition training 
data into K “chunks” and for each run 
select one chunk to be validation data

For each run, fit to training data (K-1 
chunks) and measure accuracy on 

validation set.  Average model error 
across all runs.  Estimate variance.



50Drawback Need to perform training K times for each model.

Can also estimate variance here



Bootstrap Example
Example Suppose we have LSAT scores and GPA for 15 law students and wish to 
estimate the correlation between LSAT and GPA:

95% Bootstrap confidence interval from 
B=1000 estimates of the correlation,

Q Should we trust this confidence interval?  
Why or why not?

95% Interval

[ Source: Wasserman, L. 2004 ]



Bootstrap Example
Eight subjects who used medical patches to infuse 
a hormone into the blood using three treatments: 
placebo, old-patch, new-patch

Estimate whether relative efficacy is 
the same under new drug,

Bootstrap B=1,000 samples yields 
95% confidence interval,

95% Interval

Q Is this more trustworthy than in 
previous example?



Bootstrapping CI
• Goal: estimate property ℎ of 𝐷 (:=ℎ(𝐷)) using confidence intervals, using sample 𝑆 (e.g. ℎ=F1 of model 𝑓) 

• Idea: estimate the distribution of ℎ 𝑆 − ℎ(𝐷), denoted by 𝑅;	

        by bootstrapping (resampling)
• perform 𝑛 times of “sampling with replacement” from 𝑆
• repeat 𝐵 times (e.g., B  ≈ 10<) to obtain 𝑆*, … , 𝑆=
• take 𝜈 ≔	empirical distribution of ℎ 𝑆> − ℎ 𝑆 >(*

= , as the ‘shape’ of 𝑅;

• Assumption: ℎ 𝑆 − ℎ 𝐷 ∼ 𝑅;≈ emp_distribution ℎ 𝑆> − ℎ 𝑆 >(*
=     

 Quantile interval: sort values and take top/bottom-quantiles (see next slide)

• With prob. ≈ 1 − 𝛼, ℎ 𝑆 − ℎ 𝐷 ∈ [𝜈?/A, 𝜈*/?/A] ⟹ 𝐼 𝑆 = [ℎ 𝑆 − 𝜈*/?/A, ℎ 𝑆 − 𝜈?/A ]
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empirical distribution of 𝑋2, … , 𝑋3 :
2
3
∑+423 𝛿5! where 𝛿5 is a dirac delta function

𝜈6/8

𝜈’s histogram 

𝑅9’s pdf 

𝜈2:6/8



Bootstrapping CI: Implementation
• From bootstrapping, obtain ℎ 𝑆M − ℎ(𝑆) M&!

N

• How to calculate its empirical distribution’s quantiles?
• Sort them in increasing order; say v[0..(B-1)]
• 𝜈90:/< ≔ the top 0.025 (i.e., v[int(0.975*B)] ) 

• 𝜈:/< ≔ the bottom 0.025 (i.e., v[int(0.025*B)] )

54

𝜈6/8

𝜈’s histogram 

𝑅9’s pdf 

𝜈2:6/8



Hypothesis testing: motivation

• How to claim your new system A is better than existing one B

• Ex1: each test data point => take prediction from A & B => record correct/not

• Ex2: each evaluator => a random keyword is picked, and then both systems pick top 10 relevant documents 
and rank them => the evaluator provides rating (1-5) for both lists.

55

Evaluator 1 2 3 4 5 6 …

A 5 2 2 5 4 2 …

B 4 1 1 4 3 1 …



Two-sample hypothesis testing: definition
• Given 𝐷J with parameter 𝜃
• Samples 𝑆K 	= 𝑋!, … , 𝑋4  and 𝑆O 	= 𝑌!, … , 𝑌4  drawn iid from distribution 𝐷J;  and 𝐷J< , 

respectively

• Equality test version:
• Null hypothesis 𝐻P: 𝜃K = 𝜃O
• Alternative hypothesis 𝐻!:𝜃K ≠ 𝜃O

• E.g. 𝐷D = Ber(𝜇), 𝐻P: 𝜇K = 𝜇O
• Similarly, design hypothesis tester 𝑇 such that the two types of errors are controlled
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Paired t-test
• 𝑆B 	= 𝑋*, … , 𝑋5  and 𝑆B 	= 𝑌*, … , 𝑌5  drawn iid from distribution 𝐷C# = 𝑁(𝜇B, 𝜎BA) and 𝐷C$ = 𝑁(𝜇D, 𝜎DA), 

respectively
• 𝐻E: 𝜇B = 𝜇D
• 𝐻*: 𝜇B ≠ 𝜇D

• Let 𝛿! ≔ 𝑋! − 𝑌!, for all 𝑖 = 1,… , 𝑛

• Let ̅𝛿5 ≔
*
5
∑!(*5 𝛿!

• Design hypothesis test 𝑇 so that 𝑃F% 𝑇 𝑆 = 0 ≥ 1 − 𝛼

• Intuition: reasonable to reject if ̅𝛿5  is large
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Paired t-test
• Under 𝐻P, 𝛿% 	~	𝑁 0, 𝜎" , 𝑖 = 1,… , 𝑛, where 𝜎" = 𝜎K" + 𝜎O"

• Recall Thm: Let 𝛿!, … , 𝛿4~𝑁(0, 𝜎"), and ̅𝛿4 ≔
!
4
∑%&!4 𝛿% , <𝜎4" 	≔

∑!0&
. Q!=RQ.

1

4=!

            𝑍 = 𝑛
=>!
.1.
	~ student-t (mean 0, scale 1, degrees of freedom = 𝑛 − 1)

• Let’s ask “under 𝐻P, what is a plausible range of values of 𝑍 with failure rate 𝛼 = 0.05?”
• Find the 0.025, 0.975-quantiles of 𝑍 => 𝑡P.P"S, 𝑡P.HTS
• Hypothesis tester

   𝑇 𝑆 = 𝐼 𝑍 ∉ 𝑡P.P"S, 𝑡P.HTS = 𝐼 𝑛
GH!
67.
∉ 𝑡P.P"S, 𝑡P.HTS
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Hypothesis testing: additional remarks
• Confidence intervals can be used for hypothesis testing 

• 𝑆	 = (𝑋!, … , 𝑋4)	 drawn iid from distribution 𝐷D 
• 𝐻P: 𝜇 = 0
• 𝐻!: 𝜇 ≠ 0
• 𝐼 is a (1 − 𝛼)-CI construction for 𝜇 => hypothesis test 𝑇 𝑆 = 𝐼(0 ∉ 𝐼(𝑆)) has significance 𝛼

• p-value: given dataset 𝑆, and a family of hypothesis tests 𝑇E’s with different significance 𝛼’s

   𝑝 = the smallest 𝛼 with which you can still reject 𝐻P
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Debugging Learning Algorithms



Debugging Learning Algorithms
Is the problem with generalization to test data?

61

• Is it doing well on training?

• Unrealistic to do better on test than on training

• If it does well on training then problem is generalization

• Model may be too complicated (overfitting)

• Too many features, not enough training data

• Otherwise, problem may be representation : need
better features or better data



Debugging Learning Algorithms
Is there a mismatch between training and test?
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• Training data may be inadequate

• Do results change with different train / test split?

• If so then test distribution is probably strange

• Otherwise you have other generalization problems…



Debugging Learning Algorithms
Is the learning algorithm implemented correctly?

63

• Is it optimizing the loss function that you intended?

• Try measuring / visualizing your loss function during training-is it going down?

• Do the data meet your algorithmic assumptions?

• Hand-craft datasets where you know the desired behavior
• KNN on XOR function
• Perceptron on data that is trivially linearly-separable (y=x+1 and y=x-1)
• Decision tree on axis-aligned data
• Generally, create dataset that meets assumptions of your algorithm



Debugging Learning Algorithms
Do you have adequate representation?

64

• Your feature set could be inadequate

• For binary classification try this…
• Add a feature (maybe call it CheatingIsFun)
• Set value to +1 for positive instances and -1 for negative instances
• This feature is a perfect indicator-problem is now trivially solvable
• Does your algorithm solve it?

• If your algorithm doesn’t get near 0% error then you may have a bug! (or more data / less features)

• If it does then you need better features or a different model (e.g. decision tree vs. linear model)



Debugging Learning Algorithms
Do you have enough data?

65

• Always have at least as many training data as you have learnable model parameters

• Try training on 80% of your training data
• Does performance suffer?
• How much?  A lot?
• If so then getting more data is likely helpful
• If not then you may be data saturated-look elsewhere

• More training data should never lead to worse performance (just slower training)
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Bias / Variance Tradeoff



Bias-Variance Tradeoff
Suppose an archer takes multiple shots at a target…

Accurate
Precise

Accurate
Not Precise

Not Accurate
Not Precise

Not Accurate
Precise



Bias-Variance Tradeoff
Is an unbiased estimator “better” than a biased one?  It depends…

Evaluate the quality of estimate    using mean squared error,

• MSE for unbiased estimators is just,

• Bias-variance is fundamental tradeoff in 
statistical estimation
• MSE increases as square of bias
• Estimators with small bias (but low variance) 

can have lower MSE than unbiased estimators

MSE

Estimator Bias



Bias-Variance Decomposition

= E[(θ̂ −E[θ̂])2] + 2(E[θ̂]− θ)E[θ̂ −E[θ̂]] +E[(E[θ̂]− θ)2]

= E[(θ̂ −E[θ̂])2] +
(

E[θ̂]− θ

)2

= Var(θ̂) + bias2(θ̂)



Other materials
• Bootstrap test: https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-

statistics-spring-2014/readings/MIT18_05S14_Reading24.pdf

• Permutation test: https://www.jwilber.me/permutationtest/

• STAT 566 lecture slides (at UA): https://www.math.arizona.edu/~jwatkins/stat566s20s.html
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Next lecture (9/19)
• Linear models revisited: classification, regression, loss minimization formulations

• Assigned reading: CIML Chapter 7 

• Note: We are skipping Chapter 6 for now!
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