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The role of feature in supervised learning



The importance of good feature representation

* Pixel representation:
* represent an image as a w*h*3 dimensional vector

e treat all coordinates in the same role

* throw away all locality information in the image

* Shape representation:
* represent a colored image with a w*h black-white image

vy

e Lot o s

Emaill 2
Email2 O 1 3 1 -1 3

* Bag-of-words representation:



Deep neural
networks learn
hierarchical feature
representations

output layer

https://www.rsipvision.com/exploring-deep-learning/

4



A AT HEAN

- -

\\\"‘o“ﬁ.
I/’\.~oo,§"

5
https://computervisionblog.wordpress.com/2016/01/23/distributed-code-or-grandmother-cells-insights-from-convolutional-neural-networks/



Irrelevant and redundant features

Movement of
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* If #features is large and #examples is small = spurious correlation between some feature & label

e Redundant features
* Given f1, yis (nearly) independent of f,

* Learning decision trees implicitly handles these two issues

* How about nearest neighbors / Perceptron?

https://www.microsoft.com/en-us/research/blog/ppe-a-fast-and-provably-efficient-rl-algorithm-for-exogenous-noise/ ¢



Feature pruning

* Removing features that are not very useful for prediction
* E.g. text classification with bag-of-word representation, remove words that appear <= K docs

* E.g. digit classification, remove pixels with low variance o o .
_1oN 2 _ 1QN 2 . . .
l/lf - Nlelxl’f O-f — Nlel(xi,f_uf) 20 20 20

Low variance

High variance



Example: Prostate Cancer Dataset

Best LASSO model learns to ignore

Term LS Ridge Lasso several features (age, Icp, gleason,
Intercept 2.465  2.452  2.468 pgg45s).
lcavol 0.680 0.420 0.533

Ilwelgll'?_ (20263 0 _0.238 0 _0.169 wait...Is age really not a significant

. age :8211% —_Q gég’_ .  predictor of prostate cancer? What's
1bph . 0. 0002 going on here?

_._svi_ 0305 _0.227 @ 0.094

i lecp —0.288  0.000 . o .

.gleason —0.021  0.040 ! Ageis highly correlated with other

' pegas 0267 0.133 | factors and thus not significant in the

presence of those factors



Best-Subset Feature Selection

The optimal strategy for p features looks at models over all possible
combinations of features,

For k in 1,..,p:
subset = Compute all subset of k-features (p-choose-k)

For kfeat in subset:
model = Train model on kfeat features
score = Evaluate model using cross-validation

Choose the model with best cross-validation score




Best-Subset Feature Selection : Prostate Cancer Dataset

Each marker is the cross-val R? score of a

trained model for a subset of features
Subset Size vs. R-squared

. " )
% 10 f;\l\l\rz\ Data have 8 features, there are
: s 8 ! | &t . 8-choose-k subsets for each
* 12 . | s i . k=1,...,8 for a total of 255
e ! ' ; ) models
1 : 3 '

eetsee % Using 10-fold cross-val requires

Subset Size

10 x 255 = 2,550 training runs!



Feature Selection: Prostate Cancer Dataset

Best subset has highest test accuracy (lowest variance)
with just 2 features

Term LS Best Subset Ridge Lasso
Intercept 2.465 2477 2.452  2.468
lcavol 0.680 0.740 0.420 0.533
lweight 0.263 0.316 0.238  0.169
age —0.141 —0.046
1bph 0.210 0.162  0.002
svi 0.305 0.227  0.094
lcp —0.288 0.000
gleason —0.021 0.040
pgg4b 0.267 0.133
Test Error 0.521 0.492 0.492  0.479
Std Error 0.179 0.143 0.165 0.164

[ Source: Hastie et al. (2001) ]



Forward Sequential Selection

An efficient method adds the most predictive feature one-by-one

featSel = empty
featUnsel = All features

For iter in 1,..,p:
For kfeat 1n featUnsel:

thisFeat = featSel + kfeat

model = Train model on thisFeat features

score = Evaluate model using cross-validation
featSel = featSel + bestscoring feature
featUnsel = featUnsel - bestscoring feature

Choose the model with best cross-validation score




Backward Sequential Selection

Backwards approach starts with all features and removes one-by-one

featSel = All features

For iter in 1,..,p:
For kfeat i1in featSel:

thisFeat = featSel - kfeat
model = Train model on thisFeat features
score = Evaluate model using cross-validation

featSel = featSel - worstscoring feature

Choose the model with best cross-validation score




Comparing Feature Selection Methods

Sequential selection is greedy, but often performs well...

MSE (w/(k))

065 070 075 080 085 080 085

® Best Subset
Forward Stepwise
Backward Stepwise
Forward Stagewise

- —]

I I I I I I
5 10 15 20 25 30

Subset Size k

Example Feature selection on synthetic
model with p=30 features with pairwise
correlations (0.85). True feature weights
are all zero except for 10 features, with
weights drawn from N(0,6.25).

Sequential selection with p features takes
O(p?) time, compared to exponential time
for best subset

Sequential feature selection available in Scikit-Learn under:
feature selectilion.SequentialFeatureSelector



Feature normalization

Centering:
* Xip =Xip—Hp S Hp =0

Variance scaling:
* xir=xp5/0F 2 (07)> =1

Absolute scaling
. x{f = X; 7 /7r, Wwhere - = max |x; /| = range of x{f ‘sin [-1,+1]
) ) l ) )

Same transformation applied to both training set and test data

Xi

[l

Aside: example normalization: x; = sometimes also can be applied
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Linear Models

[ Image: Murphy, K. (2012) ] [ Image: Hastie et al. (2001) ]

184
17.54

174
16.54
164

15.54

Linear Regression Fit a linear function to Logistic Regression Learn a decision
the data, boundary that is linear in the data,
y=wloz+b : T T
logit(o(w™ z)) = w™ x



Nonlinear Data

20 3 :
10 i
; )
1% 5 10 15 20 \ A
What if our data are not well-described by a What if classes are not

. H ? .
linear function: /Inear/y_separable?

[Source: Murphy, K. (2012) ]



Example: Earthquake Prediction

Suppose that we want to predict the number of earthquakes that occur of a certain magnitude. Our
data are given by,

FIGURE 5-3A: WORLDWIDE EARTHQUAKE FREQUENCIES, JANUARY 1964—-MARCH 2012

7000
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) NI

4000 \

S Fitting a linear regression
3000 - ¥ N\ is not very helpful

2000

1000

Annual Frequency
Earthquakes of at least this magnitude

45 50 55 60 65 720 725 80 85 90 95 10.0
Magnitude

[ Source: Silver, N. (2012) ]



Example: Earthquake Prediction

Suppose that we want to predict the number of earthquakes that occur of a certain magnitude. Our
data are given by,

FIGURE 5-3B: WORLDWIDE EARTHQUAKE FREQUENCIES, JANUARY 1964—-MARCH 2012,
LOGARITHMIC SCALE
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[ Source: Silver, N. (2012) ]



Example: Earthquake Prediction

Suppose that we want to predict the number of earthquakes that occur of a certain magnitude. Our

[ Source: Silver, N. (2012) ]

data are given by,

FIGURE 5-3A: WORLDWIDE EARTHQUAKE FREQUENCIES, JANUARY 1964—-MARCH 2012

Annual Frequency:
Earthquakes of at least this magnitude

7000

6000

5000

4000 1

3000 4

2000

1000

45 50 55 60 65 720 725 80 85 90 95 10.0
Magnitude

Idea Instead of fitting ordinary
linear regression,

Yy = whz
First take the logarithm of
input values x,

Yy = wt log(z)



Basis Functions

* A basis function can be any function of the input features X
* Define a set of m basis functions  ¢1(x), ..., ¢ (x)

* Fit a linear regression model in terms of basis functions,

Y = Zwi¢i($) = w’ ¢(z)

* Regression model is linear in the basis transformations

e Model is nonlinear in the data X



Common “All-Purpose” Basis Functions

* Linear basis functions recover the original linear model,

¢m (SC) = I'm Returns mt" dimension of X

* Quadratic. ¢,,(z) = x5 or ¢m(x) = x;2) capture 2" order interactions

* An o.rder p.polynomial gb — T, 5’33» ..., x4y captures higher-order
nonlinearities (but requires O(d’) parameters)

* Nonlinear transformation of single inputs,

¢» — (l()g(a?j), \/E . )

* An indicator function specifies a region of the input,

Om(x) = I1(Ly, < 21 < Upy)



Feature transformations

Combining features into a “meta-feature”, e.g. X0 * Xexcellent
e Useful for e.g. Perceptron learners

In general, (i) meta-features if allowed to combine k features

Computationally cheaper alternative:
* train a decision tree, use the meta-feature induced by leaves

Logarithmic feature transformation
* x; < log,(xf) (“excellent” word count: 1->2 vs. 10->11

* xp < logy(xp + 1)

o

)

o L

no

+ P—

- ¢ “excellent”

— T _.]—‘
xT9
A
'l mmm | mmm
lmem | mmm
'l mem | mmm
e | mmm
e | mmm
e | mmm

1
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Classification metrics beyond error rate

24



Confusion matrix

* E.g. activity recognition

e P(y=skip|y=jump) =11%

actual class

side
skip
walk
vavel

navel

task: activity recognition from video

Ll 1 T L

L]

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
- 0 0 0 1 ] 0 0
0 0 0
= 0 0 g
D 0 0
- 0 0 0
- 0 0 0
- 0 0 0
0 0 0 0
belnd jalck jur[np p]ulmp n.lm sulze sizip W;IK wa':/e1 wave2

predicted class

figure from vision.jhu.edu
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Class imbalance problem

— .
E.g., 5% pos, 95% negative.
Baseline: always predict majority class | ‘ ‘ -

Implicit assumption:
misclassifying positive example is more costly than misclassifying negative examples

Standard ML algorithm aims to find i that minimizes unweighted training error

> 1(hGx) # i)
i=1

2 alternatives:
* Duplicate the minority class to make the positive and negative class balanced

repeat every positive example w times, wherew = P(y = —1)/P(y = +1)
* Importance weighted classification: minimize >,/ ; w; I(h(x;) # y;),
where w; = 1 wheny; = -1, w; = wwheny; = +1

26



New measures of classification performance

True positive rate (TPR)
TP _ P(Yy=+1y=+1)
P P(y=+1)

(aka recall, sensitivity)

True negative rate (TNR) = %

(specificity)

False positive rate (FPR) = %

FN

False negative rate (FNR) = -

TP __ P(y=+1y=+1)

actual class
A
positive negative
(
positive | true positives false positives
(TP) (FP)
predicted < Type | error
class : .
: false negatives true negatives
negative
| (FN) (TN)
\ Type Il error
P=TP+FN N =FP + TN
Applications:

Search engine: precision & recall
Cancer classification: FNR vs. FPR

Precision = =
ecislo P—called P(Y=+1)

P — called = TP + FP

27



Adjusting TP, FP, TN, FN via thresholding

* Decision values (classification scores)

r
positive

negative

.99 +

98 + predicted <
72 - class

51

.24 +

* hy(x) =1(c(x) = t)

e Choice of threshold t:
et=0:h; =—-1=>TPR=0, FPR=0
*t=0:h, =4+1=>TPR=1, FPR=1

\.

actual class

_A

f g
positive

. \
negative

true positives
(TP)

false positives
(FP)

false negatives
(FN)

true negatives
(TN)

P=TP+FN

N = FP + FN

28



ROC

A Receiver Operating Characteristic (ROC) curve plots the TP-rate vs. the FP-rate

curve

as a threshold on the confidence of an instance being positive is varied

(TP/P)

o 1.07T

True positive rat

ideal point Different methods can work
better in different parts of
; Alg 1 ROC space.
Ag2 -~
‘\ expected curve for
random guessing
1.0

False positive rate
(FP/N)

.99 +
.98 +
72 +
51 -
24 -
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ROC curve

* Conceptually, consider every
possible threshold, put a dot for
each, and connect them.

e Actually, just need to care about
when the ‘correct class’ changes

* results in staircase shape, but
diagonal line can still happen.

* A popular alternative: just plot
when going from + to -.

(what’s shown here) J

confidence correct
instance positive class
"Ex9 .99 T
Ex7 98 TPR=2/5FPR=05 +
Ex 1 A2 -
Ex2 .70 +
Ex 6 65 TPR=4/5 FPR=1/5 +
Ex 10 .51 ,
Ex 3 .39 -
Ex5 .24 1pr-=55FPR=35 +
Ex 4 1 -
Ex 8 01 TPR=5/5 FPR=5/5 -

>/

L

1.04

True positive rate

—
oV

False positive rate
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confidence correct
instance positive class

Calculating ROC curve B :

TPR= 2/5, FPR= 0/5 +

EXC It -
EX2 () +
@ (M (m) _(m) . . . . .
let (()’ 5 & ) Vs )) be the test-set instances sorted according to predicted confidence Ex6 .65 TPR=4/5.FPR=15 _ +
¢\ that each instance is positive Ex 10 .51 -
let num_neg, num_pos be the number of negative/positive instances in the test set Ex3 .39 -
TE=0"EP =)
lasinTE =)
fori=1tom

/I find thresholds where there is a pos instance on high side, neg instance on low side
if (i>1)and (c?=c))yand (y? ==neg)and (TP > last_TP)

Q*—-— FPR = FP / num_neg, TPR = TP/ num_pos

output (FPR, TPR) coordinate

lasii TP = TP
if y) == pos

++TP
else

++FP

FPR = FP / num_neg, TPR = TP / num_pos
output (FPR, TPR) coordinate

31



ROC curve examples

task: recognizing genomic units called operons i
100%
0.8
80% [ i
&
o 60% o
2 2
f Z T NetCh 3
& 40% g, / — NetChop C-lerm-.O.
o ] 0.4 e — TAP + ProteaSMM-i
= = / ——  ProteaSMM-i
= /
o Vg
20% Bayes net
naive Bayes -
L 1 | CS-Q ------------ 0.2
0% 20% 40% 60% 80% 100%
False Positive Rate
| L I 1 | L
0
_ » , 0 0.2 0.4 0.6 0.8 I
figure from Bockhorst et al., Bioinformatics 2003 False positive rate

from Wikipedia



Area under ROC curve

The boss says “could you just give me one number?”
AUC: Area Under the ROC curve:

z:(x—,—l)ES_ Z(x+,+1)es+ I(c(x4)>c(x-))
N_'N+

AUC(c): =

c(x): decision value of x

S_: negative examples, S, : positive examples

Idea: the slice corresponds to x_ has area

1 Dy +nesy [(€(xp)>c(x))
N_ N,

Interpretation: “how well does ¢ distinguish between + and -?”

[ I |
| |
ROC Curve !(fnlcemration /AUC=0,913

1 [ |

03 + ll
N
s
-
.
d
Lt
4
.
.
11
.

e o
- @

o
@

True positive rate (Sensitivity)
2 2 2 o
r [ - o

e
=

o

0 02 04 08 08
False p‘s'tive rate (1 - Specificity)
[ |
L |

Negatives Positives

0 01 02 03 04 05 06 0.7 0.8 0.9
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Precision-Recall (PR) curve

A precision/recall curve plots the precision vs. recall (TP-rate) as a
threshold on the confidence of an instance being positive is varied

ideal point

f /

1.0
- default precision
2 _— determined by the
o fraction of instances
< that are positive
Ply=+4+11y=+1)

Qv

recall (TPR) 1.
Py=+11ly=+1)

 This is usually a trade-off curve: t | = recall T, precision |

.99 +
.98 +
72 +
51 -
24 -
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PR-curve example

Precision

predicting patient risk for VTE

o ..
@ -
=
©
(=
<+
(=
§ - Naive Bayes e e
SVM
sessssses Filtered k—-NN
----- ~ C45
g - == Random Forest
| I | I I 1
0.0 0.2 0.4 0.6 0.8 1.0
Recall

figure from Kawaler et al., Proc. of AMIA Annual Symosium, 2012 35



Summary of precision-recall

Reporting one number

Take the harmonic mean: F1 score

Recall: minimum of the two <= harmonic mean <= geometric mean <= arithmetic mean

2

Fy = -
recall * + precision™

Emphasizes the smaller measure
e E.g.recall = 0.1, precision =09 = F;, =0.18

Area under PR-curve is also a popular metric

=

0.2
0.4
0.6
0.8
1.0

0.0
0.00
0.00
0.00
0.00
0.00
0.00

0.2 04
0.00 0.0
0.20
0.26
0.30

Table 5.2: Table of f-measures when
varying precision and recall values.
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How to plot ROC/PR curve when training set is small?

» k-fold CV:
* Obtain k curves and plot them all

W\

 Pooled prediction from k-fold CV.

=
— |

—1

N C({,)

JI—
- Lj’&” TLL/—-_

Precision

— Fold 1 AUC=0.8870
— Fold 2 AUC=0.8324
— Fold 3 AUC=0.8320

| — Fold 4 AUC=0.8685

- Fold 5 AUC=0.8523
- Overall AUC=0.8542
L

0.2 0.4

0.6

0.8
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Model Selection



Motivation: evaluating & comparing ML models

Example
* Your ML model f has test set error = 6.9%
* Your nemesis, Gabe’s, ML model g has test set error = 6.8%
* How confident are we to conclude that g has smaller generalization error than that of f?

* Intuition: We should be more confident if the test set is larger, less if it’s smaller
e Our uncertainty can be quantified with a confidence interval

* Determining the best model can be done rigorously with hypothesis testing

Disclaimer: we only focus on the key ideas (standard stats courses spend >= 5 lectures on this)

39



Confidence Intervals

Intuition Find an interval such that we are pretty sure it encompasses the
true parameter value (e.g. algorithm accuracy).

Given data X1, ..., X,, and confidence a € (0,1)
find interval (a, b) such that,

PO (a,b)>1—a

In English the interval (a, b) contains the true
parameter value 6 with probability at least 1 — «

* Intervals must be computed from data a(X1,...,X,) and b(X4,..., X))
* Interval (a,b) is random, parameter{ is not random (it is fixed)

* Requires that we know the distribution of the estimator 6



Warning

Question How should we interpret a confidence interval (e.qg. 95%)?

P(6 € (a(X),b(X))) > 0.95

Hint Think about what is random and what is not... This is NOT a probability
— statement about /.



Warning

Question How should we interpret a confidence interval (e.qg. 95%)?

P(6 € (a(X),b(X))) > 0.95

Hint Think about what is random and what is not...



Interpretation

On day 1, you collect data and construct a 95 percent confidence
interval for a parameter #;. On day 2, you collect new data and con-
struct a 95 percent confidence interval for an unrelated parameter 6-.
On day 3, you collect new data and construct a 95 percent confi-
dence interval for an unrelated parameter 635. You continue this way
constructing confidence intervals for a sequence of unrelated param-
eters 61,6>,... Then 95 percent of your intervals will trap the true
parameter value. There is no need to introduce the idea of repeating
the same experiment over and over.

[ Source: Wasserman, L. 2004 ]



Knowledge Check

What is the confidence level of this estimator?

1 e 4o

2 . e

3 o ob T
4 o .—9"—. -
5 — e

6 . T -
7 ..—.‘:‘—

8 —— . ..
9 ——.

10 e % .
11 e

12 .« . ——,

13 o T ™5

14 o e

15 e o o

16 ce 1T e
17 ° io_’_o

18 . lwe T
19 T

20 o it
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Cl construction

A standard recipe:
e Construct an estimator for 8 based on S -- call it O

e Let I(S) == [O5 — w, O + W], where w is chosen such that for all 8,
P5~Dg(3 € [0 —w, 05 + w]) >1—-a

* Sometimes choose I(S) = [O5 — wy, O + wg] with different wy, wg’s

Important example: confidence interval for normal mean

* ‘Ehi ==*A](ll;]i)réi.:fi.gzii:;;;:jxyl) ~ l)Z}
! X Known variance

* Define iy =~ ¥, X,

. 1
¢ MS_MNN(O);)
* How to choose w such that P(|fis — u| <w) =>1-—a?

lower
limit

upper
limit

45



Confidence Intervals of the Normal Distribution

Many estimators follow a normal distribution with enough data

0.3 0.4

0.2

0.0 0.1

(central limit theorem)

A Normal RV falls within 20of
the mean with 95% probability

P(0 € (—20,20)) > 0.95

The interval (—30, 30) covers
34.1% 34.1% ~99%, super high confidence

For various reasons, 95% has become standard confidence level



Cl for normal mean (cont’d)

" 1
fs—p~N (0,;)
* How to choose w such that P(|fig —u| <w) =>1-—a?

Note: Z = +/n (jig — n) ~ N(0,1) Central limit theorem

Suffices to find z, suchthat P(|Z| < z,) 21— a,and letw =

I

* Final (1 — a)-confidence interval construction for u: I1(S) = [,uS — =
: - . _ _ 19 .~ 196
* E.g. 95%-confidence interval for u: I(S) = [,us 7 Hs + Tn

lower upper
lirnit limit

=|

Zg

N

-2.58 -1.96 -1 0 1 196 2.58

4
4

|—— Bom ——|
| —— o5 ——— |

99% > |

)AS+

Jn
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Cl for means of general distributions, unknown variance

* Given Dy with mean parameter 8 with unknown variance ;’{‘gﬁgt_sgigg"swts as st
Y (X;—Tin)? st.t.ppf(1-alpha/2,df=2)
« 52 = ‘-1n_‘1 = unbiased estimator of var(Dy) => 4.302652729911275
2 R 1 «n st.t.ppf(1-alpha/2,df=5)
* Theorem: Let X, ..., X,~N(u,0%), and ji,, = - i=1 Xi => 2.5705818366147395
n,—U st.t.ppf(1-alpha/2,df=10)
VN "~ student-t (mean O, scale 1, degrees of freedom =n — 1) => 2.2281388519649385
n
G-ty st.t.ppf(1-alpha/2,df=30)
 Cl: | 2] e - _ 2.0422724563012373
0.35f st.t.ppf(1-alpha/2,df=100)
—> 1.9839715184496334

0.30}

How do we estimate variance ;0-25”
. ~— 0.20}
of algorithm performance? " o1l

0.10}
0.05f
0.00
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Cross-Validation

[T T ]
[ T 1

run 1

run 2

run 3

run 4

K-fold Cross Validation Partition training
data into K “chunks” and for each run
select one chunk to be validation data

For each run, fit to training data (K-1
chunks) and measure accuracy on
validation set. Average model error
across all runs. Estimate variance.

Source: Bishop, C. PRML



Algorithm 8 CrOSSVALIDATE(LearningAlgorithm, Data, K)

: € ¢ 0 // store lowest error encountered so far
> & <— unknown // store the hyperparameter setting that yielded it
3 for all hyperparameter settings o do

g err<+|] // keep track of the K-many error estimates
= fork=1toKdo

6 train < {(xn,yn) € Data: n mod K # k —1}

7 test < {(xn,yn) € Data:n mod K =k —1} // test every Kth example
8 model <— Run LearningAlgorithm on train

9: err < err @ error of model on test // add current error to list of errors
o end for

w: AUSErT <— mean of set err < Can also estimate variance here
= IfavgErr < € then

13 € < avgErr // remember these settings
14 & — o // because they're the best so far
s end if

. end for

Drawback Need to perform training K times for each model.



Bootstrap Example

Example Suppose we have LSAT scores and GPA for 15 law students and wish to

estimate the correlation between LSAT and GPA:

LSAT 576 635 568 578 666 580 555 661
651 605 653 575 545 572 594

&N
o«

GPA

GPA 3.39 3.30 2.81 3.03 3.44 3.07 3.00 3.43 3

3.36 3.13 3.12 2.74 2.76 2.88 3.96

«©
o

95% Bootstrap confidence interval from
B=1000 estimates of the correlation,

78 £ .274 = (.51, 1.00)

150

100

Q Should we trust this confidence interval?
Why or why not?

50

[ Source: Wasserman, L. 2004 ]

= ]
o

560 580 600 620 640 660

LSAT

95% Interval

A
4 \
P --.-.-I...IIIIII|II‘|\||||‘\“\“\“\III
0.4 0.6 0.8 1.0

0.2

Bootstrap Samples



Bootstrap Example

Eight subjects who used medical patches to infuse
a hormone into the blood using three treatments: s
placebo, old-patch, new-patch

&

subject  placebo old new old — placebo new — old

9243 17649 16449 8406 -1200
‘ 9671 12013 14614 2342 2601 ¥
: 11792 19979 17274 8187 -2705
~ 13357 21816 23798 8459 1982 _
5 9055 13850 12560 4795 -1290 =
6200 9806 10157 3516 351 II |||I

12412 17208 16570 4796 -638 | m II_II_.

95% Interval

4 \

SO e BN

=1

o]

18806 29044 26325 10238 -2719

Bootstrap Samples

Estimate whether relative efficacy is Bootstrap B=1,000 samples yields
the same under new drug, 95% confidence interval,

E[new — old] 0 € (—0.24,0.15)

E[old — placebo] Q Is this more trustworthy than in
previous example?

0 —



empirical distribution of {X,, ..., X,, }:

BOOtSt e p p I N g Cl - i=1 O0x, where 6y is a dirac delta function

n

* Goal: estimate property h of D (:=h(D)) using confidence intervals, using sample S (e.g. h=F1 of model f)

L I
* |dea: estimate the distribution of h(S) — h(D), denoted by R}, : ///\\x :
by bootstrapping (resampling) /LZ K :
e perform n times of “sampling with replacement” from S R} ’s pdf \
* repeat B times (e.g., B = 10%) to obtain S, ..., Sg
* take v := empirical distribution of {h(S,) — h(5)}5_1, as the ‘shape’ of R}, : ’
Va2 I Vi-a/2

* Assumption: h(S) — h(D) ~ Ry= emp_distribution[{h(Sb) — h(S)}lg=1] V's histogram

Quantile interval: sort values and take top/bottom-quantiles (see next slide)

 Withprob. = 1 — a, h(5) — h(D) € [vg/2,Vi—a/2] = 1(S) = [A(S) — V1_q/2, h(S) — Vg 2 ]
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Bootstrapping Cl: Implementation

* From bootstrapping, obtain {h(S,) — h(S)}i_4

* How to calculate its empirical distribution’s quantiles?
e Sort them in increasing order; say v[0..(B-1)]
* Vi—q/2 = the top 0.025 (i.e., v[int(@.975*B)] )
* Vg2 = the bottom 0.025 (i.e., v[int(0.025*B)] )

N
\

|
7

]

Va2 I Vi-a/2

v’s histogram

54



Hypothesis testing: motivation

* How to claim your new system A is better than existing one B

* Ex1: each test data point => take prediction from A & B => record correct/not

e Ex2: each evaluator => a random keyword is picked, and then both systems pick top 10 relevant documents
and rank them => the evaluator provides rating (1-5) for both lists.

Bvalator | 1| 2 | 3 | 4 | 5 | 6 | .
A 5 2 2 5 4 2

B 4 1 1 4 3 1
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Two-sample hypothesis testing: definition

Given Dg with parameter 6

Samples Sy = (Xy,...,Xy) and Sy = (¥, ..., Yy) drawn iid from distribution Dy, and Dy,

respectively mean(cr)
=9.34

mean(No EP)
=9.61

Equality test version:
* Null hypothesis Hy: 8y = 0y
 Alternative hypothesis H;:0y # Oy

Eg D/,L — BBI’(,L[), HO: Ux = Uy (I) tls 1|o 1I5 2]0

Similarly, design hypothesis tester T such that the two types of errors are controlled

56



Paired t-test

Sx = (X, ...,Xp) and Sy = (V3, ..., ¥y) drawn iid from distribution Dg, = N (uy, 02) and Dg, = N(uy, o),
respectively

* Hotpy = py
* Hytpx # Uy

Let6; = X; —Y;, foralli=1,..,n

- 1
Let 6, =~ ti0;

Do not reject Hy,

Reject H, —I

Design hypothesis test T so that Py (T(S) =0) =2 1—«a

Intuition: reasonable to reject if |5_n| is large
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Paired t-test

 Under Hy, §; ~N(0,0%),i = 1, ...,n, where 62 = 0 + o7
0.40
n — 2 0.35f
o Il Thm: 5 5 0 2 d S — — i=1(5i_5n) 0.30}
Recall Thm: Let 84, ..., 6,,~N(0,0%), and §,, == Z i, 02 = . o]
. Zo0.20f
) 15l
/ = \/ﬁa—n ~ student-t (mean O, scale 1, degrees of freedom=n — 1) 312
n 0.05}
0.00 ==

* Let’s ask “under H,, what is a plausible range of values of Z with failure rate &« = 0.05?”
* Find the 0.025, 0.975-quantiles of Z => t; g2, tg 975
* Hypothesis tester

T(S) = I(Z & [to.025 too7s]) =1 (\/_j

n

Do not reject H,

Reject H, —1

€ [to.025, to. 975])



Hypothesis testing: additional remarks

* Confidence intervals can be used for hypothesis testing
* § = (Xy,...,Xy) drawniid from distribution D,

‘HO:[J=O
.Hl:ﬂio

lower X upper
lirnit limit

e Iisa (1 — a)-Cl construction for u => hypothesis test T(S) = I(0 & I(S)) has significance «

* p-value: given dataset S, and a family of hypothesis tests T,,’s with different significance a’s

p = the smallest a with which you can still reject H

Sampling Distribution of
Test Statistic (z-score)

Assume Null Hypothesis is True

p-value
Probability of this area

p-value = 0.0062 -2.5

Our sample test statistic Expected test statistic (z-score)
(z-score)
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Debugging Learning Algorithms

Is the problem with generalization to test data?

Is it doing well on training?

Unrealistic to do better on test than on training

If it does well on training then problem is generalization
Model may be too complicated (overfitting)

Too many features, not enough training data

Otherwise, problem may be representation : need
better features or better data

Error

Over-
fitting Validation
set

Under-
fitting

Training
set

“sweet spot”

\

Number of
iterations
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Debugging Learning Algorithms

Is there a mismatch between training and test?

Training data may be inadequate

Do results change with different train / test split?

If so then test distribution is probably strange

Otherwise you have other generalization problems...
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Debugging Learning Algorithms

Is the learning algorithm implemented correctly?

Is it optimizing the loss function that you intended?
Try measuring / visualizing your loss function during training-is it going down?
Do the data meet your algorithmic assumptions?

Hand-craft datasets where you know the desired behavior
 KNN on XOR function
* Perceptron on data that is trivially linearly-separable (y=x+1 and y=x-1)
* Decision tree on axis-aligned data
e Generally, create dataset that meets assumptions of your algorithm
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Debugging Learning Algorithms

Do you have adequate representation?

Your feature set could be inadequate

For binary classification try this...
e Add a feature (maybe call it CheatingIsFun)
e Set value to +1 for positive instances and -1 for negative instances
* This feature is a perfect indicator-problem is now trivially solvable
* Does your algorithm solve it?

If your algorithm doesn’t get near 0% error then you may have a bug! (or more data / less features)

If it does then you need better features or a different model (e.g. decision tree vs. linear model)
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Debugging Learning Algorithms

Do you have enough data?

* Always have at least as many training data as you have learnable model parameters
* Try training on 80% of your training data

* Does performance suffer?

* How much? A lot?

* If so then getting more data is likely helpful

* If not then you may be data saturated-look elsewhere

* More training data should never lead to worse performance (just slower training)
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Bias-Variance Tradeoff

Suppose an archer takes multiple shots at a target...

Low Variance High Variance
(7))
8

[an} °
g
]

Accurate Accurate
Precise Not Precise

wn
8
m
=
20
n

Not Accurate Not Accurate
Precise Not Precise




Bias-Variance Tradeoff

Is an unbiased estimator “better” than a biased one? It depends...

Evaluate the quality of estimate § using mean squared error,

A

MSE(0) = B |(6 — 6)?| = bias®(9) + Var(9)

MSE for unbiased estimators is just,

A A

MSE(#) = Var(0)

MSE

« Bias squared
.

e Bias-variance is fundamental tradeoff in
statistical estimation

MSE increases as square of bias

Estimators with small bias (but low variance)
can have lower MSE than unbiased estimators

Estimator Bias



Bias-Variance Decomposition

A

MSE(4) = E :(é(X) _ 0)2}

_E _(é —E[0] + E[f] — 9)2}
= E[(0 — E[0])*] + 2(E[0] — 0)E[0 — E[0] + E[(E[0] — 6)*]
— E[(0 — E[0])?] + (E[é] - 9)2

= Var(0) + bias®(6)



Other materials

* Bootstrap test: https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-

statistics-spring-2014/readings/MIT18 05514 Reading?4.pdf

* Permutation test: https://www.jwilber.me/permutationtest/

» STAT 566 lecture slides (at UA): https://www.math.arizona.edu/~jwatkins/stat566s20s.html
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https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/readings/MIT18_05S14_Reading24.pdf
https://www.jwilber.me/permutationtest/
https://www.math.arizona.edu/~jwatkins/stat566s20s.html

Next lecture (9/19)

* Linear models revisited: classification, regression, loss minimization formulations

* Assigned reading: CIML Chapter 7

* Note: We are skipping Chapter 6 for now!
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