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Linear Regression

Regression Learn a function that 
predicts outputs from inputs,

Linear Regression As the name 
suggests, uses a linear function:

Outputs y are real-valued

INPUT: X

O
U

TP
U

T:
 Y

We will add noise later…



Linear Regression

Where is linear regression useful?

Trendlines Stock Prediction Climate Models

Used anywhere a linear relationship is assumed 
between continuous inputs / outputs

Massie and Rose (1997)



Line Equation

Recall the equation for a line has a 
slope and an intercept,

Slope Intercept

• Intercept (b) indicates where line crosses y-axis
• Slope controls angle of line
• Positive slope (w) à Line goes up left-to-right
• Negative slope à Line goes down left-to-right



Moving to higher dimensions…

In higher dimensions Line à Plane

Multiple ways to define a plane, we 
will use:

Normal Vector
(controls orientation)

In-Plane Vector
(handles offset)

Source: http://www.songho.ca/math/plane/plane.html 

Regression weights will take place 
of normal vector

http://www.songho.ca/math/plane/plane.html


Inner Products

Recall the definition of an inner product:

Projection of one vector onto another,

w
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Linear Regression

For D-dimensional input vector              the 
plane equation,

Often we simplify this by including the intercept 
into the weight vector,

Since:

[ Image: Murphy, K. (2012) ]



Adding Noise

Gaussian (a.k.a. Normal) distribution with 
mean (location)    and variance (scale)     
parameters,
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Useful Properties
• Closed under additivity:

• Closed under linear functions (a and b constant):

We say                       . 



Linear Regression

Input-output mapping is not exact, so we will add 
zero-mean Gaussian noise,

INPUT: X

O
U

TP
U

T:
 Y

ε ∼ N (0,σ2)where

Multivariate Normal
(uncorrelated)

This is equivalent to the likelihood function,
p(y | w, x) = N (y | wT

x,σ
2)

Because Adding a constant to a Normal RV is still a Normal RV,

In the case of linear regression           and  



Great, we’re done right?

We need to fit it to 
data by learning the 
regression weights

Don’t know these; 
need to learn them

Data – We have this

Random; Can’t do 
anything about it

How to do this?  
What makes good 

weights?



Learning Linear Regression Models

There are several ways to think about fitting regression:

•  Intuitive Find a plane/line that is close to data

•  Functional Find a line that minimizes the least squares loss

•  Estimation Find maximum likelihood estimate of parameters

They are all the same thing…



Fitting Linear Regression

Intuition Find a line that is as 
close as possible to every 

training data point

The distance from each point 
to the line is the residual

Training Output Prediction
https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/ 

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/
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Least Squares Solution

Functional Find a line that 
minimizes the sum of 

squared residuals

Over all the training data,

Least squares regression
https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/ 

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/


Least Squares

This is just a quadratic function…
• Convex, unique minimum
•  Minimum given by zero-derivative
• Can find a closed-form solution

Let’s see for scalar case with no bias,



Least Squares : Simple Case

Derivative (+ chain rule)

Distributive Property

Algebra



Least Squares in Higher Dimensions

Things are a bit more complicated in higher 
dimensions and involve more linear algebra,

[ Image: Murphy, K. (2012) ]

Can write regression over all training data more compactly…

Design Matrix
( each training input on a column )

Vector of
Training labels

Nx1 Vector



Least Squares in Higher Dimensions

Least squares can also be written more 
compactly,

[ Image: Murphy, K. (2012) ]

Some slightly more advanced linear algebra 
gives us a solution,

Ordinary Least Squares (OLS) solution

Derivation a bit involved for lecture but…
• We know it has a closed-form and why
• We can evaluate it
• Generally know where it comes from
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MLE for Linear Regression

INPUT: X

O
U

TP
U

T:
 Y

Recall that the likelihood is Gaussian:

Given training data                     likelihood function 
is given by,

So MLE maximizes the log-likelihood over the whole data as,



Univariate Gaussian (Normal) Distribution

Gaussian (a.k.a. Normal) distribution with 
mean (location)    and variance (scale)     
parameters,

PD
F

The logarithm of the PDF if just a negative 
quadratic,

Constant in mean Quadratic Function of mean

Log- PDF



Notation

Likelihood of linear basic regression model…

…we will just look at learning mean parameter for now



MLE of Gaussian Mean
Assume data are i.i.d. univariate Gaussian,

Variance is known

Log-likelihood function:

Constant doesn’t 
depend on mean

MLE estimate is least squares estimator:

MLE doesn’t change when we:
1) Drop constant terms (in   )
2) Minimize negative log-likelihood



MLE of Linear Regression

Substitute linear regression 
prediction into MLE solution 

and we have,

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/ 

So for Linear Regression, 
MLE = Least Squares 

Estimation

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/


Multivariate Gaussian Distribution

Let               with mean             and positive semidefinite covariance 
matrix                 then the PDF is,

We have only seen scalar (1-dimensional) X, but MLE is still least 
squares for higher-dimensional X…

Again, the logarithm is a negative quadratic form,

Constant (in mean) Quadratic Function of mean



Multivariate Quadratic Form

Quadratic form for vectors is 
given by inner product,

For iid data MLE of Gaussian 
mean is once-again least 

squares,
• Strongly convex
• Differentiable
• Unique optimizer at zero gradient



Notation

Substitute multi-dimensional linear regression…

…brings us back to the least squares solution



MLE of Linear Regression

Using previous results, MLE is equivalent to 
minimizing squared residuals,

[ Image: Murphy, K. (2012) ]

Some slightly more advanced linear algebra 
gives us a solution,

Ordinary Least Squares (OLS) solution

Derivation a bit advanced for this class, but…
• We know it has a closed-form and why
• We can evaluate it
• Generally know where it comes from



Linear Regression Summary

1. Definition of linear regression model,

where

2. For N iid training data fit using least squares,

3. Equivalent to maximum likelihood solution



Linear Regression Summary

Ordinary least squares solution

Is solved in closed-form using the Normal equations,

Design Matrix
( each training input on a column )

Vector of
Training labels

QUESTIONS?



A word on matrix inverses…

Least squares solution requires inversion of the term,

What are some issues with this?

1. Requires             time for D input features

2. May be numerically unstable (or even non-invertible)

Small numerical errors in input
can lead to large errors in solution



Pseudoinverse

The Moore-Penrose pseudoinverse is denoted,

• Generalization of the standard matrix inverse
• Exists even for non-invertible XTX
• Directly computable in most libraries
• In Numpy it is: linalg.pinv



Linear Regression in Scikit-Learn

Load your libraries,
For Evaluation

Load data,

Train / Test Split:



Linear Regression in Scikit-Learn

Train (fit) and predict,

Plot regression line with the test set,
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Outliers
How does an outlier affect the estimator?

Squared Error
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Outliers in Linear Regression

Y

X

Outlier “pulls” 
regression line away 

from inlier data

Need a way to ignore or 
to down-weight impact 

of outlier

https://www.jmp.com/en_us/statistics-knowledge-portal/what-is-multiple-regression/mlr-residual-analysis-and-outliers.html 

https://www.jmp.com/en_us/statistics-knowledge-portal/what-is-multiple-regression/mlr-residual-analysis-and-outliers.html


Dealing with Outliers

Too many outliers can indicate many things: non-Gaussian 
(heavy-tailed) data, corrupt data, bad data collection, …

A few ways to handle outliers…

1. Use a heavy-tailed noise distribution (Student’s T)

Fitting regression becomes difficult

2. Identify outliers and discard them

NP-Hard and throwing away data is generally bad

3. Penalize large weights to avoid overfitting (Regularization)



Y

X

Regularization

Red model is without regularization
Green model includes regularization

Regularization
Strength

Regularization Penalty

Recall, regularization helps avoid overfitting training data…



Regularized Least Squares

Ordinary least-squares estimation (no regularizer),

L2-regularized Least-Squares (Ridge)

L1-regularized Least-Squares (LASSO)

Quadratic Penalty

Absolute Value (L1) Penalty

Already know how 
solve this…



A word on vector norms…

The L2-norm (Euclidean norm) of a vector w is,

The L1-norm (absolute value) of a vector w is,

They are not the same functions…



Other Regularization Terms

A more general regularization penalty,

L2 RegularizationL1 is non-
differentiable

q<1 is not a norm, 
and thus not convex



Administrative Items

•  HW7 out Thursday (Due next Thursday)

•  HW6 due tonight

•  Also, I saw this ad…



Regularized Least Squares

A couple regularizers are so common they have specific names

L2 Regularized Linear Regression
• Ridge Regression
• Tikhonov Regularization

L1 Regularized Linear Regression
• LASSO
• Stands for: Least Absolute Shrinkage and Selection Operator



L2 Regularized Least Squares

Quadratic

Quadratic

Quadratic + Quadratic = Quadratic

• Differentiable
• Convex
• Unique optimum
• Closed form solution



L2 Regularized Least Squares : Simple Case

Derivative (+ chain rule)

Distributive Property

Algebra



L2 Regularized Linear Regression – Ridge Regression

After some algebra…

Compare to ordinary least squares:

Source: Kevin Murphy’s Textbook

Regularized least-squares includes 
pseudocount in weighting similar to 

Gaussian mean estimator



Notes on L2 Regularization

•  Feature weights are “shrunk” towards zero (and each other) – 
statisticians often call this a “shrinkage” method

•  Typically do not penalize bias (y-intercept, w0) parameter,

•  Penalizing w0 would make solution depend on origin for Y – adding a 
constant c to Y would not add a constant to solution weights

•  Can fit bias in a two-step procedure, by centering features              
then bias estimate is 

•  Solutions are not invariant to scaling, so typically we standardize (e.g. 
Z-score) features before fitting model ( Sklearn StandardScaler )



Scikit-Learn : L2 Regularized Regression 

Alpha is what we have been calling  



Scikit-Learn : L2 Regularized Regression

Define and fit OLS and L2 regression,

Plot results,

L2 (Ridge) reduces impact of any single data point



Choosing Regularization Strength

We need to tune regularization strength to avoid over/under fitting…

High regularization reduces model 
complexity: increases bias / decreases 

variance

How should we properly tune   ?

Recall bias/variance tradeoff
Error = Irreducible error + Bias2 + Variance



Cross-Validation

Source: Bishop, C. PRML

N-fold Cross Validation Partition training 
data into N “chunks” and for each run 
select one chunk to be validation data

For each run, fit to training data (N-1 
chunks) and measure accuracy on 

validation set.  Average model error 
across all runs.

Drawback Need to perform training N times.



Model Selection for Linear Regression

A couple of common metrics for model selection…

Residual Sum-of-squared Errors The total squared residual 
error on the held-out validation set,

Coefficient of Determination Also called R-squared or R2.  
Fraction of variation explained by the model. 

Model selection metrics are known as “goodness of fit” measures



Coefficient of Determination R2

Predicted Variance

Total variance
in dataset

Residual Sum-of-Squares

Variance using avg. prediction

Where: is the average output



Coefficient of Determination R2

Maximum value R2=1.0 means 
model explains all variation in the 

data

Maximum value R2=0 means model is 
as good as predicting average 

response

R2<0 means model worse than 
predicting average output

R2 = 0

R2 > 0



“Shrinkage” Feature Selection

Down-weight features that are not useful for prediction…

Quadratic penalty            down-weights 
(shrinks) features that are not useful for 

prediction

Example Prostate Cancer Dataset measures 
prostate-specific cancer antigen with features: 
age, log-prostate weight (lweight), log-benign 
prostate hyperplasia (lbph), Gleason score 
(gleason), seminal vesical invasion (svi), etc.

L2 regularization learns zero-weight 
for log capsular penetration (lcp)

[ Source: Hastie et al. (2001) ]



Constrained Optimization Perspective

[ Source: Hastie et al. (2001) ]

Squared Error

Total Weight 
Norm

Optimal Model

Intuition Find best model (lowest 
RSS) given constraint on total 
feature weights…

There exists a mathematically 
equivalent formulation for some 
function 

L2 penalized regression rarely 
learns feature weight that are 
exactly zero…



Regularized Least Squares

Ordinary least-squares estimation (no regularizer),

L2-regularized Least-Squares (Ridge)

L1-regularized Least-Squares (LASSO)

Quadratic Penalty

Absolute Value (L1) Penalty



L1 Regularized Least-Squares

Squared Error

Optimal Model

Learns w2 = 0

Able to zero-out weights that are not predictive…



Feature Weight Profiles

Varying regularization 
parameter moderates 

shrinkage factor

For moderate regularization 
strength weights for many 

features go to zero

• Induces feature sparsity
• Ideal for high-dimensional settings
• Gracefully handles p>N case, for p 

features and N training data



Feature Weight Profiles

L1 Penalty L2 Penalty



Learning L1 Regularized Least-Squares

Not differentiable…

…doesn’t exist at x=0

Can’t set derivatives to zero as 
in the L2 case!



Learning L1 Regularized Least-Squares

•  Not differentiable, no closed-form solution

•  But it is convex!  Can be solved by quadratic programming 
(beyond the scope of this class…)

•  Efficient optimization algorithms exist

•  Least Angle Regression (LAR) computes full solution path for 
a range of values 

•  Can be solved as efficiently as L2 regression





Specialized methods for cross-validation…

Computes solution using coordinate descent

Uses least angle regression (LARS) to compute solution path



L1 Regression Cross-Validation

Perform L1 Least Squares (LASSO) 20-fold cross-validation,

Plot solution path for range of alphas,

All alphas_

Learned alpha_  (no “s”… annoying…)

or



Example: Prostate Cancer Dataset

Best LASSO model learns to 
ignore several features (age, lcp, 

gleason, pgg45).

Wait…Is age really not a 
significant predictor of prostate 
cancer?  What’s going on here?

Age is highly correlated with other 
factors and thus not significant in 

the presence of those factors



Administrative Items

HW7 will be posted tonight
• Ordinary least squares regression
• Ridge regression
• Lasso
• Feature selection

Due next Thursday (11/11)
• A bit more is left up to the student compared to HW5 / HW6



Best-Subset Selection
L1 / L2 shrinkage offer approximate feature selection…

The optimal strategy for p features looks at models over all possible 
combinations of features, 

For k in 1,…,p:
    subset = Compute all subset of k-features (p-choose-k)
    For kfeat in subset:
        model = Train model on kfeat features
        score = Evaluate model using cross-validation
Choose the model with best cross-validation score



Best-Subset Selection : Prostate Cancer Dataset

Each marker is the cross-val 
R2 score of a trained model 

for a subset of features

Data have 8 features, there 
are 8-choose-k subsets for 
each k=1,…,8 for a total of 

255 models

Using 10-fold cross-val 
requires 10 x 255 = 2,550 

training runs!



Feature Selection: Prostate Cancer Dataset
Best subset has highest test accuracy (lowest 

variance) with just 2 features

[ Source: Hastie et al. (2001) ]



Comparing Feature Selection Methods

Notation Change Least
squares weights are    
rather than     .



Forward Sequential Selection

An efficient method adds the most predictive feature one-by-one

featSel = empty

featUnsel = All features 
For iter in 1,…,p:
    For kfeat in featUnsel:
   thisFeat = featSel + kfeat

        model = Train model on thisFeat features
        score = Evaluate model using cross-validation
    featSel = featSel + best scoring feature
    featUnsel = featUnsel - best scoring feature
Choose the model with best cross-validation score



Backward Sequential Selection

featSel = All features 
For iter in 1,…,p:
    For kfeat in featSel:
   thisFeat = featSel - kfeat

        model = Train model on thisFeat features
        score = Evaluate model using cross-validation
    featSel = featSel – worst scoring feature
Choose the model with best cross-validation score

Backwards approach starts with all features and removes one-by-one



Comparing Feature Selection Methods

Example Feature selection on synthetic 
model with p=30 features with pairwise 

correlations (0.85).  True feature 
weights are all zero except for 10 
features, with weights drawn from 

N(0,6.25). 

Sequential selection is greedy, but often performs well…

Sequential selection with p features 
takes O(p2) time, compared to 
exponential time for best subset

Sequential feature selection available in Scikit-Learn under:
feature_selection.SequentialFeatureSelector
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Classification as Regression

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28 

Suppose our response variables are binary y={0,1}.  How can we use 
linear regression ideas to solve this classification problem?

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28


Classification as Regression

Idea Fit a regression function to the 
data (red).  Classify points based on 
whether they are above or below the 
midpoint (green).

• This is a discriminant function, since it discriminates between classes
• It is a linear function and so is a linear discriminant
• Green line is the decision boundary (also linear)

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28 

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28


With             if class k, e.g. Y=(0,0,…,1,0,0).

Multiclass Classification as Regression
Suppose we have K classes.  Training outputs 
for each class are a set of indicator vectors,

For N training inputs create NxK matrix of outputs     and solve,
W is NxK matrix of K linear
regression models, one for 

each class

• Compute fitted output                         a K-vector
• Identify largest component and classify as,

[ Image: Hastie et al. (2001) ]

This is an instance of 
multi-output linear

regression



Linear Probability Models

Binary Classification Linear model approximates 
probability of class assignment,

Multiclass Classification Multiple decision boundaries, 
each approximated by the class-specific linear model,

Where        is kth row

Approximates probability of class assignment,



What’s the rational?
Recall the linear regression model,

So linear regression models the expected value,

For discrete values we have that,

Can easily verify that they sum to 1,

But they are not guaranteed to be positive!

We can call this 
approach least 

squares classification



Logistic Regression

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28 

Idea Distort the response variable in 
some way to map to [0,1] so that it is 
actually a probability.

Uses the logistic function, 

• Predictor variable now actually maps to a valid probability mass function (PMF),

• Logistic function is a type of sigmoid or squashing function, since it maps any 
value to the range [0,1]

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28


Logistic Regression : Decision Boundary

Binary classification decisions are 
based on the posterior odds ratio,

If this ratio is greater than 1.0 then 
classify as C=1, otherwise C=0

In practice, we use the (natural) logarithm of the posterior odds ratio,

This is a linear decision boundary

Logistic regression is a linear classifier



Logistic vs. Logit Transformations

Logistic Function Logit Function

Maps                 to [0,1] Maps [0,1] to 

Logistic also widely used in Neural Networks – for classification last 
layer is typically just a logistic regression



Logistic vs. Logit Transformations

Logistic function maps the linear regression to the interval [0,1],

Logit function is defined for probability values p in [0,1] as,

Logit is the inverse of the logistic function, Logit is also the log-likelihood
ratio, and thus decision boundary

for our binary classifier



Multiclass Logistic Regression

Classification decision based on log-ratio compared to final class,

Choice of denominator class is arbitrary, but use K by convention

K-1 log-odds (or logit) 
transformations ensures 

probabilities sum to 1



Least Squares vs. Logistic Regression

• Both models learn a linear decision boundary
• Least squares can be solved in closed-form (convex objective)
• Least squares is sensitive to outliers (need to do regularization)

Least Squares
Logistic Regression

[Source: Bishop “PRML”]



Least Squares vs. Logistic Regression

Similar results in 1-dimension

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28 

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28


Least Squares vs. Logistic Regression

[Source: Bishop “PRML”]

Least Squares Logistic Regression



Fitting Logistic Regression

Fit by maximum likelihood—start with the binary case

Posterior probability of class assignment is Bernoulli,

Given N iid training data pairs the log-likelihood function is,



Fitting Logistic Regression

Computing the derivatives with respect to each element wd,

• For D features this gives us D equations and D unknowns
• But equations are nonlinear and can’t be solved
• Need to use gradient-based optimization to solve (Newton’s method)
• Beyond scope of this class; but know that it is an iterative process



Iteratively Reweighted Least Squares

• Given some estimate of the weights         update by solving,

Design Matrix
(NxD)

NxN Diagonal
Weight matrix

Where z is the gradient direction, P(y=1|x) for each
training point

• Essentially solving a reweighted version of least squares,
Each iteration changes W 
and p so need to resolve





Choice of Optimizer

https://www.datasciencecentral.com/profiles/blogs/an-overview-of-gradient-descent-optimization-algorithms 

Since Logistic regression 
requires an optimizer, there are 
more parameters to consider

The choice of optimizer and 
parameters can effect time to 

fit model (especially if there are 
many features)

https://www.datasciencecentral.com/profiles/blogs/an-overview-of-gradient-descent-optimization-algorithms


Scikit-Learn Logistic Regression

Function predict_proba(X) returns prediction of class 
assignment probabilities (just a number in binary case)

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28 

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28


Using Logistic Regression

The role of Logistic Regression differs in ML and Data Science,
• In Machine Learning we use Logistic Regression for building predictive 

classification models
• In Data Science we use it for understanding how features relate to data 

classes / categories

Example South African Heart Disease (Hastie et al. 2001) 
Data result from Coronary Risk-Factor Study in 3 rural areas of South 
Africa.  Data are from white men 15-64yrs and response is 
presence/absence of myocardial infraction (MI).  How predictive are 
each of the features?



Looking at Data
Each scatterplot shows 

pair of risk factors.  Cases 
with MI (red) and without 

(cyan)
Features
• Systolic blood pressure
• Tobacco use
• Low density lipoprotein (ldl)
• Family history (discrete)
• Obesity
• Alcohol use
• Age

[Source: Hastie et al. (2001)]



Example: African Heart Disease

Fit logistic regression to the 
data using MLE estimate via 
iteratively reweighted least 

squares
Standard error is estimated 
standard deviation of the 

learned coefficients

Recall, Z-score of weights is a random variable from standard Normal,

Thus anything with Z-score > 2 is significant at 5% confidence level



Example: African Heart Disease

Remember All correlations / significance of features are based 
on presence of other features.  We must always consider that 

features are strongly correlated.

Obesity is not significant and 
negatively correlated with heart 

disease in the model

Finding Systolic blood 
pressure (sbp) is not a 
significant predictor



Example: African Heart Disease

Doing some feature selection 
we find a model with 4 

features: tobacco, ldl, family 
history, and age

• Tobacco is measured in total lifetime usage (in kg)
•  Thus, increase of 1kg of lifetime tobacco yields

How to interpret coefficients?  
(e.g. tobacco à 0.081)

Or 8.4% increase in odds of coronary heart disease
• 95% CI is 3% to 14% since


