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Linear Models

Linear Regression Fit a linear 
function to the data,

[ Image: Murphy, K. (2012) ] [ Image: Hastie et al. (2001) ]

Logistic Regression Learn a 
decision boundary that is linear in the 
data,



Nonlinear Data

What if our data are not 
well-described by a linear 

function?

What if classes are not 
linearly-separable?

[Source: Murphy, K. (2012) ]



Example: Earthquake Prediction 

Suppose that we want to predict the number of earthquakes 
that occur of a certain magnitude.  Our data are given by,

Fitting a linear regression
is not very helpful

[ Source: Silver, N. (2012) ]



Example: Earthquake Prediction 

Suppose that we want to predict the number of earthquakes 
that occur of a certain magnitude.  Our data are given by,

But plotting outputs on
a logarithmic scale reveals

a strong linear relationship…

[ Source: Silver, N. (2012) ]



Example: Earthquake Prediction 

Suppose that we want to predict the number of earthquakes 
that occur of a certain magnitude.  Our data are given by,

[ Source: Silver, N. (2012) ]

Idea Instead of fitting ordinary
linear regression,

First take the logarithm of
input values x,



Basis Functions

• A basis function can be any function of the input features X
• Define a set of m basis functions
• Fit a linear regression model in terms of basis functions,

• Regression model is linear in the basis transformations
• Model is nonlinear in the data X



Common “All-Purpose” Basis Functions

• Linear basis functions recover the original linear model,

• Quadratic                     or                         capture 2nd order interactions
• An order p polynomial                               captures higher-order 

nonlinearities (but requires O(dp) parameters)
• Nonlinear transformation of single inputs, 

• An indicator function specifies a region of the input,

Returns mth dimension of X





Example: Polynomial Basis Functions

Create three two-dimensional data points [0,1], [2,3], [4,5]:

Compute quadratic features                                     ,

These are now our new data and ready to fit a model…



Example: Polynomial Regression
Create a 3rd order polynomial (cubic) regression,

Create cubic features                     ,



Example: Polynomial Regression



Linear Regression
Recall the ordinary least squares solution is given by,

Design Matrix
( each training input on a column )

Vector of
Training labels

Can similarly solve in terms of basis functions,



Example: Piecewise Linear Regression

Decompose the input space into 3 
regions with indicator basis functions,

Fit linear regression model,

Effectively fits 3 linear regressions 
independently to data in each regionRegression lines are discontinuous

at boundary points

[Source: Hastie et al. (2001)]



Example: Piecewise Linear Regression

Enforce constraint that lines agree at 
boundary points,

Where             means the positive part

An improvement, but generally prefer smoother functions…

[Source: Hastie et al. (2001)]



[Source: Hastie et al. (2001)]

Replace linear basis 
functions with 
polynomial,

Additional constraints 
ensure smooth 1st and 

2nd derivatives at 
boundaries



Polynomial Splines

These piecewise regression 
functions are called splines

Supported in Scikit-Learn
preprocessing.SplineTransformer

Caution Polynomial basis 
functions often yield poor out-of-
sample predictions with higher 
order producing more extreme 
predictions



Data Preprocessing

• Generally the first step in data science involves preprocessing 
or transforming data in some way

• Filling in missing values (imputation)
• Centering / normalizing / Z-scoring data
• Etc.

• We then fit our models to this preprocessed data

• One way to view preprocessing is simply as computing some 
basis function        , nothing more 



Basis Functions

PROs
•  More flexible modeling that is nonlinear in the original data
•  Increases model complexity and expressivity

CONs
•  Typically requires more parameters to be learned
•  More sensitive to overfitting training data
•  Requires more regularization to avoid overfitting
•  Need to find good basis functions (feature engineering)
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Classification as Regression

• This is a discriminant function, since it discriminates between classes
• It is a linear function and so is a linear discriminant

• Green line is the decision boundary (also linear)

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28 

Recall our linear regression can be 
used for classification via the rule,

Generalizes to
higher-dimensional

features

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28


Linear Decision Boundary
Least squares regression yields decision boundary based on least 

squares solution…

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]

http://www-bcf.usc.edu/~gareth/ISL/


Linear Decision Boundary
…any boundary that separates classes is equivalently good on training 

data

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]

http://www-bcf.usc.edu/~gareth/ISL/


Classifier Margin

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]

The margin measures minimum 
distance between each class and the 

decision boundary

Observation Decision boundaries with 
larger margins are more likely to 
generalize to unseen data

Idea Learn the classifier with the largest 
margin that still separates the data…

…we call this a max-margin classifier

http://www-bcf.usc.edu/~gareth/ISL/


Max-Margin Classifier

Recall that the linear model is given by

Let classes be              so classification 
rule is, 

Decision boundary is now at y(x) = 0 and 
distance to the margin is,

Where the norm of the weights is 

Known as the distance from a 
point to a plane equation:

wiki/Distance_from_a_point_to_a_plane

https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_plane


Max-Margin Classifier

For training data                  we only care about the margin for correctly-
classified points where,

The margin of correctly-classified points is then given by,

Maximize margin over correctly-classified data points,



Max-Margin Classifier

Minimum margin over
all training data

Maximize the
minimum margin

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]

Find the parameters (w,b) that maximize the smallest 
margin over all the training data

http://www-bcf.usc.edu/~gareth/ISL/


Nonlinear Max-Margin Classifier

[ Source: Bishop, C. PRML]

Decision boundary is linear in the transformed data, but 
nonlinear in the original data space

Just as in the linear models we can 
introduce basis transformations,

Max-margin learning is similar,



Nonlinear Max-Margin Classifier

Data Space Basis Space

Decision boundary is linear in the transformed data, but 
nonlinear in the original data space



Max-Margin Classifier

Learning objective is hard to solve in this form…

But we can scale parameters               and             without changing 
margin…so we can set the nearest point to the margin so that,

And for all other points not near the margin,

Now we just have to satisfy these constraints…



Support Vector Machine (Primal)
To learn the classifier, we solve the following constrained 

optimization problem…

This is a convex (quadratic) optimization 
problem that can be solved efficiently

• Data are D-dimensional vectors
• Margins determined by nearest data points called support vectors
• We call this a support vector machine (SVM) 

This is known as the
primal optimization



Facts on vectors

• (Lem 1) a vector 𝑥 has distance !
!"
!

 to the hyperplane 𝑤#𝑥 = 0

• How about with bias? 𝑤#𝑥 + 𝑏 = 0 
• Let us be explicit on the bias: 𝑓 𝑥;𝑤, 𝑏 = 𝑤#𝑥 + 𝑏

• recall: 𝑤 is orthogonal to the hyperplane
 𝑤#𝑥 + 𝑏 = 0

• why? (left as exercise)

34

𝑥$
𝑧



Facts on vectors

• (Lem 2) 𝑥 has distance !
!"#$
!

 to the hyperplane 𝑤%𝑥 + 𝑏 = 0

35Figure from Pattern Recognition and Machine Learning, Bishop

𝑦 𝑥 ≔ 𝑤#𝑥 + 𝑏
claim1 : 𝑥 can be written as 𝑥 = 𝑥! + 𝑟

"
‖"‖  where 𝑥! is the 

projection of 𝑥 onto the hyperplane.

claim2 : then, 𝑟  is the distance between 𝑥 and the hyperplane

Solving for 𝑟:  𝑤$𝑥 + 𝑏 = 𝑤$𝑥! + 𝑟
"!"
"

+ 𝑏 = 𝑟‖𝑤‖.

this implies 𝑟 = |"!&'(|
‖"‖

−
𝑤!
‖𝑤‖



SVM derivation (1)

• Margin of (𝑤, 𝑏) over all training points: 𝛾)(𝑤, 𝑏) = min
*

"!&"'(
"

• Choose (𝑤, 𝑏) with the maximum margin? .. wait, we also want it to be a perfect classifier
• redefine it

𝛾(𝑤, 𝑏) = min
*

𝑦* 𝑤$𝑥* + 𝑏
𝑤

• Choose 𝑤 with the maximum margin (and perfect classification)

0𝑤, 1𝑏 = max
",(

min*,-. 𝑦* 𝑤$𝑥* + 𝑏
𝑤

• One more issue: still, infinitely many solutions..!

36



SVM derivation (2)

• Infinitely many solutions..
• It’s actually a matter of removing ‘duplicates’; ∃ many (w,b)’s that actually represent 

the same hyperplane.

• Quick solution
• For any solution 0𝑤, 1𝑏 , let 𝑥*∗ be the closest to the hyperplane 0𝑤𝑥* + 1𝑏 = 0
• Imagine rescaling 0𝑤, 1𝑏  so that 0𝑤$𝑥*∗ + 1𝑏 = 1

• We can always do that, but can we find a formulation that automatically finds that 
modified solution? 

• add  the constraint min
*
	𝑦* 𝑤$𝑥* + 𝑏 = 1

37

.𝑤, /𝑏 = max
!,&

min'()* 𝑦' 𝑤#𝑥' + 𝑏
𝑤

= achieves the smallest margin



SVM derivation (3)

• Summary: the constraint encodes (1) correct classification (2) there are 
no two solutions that represent the same hyperplane!

• Note: If .𝑤, /𝑏  is a solution, then the margin is )
+! 	
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max
!,#

min$%&' 𝑦$ 𝑤(𝑥$ + 𝑏
𝑤

𝑠. 𝑡. 	min
)
	𝑦$ 𝑤(𝑥$ + 𝑏 = 1

max
!,#

1
𝑤

𝑠. 𝑡. 	min
)
	𝑦$ 𝑤(𝑥$ + 𝑏 = 1

max
!,#

1
𝑤

𝑠. 𝑡. 	min
$
𝑦$ 𝑤(𝑥$ + 𝑏 ≥ 1

max
!,#

1
𝑤

𝑠. 𝑡. 	 𝑦$ 𝑤(𝑥$ + 𝑏 ≥ 1, ∀𝑖

min
!,#

𝑤 *

s. t. 	 𝑦$ 𝑤(𝑥$ + 𝑏 ≥ 1, ∀𝑖
Final formulation in the linearly separable setting:
(quadratic programming)

(turns out to be equivalent..)



Support Vector Machine (Dual)

SVM Dual Problem Find the support vectors (set of constraints that 
hold with equality) that define the largest margin

Support vectors are tight to the margin, 
and satisfy constraints with equality:

All other points are outside the margin 
and constraints are loose:



SVM in the nonseparable setting: Soft-margin 

• What if data are not linearly separable? 
• Introduce ’slack’ variables

• Again, a quadratic programming problem
• Fix any 𝑤, 𝑏, the optimal 𝜉?
    𝜉' = 0 if 𝑦' 𝑤#𝑥' + 𝑏 ≥ 1, and 𝜉' = 1 − 𝑦' 𝑤#𝑥' + 𝑏
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min
!,#

𝑤 *

𝑠. 𝑡. 	 𝑦$ 𝑤(𝑥$ + 𝑏 ≥ 1, ∀𝑖

min
!,#,{,!-.}

𝑤 * + 𝐶8
$%&

'

𝜉$

𝑠. 𝑡. 	 𝑦$ 𝑤(𝑥$ + 𝑏 ≥ 1 − 𝜉$ , ∀𝑖

// 𝐶 is a hyper-parameter

min
!,#

	 𝑤 * + 𝐶8
$%&

'

1 − 𝑦$ 𝑤(𝑥$ + 𝑏 0
⟺	Regularized hinge loss minimization 𝜆 = "

#



SVM in Scikit-Learn

SVM with linear decision boundaries,

sklearn.svm.LinearSVC

Call options include…

Other options for controlling optimizer (e.g. convergence tolerance ‘tol’)

Only showing linear
for a reason that will

be clear soon…

https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
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Support Vector Machine (Dual)

SVM Dual Problem Find the support vectors (set of constraints that 
hold with equality) that define the largest margin

For each data point, introduce a new 
optimization variable (dual variable),

After solving, SVM classifies a new point as:

• Dual variables are nonzero             for any support vector
• Exactly zero for non-support vectors
• Classifier only needs to store support vectors (sparse representation)



Kernel Functions

Idea Define a new function as the inner product with basis transforms,

Basis transform
on new point

Basis transform
on training point

Interaction with training points
in transformed basis space

We can now represent the classifier without even knowing the basis,

We call this a
“kernel function”



Example: Fisher’s Iris Dataset

Iris setosa Iris versicolor Iris virginica

Classify among 3 species of Iris flowers…

Four features (in centimeters)
• Petal length / width
• Sepal length / width



Kernel SVM in Scikit Learn

• General kernel-based SVM lives in:
sklearn.svm.svc(kernel=‘kernel_name’)

• Supports most major kernel types
• Generally use kernel when number of features > number data

Note: No explicit basis function

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html




Example: Fisher’s Iris Dataset

Fairly easy to separate 
setosa from others using a 

linear classifier

Need to use nonlinear basis / 
kernel representation to 

better separate other classes



Example: Fisher’s Iris Dataset

Train 8-degree polynomial kernel SVM classifier,

[ Source: https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-learn/ ]

Generate predictions on held-out test data,

Show confusion matrix and classification accuracy,

https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-learn/


Kernel Functions

A kernel function is an inner-product of some basis function 
computed on two inputs

A consequence is that kernel functions are non-negative real-
valued functions over a pair of inputs,

Kernel functions can be interpreted as a measure of 
distance between two inputs



Kernel Functions

Example Gaussian kernel models similarity according to an 
unnormalized Gaussian distribution,

Also called a radial basis function (RBF)

Note Despite the name,
this is not a Gaussian
probability density.

Example The linear basis                 produces the kernel,

It is often easier to directly specify the kernel rather than the 
basis function…



Gaussian/RBF kernels

• 𝐾 𝑥, 𝑥& = exp − "'""
#

()#

• How can we show that this is a valid kernel?

52

recall how we make predictions:
 𝑤$𝑥∗ = ∑* 𝛼*𝑦*𝑥*$𝑥∗ = ∑* 𝛼*𝑦*𝐾(𝑥*, 𝑥∗)	

weighted k-NN
• argmax

0
∑*∈2 &∗ 𝑤* 1{𝑦* = 𝑦}

• e.g., 𝑤* = exp −𝛽 ⋅ 𝑑 𝑥*, 𝑥∗
3

(often parameterized as exp −𝛾 𝑥 − 𝑥0 1 )

=> We should find 𝜙(𝑥) that results in  
					𝐾 𝑥, 𝑥1 = ⟨𝜙 𝑥 , 𝜙 𝑥1 ⟩

(from https://www.csie.ntu.edu.tw/~cjlin/talks/kuleuven_svm.pdf)



Gaussian kernel

• 𝛾 = A
BC2

• Larger 𝛾 ⇒ smaller 𝜎B ⇒ more likely to overfit
• A heuristic in practice: choose 𝜎 = median( 𝑥D − 𝑥E , 𝑖 ≠ 𝑗)

53



Kernel Functions

Given any set of data              a necessary and sufficient 
condition of a valid kernel function is that the nxn gram matrix, 

Is a symmetric positive semidefinite matrix.



[ Source: Bishop, C. ]



Why Kernel Functions?

At this point you should be slightly confused…

•  We learned how to fit linear models
•  We learned how to introduce nonlinearities by using basis functions
•  Kernels are just inner products of basis functions

…then why do we need Kernels?



Why Kernel Functions?

•  Most linear models have an equivalent form in terms of kernels

•  Can directly specify kernel function without knowing basis functions

•  Kernels can be more intuitive to specify since they capture meaningful 
distance / difference between two data points

•  Kernel-based models can be more flexible than basis functions

•  Example The RBF (Gaussian) kernel corresponds to infinite-
dimensional basis functions.  Classifiers based on RBF kernel can 
perfectly separate any data.



Kernel Ridge Regression
Recall the solution of L2-regularized linear regression (ridge regression),

Define the kernel matrix and vector as,



Kernel Ridge Regression

The learned regression function (for a new point) is then,

Solution to ridge regression

aTb = bTa

Substitute kernel

Can now express regression without explicitly 
specifying basis functions

Also known as the dual 
formulation of linear 

regression



Kernel Ridge Regression

Kernel representation requires inversion of NxN matrix

Primal Dual

MxM Matrix Inversion
O(M3)

NxN Matrix Inversion
O(N3)

Number of training data N greater than basis functions M





Example: Kernel Ridge Regression
Generate some sinusoidal (periodic) data,

Define an exponentiated sinusoidal kernel,

Fit kernel ridge regression,

Plot results,



Kernelized Perceptron algorithm

• How to combine the Perceptron algorithm with a nonlinear feature mapping 𝜙:𝒳 →
ℝ3?

• Recall the Perceptron algorithm: 

• Suppose 𝜙 is associated with a kernel 𝐾
• Is it possible to implement this without ever explicitly computing 𝜙?

63



Kernelized Perceptron algorithm

• Key observation: throughout the run of the Perceptron algorithm, 𝑤 
always lies in span(𝜙 𝑥D , … , 𝜙(𝑥E)), i.e. 

   𝑤 always has the form  𝛼D𝜙 𝑥D +⋯+ 𝛼E𝜙(𝑥E)
• Key algorithmic idea: instead of maintaining 𝑤 ∈ ℝF, we maintain its 

linear combination coefficient (𝛼D, … , 𝛼E) ∈ ℝE! 

64

𝐾(𝑥$, 𝑥%) 
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Basis Functions

Basis functions transform linear models into nonlinear ones…

…but it is often difficult to find a good basis transformation

Linear Regression
Classification

( Logistic Regression )



Learning Basis Functions

What if we could learn a basis function so that a simple linear 
model performs well…

…this is essentially what standard neural networks do…

Neural Net

Warped SpaceData Space

Ignore the circled points…I
reused these from the SVM slides



Neural Networks

• Flexible nonlinear transformations of data
• Resulting transformation is easily fit with a linear model
• Relatively efficient learning procedure scales to massive data
• Apply to many Machine Learning / Data Science problems

• Regression
• Classification
• Dimensionality reduction
• Function approximation
• Many application-specific problems



Neural Networks
Forms of NNs are used all over the place nowadays…

FB Auto Tagging Self-Driving Cars

Machine Translation

Creepy Robots



Rosenblatt’s Perceptron
In 1957 Frank Rosenblatt constructed 
the first (single layer) neural network 

known as a “perceptron”

He demonstrated that it is capable of 
recognizing characters projected onto a 

20x20 “pixel” array of photosensors

Despite recent attention, 
neural networks are fairly old



Rosenblatt’s Perceptron

Perceptron

• In Rosenblatt’s perceptron, the inputs are tied directly to output
• “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanics” (1962)
• Criticized by Marvin Minsky in book “Perceptrons” since can only learn linearly-separable functions
• The perceptron is just logistic regression in disguise



Multilayer Perceptron

[ Source: http://neuralnetworksanddeeplearning.com ]

Input layer
perceptrons

Hidden layer
perceptrons

This is the quintessential Neural Network…
…also called Feed Forward Neural Net or Artificial Neural Net

Adding hidden layers 
allows NN to learn 
arbitrary functions

http://neuralnetworksanddeeplearning.com/


Modern Neural Networks

[ Source: Krizhevsky et al. (NIPS 2012) ]

Modern Deep Neural networks add many hidden layers

…and have many millions of parameters to learn



Handwritten Digit Classification

Classifying handwritten digits is the “Hello World” of NNs

Modified National Institute of 
Standards and Technology 

(MNIST) database contains 60k 
training and 10k test images

Each character is centered 
in a 28x28=784 pixel 

grayscale image



Multilayer Perceptron for MNIST Classification[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Each image pixel is a
numer in [0,1] indicated

by highlighted color

https://www.youtube.com/watch?v=aircAruvnKk


Feedforward Procedure

Each node computes a 
weighted combination of nodes 

at the previous layer…

Then applies a nonlinear 
function to the result

Often, we also introduce
a constant bias parameter



Nonlinear Activation functions

We call this an activation function and typically write it in vector form,

An early choice was the logistic function,

Later found to lead to slow learning and ridge 
functions like the rectified linear unit (ReLU),

Or the smooth Gaussian error linear unit (GeLU),
Gaussian CDF



Multilayer Perceptron

Final layer is typically a linear 
model…for classification this is 

a Logistic Regression

Recall that for multiclass 
logistic regression with K 

classes,

Vector of activations from
previous layer



[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Each parameter has some impact 
on the output…need to tweak 

(learn) all parameters 
simultaneously to improve 

prediction accuracy

https://www.youtube.com/watch?v=aircAruvnKk


Training Multilayer Perceptron

For each training example, 
predict label and adjust 

weights…

• How to score final layer output?
• How to adjust weights?



Training Multilayer Perceptron

Score based on difference between final layer and one-
hot vector of true class…

Input

[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

https://www.youtube.com/watch?v=aircAruvnKk


Training Multilayer Perceptron
Our cost function for ith input is error in terms of weights / biases…

13,002 Parameters
in this network

…minimize cost over all training data…

This is a super high-dimensional optimization (13,002 
dimensions in this example)…how do we solve it?

Gradient descent!



Training Multilayer Perceptron
Need to find zero derivative (gradient) solution…

Convex Cost Function

YAY!

Non-convex Cost Function

Boo!

High-Dimensional Non-convex

Super Boo!

Actually, the situation is much worse, since the cost is super 
(13,002) high dimensional…but we proceed as if…



Training the Multilayer Perceptron

Training the MLP is 
challenging…but it’s much easier 

than how Rosenblatt did it



Example

Play with a small multilayer perceptron on a 
binary classification task…

https://playground.tensorflow.org/ 

https://playground.tensorflow.org/


Computing the Derivative

So we need to compute derivatives of a super complicated 
function…

Dropped bias terms
for simplicity

Recall the derivative chain rule

Differentiate g with
respect to w

Derivative of f at its
argument g(w)

e.g. treat g(w) as a variable



Derivative Chain Rule

Alternatively we can write this as…

Example Derivative of the logistic function,



Backpropagation
[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Activation at final layer involves 
weighted combination of 

activations at previous layer…

Which involves a weighted 
combination of the layer before 

it…

And so on…

https://www.youtube.com/watch?v=aircAruvnKk


Backpropagation

Backpropagation is the procedure of repeatedly applying the 
derivative chain rule to compute the full derivative

Example

This is simply the derivative chain rule applied through the 
entire network, from the output to the input



Backpropagation

• Implementation-wise all we need is a function that computes 
the derivative of each nonlinear activation

• We can repeatedly call this function, starting at the end of the 
network and moving backwards

• In practice, neural network implementations use auto 
differentiation to compute the derivative on-the-fly very

• Can do this efficiently on graphical processing units (GPUs) 
on extremely large training datasets



Universal Approximation Theorem

(Informally) For any function f(x) there exists a multilayer 
perceptron that approximates f(x) with arbitrary accuracy.

• Specific cases for arbitrary depth (number of hidden layers) and 
arbitrary width (number of nodes in a layer)

• Not a constructive proof (doesn’t guarantee you can learn parameters)

• Corollary : The multilayer perceptron is a universal turing machine

• Also means it can easily overfit training data (regularization is critical)



Regularization

With four parameters I can fit an elephant.  With five I 
can make him wiggle his trunk.  - John von Neumann

Our example model has 13,002 
parameters…that’s a lot of elephants!  

Regularization is critical to avoid overfitting…

…numerous regularization schemes 
are used in training neural networks



Regularization : Weight Decay

In neural network speak, adding an L2 penalty is called weight decay



Regularization

• L1 regularization and L1+L2 (elastic net) regularization

• Dropout Each iteration randomly selects a small number of 
edges to temporarily exclude from the network (weights=0)

• Intuition Avoids predictions that are overly sensitive to any small 
number of edges

• Early stopping Just as it sounds…stop the network before 
reaching a local minimum…dumb-but-effective





Scikit-Learn : Multilayer Perceptron

Fetch MNIST data from www.openml.org :

Train test split (60k / 10k),

Create MLP classifier instance,
• Single hidden layer (50 nodes)
• Use stochastic gradient descent
• Maximum of 10 learning iterations
• Small L2 regularization alpha=1e-4

http://www.openml.org/


Scikit-Learn : Multilayer Perceptron

Fit the MLP and print stuff…

Visualize the weights for each node…

…magnitude of weights indicates which 
input features are important in prediction



More Advanced Topics

Many other NN architectures exist beyond MLP

• Convolutional NN (CNN) For image processing / computer viz.
• Recurrent NN (RNN) For sequence data (e.g. acoustic signals, video, etc.) , 

long short-term memory (LSTM) is popular
• Generative Adversarial Nets (GANs) For generating creepy deepfakes
• Restricted Boltzmann Machine (RBM) Another generative model

Many open areas being researched
• More reliable uncertainty estimates
• Robustness to exploits
• Interpretability
• Better scalability 



Resources

There are tons of excellent resources for learning about neural 
networks online…here are two quick ones:

3Blue1Brown Youtube channel has a nice four-part intro:
https://www.youtube.com/watch?v=aircAruvnKk 

Free book by Michael Nielson uses MNIST example in Python:
http://neuralnetworksanddeeplearning.com/ 

Prof. Stephen Bethard often teaches an excellent class:
ISTA 457 / INFO 557

https://www.youtube.com/watch?v=aircAruvnKk
http://neuralnetworksanddeeplearning.com/

