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Supervised learning setup: putting it together

• Goal: design learning algorithm 𝒜 such that its output 𝑓 on 
   iid training data 𝑆 has low generalization error
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𝑘-nearest neighbors (𝑘-NN): main concept

Training set: 𝑆 = { 𝑥$, 𝑦$	 , … , 𝑥% , 𝑦% 	 }

Inductive bias: given test example 𝑥, its label should resemble the 
labels of nearby points

Function
• input: 𝑥

• find the 𝑘 nearest points to 𝑥 from 𝑆; call their indices 𝑁(𝑥)

• output: the majority vote of {𝑦.: 𝑖 ∈ 𝑁(𝑥)}
• For regression, the average.
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k-NN classification example
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decision boundary



𝑘-NN classification: pseudocode

• Training is trivial: store the training set
• Test: 

• Time complexity (assuming distance calculation takes 𝑂(𝑑) time) 
• 𝑂 𝑚	𝑑	 + 𝑚	log	𝑚	 + 𝑘	 = 𝑂 𝑚 𝑑	 + log	𝑚

• Faster nearest neighbor search: k-d trees, locality sensitive hashing
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append to list

sort in first coordinate

Majority vote of {𝑦&: 𝑖 ∈ 𝑁(𝑥)} 



Variations

• Classification
• Recall the majority vote rule: *𝑦 = arg max

&∈{$,…,+}
∑-∈. / 1{𝑦- = 𝑦}

• Soft weighting nearest neighbors: *𝑦 = arg max
&∈{$,…,+}

∑-0$% 𝑤- 1{𝑦- = 𝑦},

    where 𝑤- ∝ exp(−𝛽	𝑑(𝑥, 𝑥-)), or  ∝ $
$12 /,/! "

• Class probability estimates 
• ;𝑃 𝑌 = 𝑦 𝑥 = $

3
∑-∈. / 1{𝑦- = 𝑦}

• Useful for “classification with rejection”
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Inductive Bias

Training
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How would you label the test examples?

Test



Overfitting vs Underfitting

Source: ibm.com



Bayes optimal classifier

Theorem 𝑓45 achieves the smallest 0-1 error among all classifiers.
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𝑓56 𝑥 = argmax
7∈𝒴

𝑃9(𝑋 = 𝑥, 𝑌 = 𝑦) = argmax
7∈𝒴

𝑃9 𝑌 = 𝑦	 𝑋 = 𝑥) , ∀𝑥 ∈ 𝒳

Iris Setosa

Example Iris dataset classification:

Iris Versicolor Iris Virginica



Bayes error rate: alternative form

𝐿9 𝑓56 = 𝑃9 𝑌 ≠ 𝑓56 𝑋
               = ∑:𝑃9 𝑌 ≠ 𝑓56 𝑥 ∣ 𝑋 = 𝑥 𝑃9 𝑋 = 𝑥
               = ∑:(1 − 𝑃9 𝑌 = 𝑓56 𝑥 ∣ 𝑋 = 𝑥 ) 𝑃9(𝑋 = 𝑥)
               = ∑: 1 −max

7
	𝑃9 𝑌 = 𝑦 ∣ 𝑋 = 𝑥 𝑃9 𝑋 = 𝑥

               = E 1 −max
7
	𝑃9 𝑌 = 𝑦 ∣ 𝑋

• Special case: binary classification 
• 𝐿! 𝑓"# = ∑$𝑃! 𝑌 ≠ 𝑓"# 𝑥 , 𝑋 = 𝑥
                    = ∑$min(	𝑃! 𝑌 = +1, 𝑋 = 𝑥 , 𝑃! 𝑌 = −1, 𝑋 = 𝑥 )
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When is the Bayes error rate nonzero?

• Limited feature representation  
• Noise in the training data

• Feature noise
• Label noise
• Sensor failure
• Typo in reviews for sentiment classification

• May not be a single “correct” answer
• Inductive bias of the model / learning algorithm

11

𝐿! 𝑓"# =$
$

min(	𝑃! 𝑌 = +1, 𝑋 = 𝑥 , 𝑃! 𝑌 = −1, 𝑋 = 𝑥 )



New measures of classification performance

• True positive rate (TPR) 
    = ;<

<
= =( >7?@A,7?@A)

=(7?@A)
    (aka recall, sensitivity)
• True negative rate (TNR) = ;B

B
    (specificity)
• False positive rate (FPR) = C<

B

• False negative rate (FNR) = CB
<

• Precision = ;<
<DEFGGHI

= =( >7?@A,7?@A)
=( >7?@A)

, P − 𝑐alled = TP + FP
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P = TP + FN N = FP + TN

Type I error

Type II error



Linear Regression

Regression Learn a function that 
predicts outputs from inputs,

Linear Regression As the name 
suggests, uses a linear function:

Outputs y are real-valued

INPUT: X

O
U

TP
U

T:
 Y

We will add noise later…



Linear Regression

Input-output mapping is not exact, so we will add 
zero-mean Gaussian noise,

INPUT: X

O
U

TP
U

T:
 Y

ϵ ∼ N (0,σ2)where

Multivariate Normal
(uncorrelated)

This is equivalent to the likelihood function,
p(y | w, x) = N (y | wT

x,σ
2)

Because Adding a constant to a Normal RV is still a Normal RV,

In the case of linear regression           and  



Great, we’re done right?

We need to fit it to 
data by learning the 
regression weights

Don’t know these; 
need to learn them

Data – We have this

Random; Can’t do 
anything about it

How to do this?  
What makes good 

weights?



Learning Linear Regression Models

There are several ways to think about fitting regression:

•  Intuitive Find a plane/line that is close to data

•  Functional Find a line that minimizes the least squares loss

•  Estimation Find maximum likelihood estimate of parameters

They are all the same thing…



Learning Linear Regression Models

There are several ways to think about fitting regression:

•  Intuitive Find a plane/line that is close to data

•  Functional Find a line that minimizes the least squares loss

•  Estimation Find maximum likelihood estimate of parameters

They are all the same thing…



MLE for Linear Regression

INPUT: X

O
U

TP
U

T:
 Y

Recall that the likelihood is Gaussian:
p(y | w, x) = N (y | wT

x,σ
2)

Given training data                     likelihood function 
is given by,

So MLE maximizes the log-likelihood over the whole data as,

w
MLE = argmax

w

N∑

i=1

logN (yi | w
T
xi,σ

2)



MLE of Gaussian Mean
Assume data are i.i.d. univariate Gaussian,

Variance is known

Log-likelihood function:

Constant doesn’t 
depend on mean

MLE estimate is least squares estimator:

MLE doesn’t change when we:
1) Drop constant terms (in   )
2) Minimize negative log-likelihood



MLE of Linear Regression

Substitute linear regression 
prediction into MLE solution 

and we have,

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/ 

So for Linear Regression, 
MLE = Least Squares 

Estimation

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/


MLE of Linear Regression

Using previous results, MLE is equivalent to 
minimizing squared residuals,

[ Image: Murphy, K. (2012) ]

Some slightly more advanced linear algebra 
gives us a solution,

Ordinary Least Squares (OLS) solution

Derivation a bit involved for lecture but…
• We know it has a closed-form and why
• We can evaluate it
• Generally know where it comes from



Basis Functions

• A basis function can be any function of the input features X
• Define a set of m basis functions
• Fit a linear regression model in terms of basis functions,

• Regression model is linear in the basis transformations
• Model is nonlinear in the data X



Kernel Functions

A kernel function is an inner-product of some basis function 
computed on two inputs

A consequence is that kernel functions are non-negative real-
valued functions over a pair of inputs,

Kernel functions can be interpreted as a measure of 
distance between two inputs



Kernel Functions

Example Gaussian kernel models similarity according to an 
unnormalized Gaussian distribution,

Also called a radial basis function (RBF)

Note Despite the name,
this is not a Gaussian
probability density.

Example The linear basis                 produces the kernel,

It is often easier to directly specify the kernel rather than the 
basis function…



Kernel Functions

Given any set of data              a necessary and sufficient 
condition of a valid kernel function is that the nxn gram matrix, 

Is a symmetric positive semidefinite matrix.



Kernel Ridge Regression

Kernel representation requires inversion of NxN matrix

y(x) = k(x)T (K+ λI)−1y

Primal Dual

MxM Matrix Inversion
O(M3)

NxN Matrix Inversion
O(N3)

Number of training data N greater than basis functions M


