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Supervised learning setup: putting it together
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- Goal: design learning algorithm A such that its output f on R ‘& --=7

lid training data S has low generalization error Generalization error: Ly (f) = E¢xyy-p 20, £ (X))
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k-nearest neighbors (k-NN): main concept

Training set: S = { (xq,¥1 ), ., (), Y )}

Inductive bias: given test example x, its label should resemble the
labels of nearby points

Function
* input: x

* find the k nearest points to x from S; call their indices

 output: the majority vote of {y;:i € N(x)}

* For regression, the average.
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k-NN classification: pseudocode

* Training is trivial: store the training set

e Test: Algorithm 3 KNN-PreDp1cT(D, K, %)

= forn=1to Ndo

append to list— ;. S+ S @ (d(xy, %), n) // store distance to training example n
+ end for
sort in first coordinate=—> s S < sORT(S) // put lowest-distance objects first
& o0
» fork =1to Kdo
s (dist,n) < S /l n this is the kth closest data point
o P+ yy // vote according to the label for the nth training point
o end for
I\/Iajority vote of {yi; [ € N(x)}—h]: return siGN(7) /I return +1if 7 > 0and —1if § <0

* Time complexity (assuming distance calculation takes 0(d) time)
e O(md +mlogm +k) = O(m(d +logm))
» Faster nearest neighbor search: k-d trees, locality sensitive hashing



Variations

e Classification

 Recall the majority vote rule: y = arg ,dnax Diene) Wi =V}

» Soft weighting nearest neighbors: y = arg max_ Z o w; Yy, =y},

ye(l,..

where w; «< exp(—pf d(x,x;)), or < FPTEPY:
* Class probability estimates

~ 1
*P(Y =yl|x)=—-2iene Hyi =¥}
» Useful for “classification with rejection”




Inductive Bias

Test

Training

How would you label the test examples?



Overfitting vs Underfitting

Underfit Optimum Overfit
(high bias) (high variance)
o 2

*x X %k 4
High training error Low training error Low training error
High test error Low test error High test error

Source: ibm.com



Bayes optimal classifier

(. - o p
Theorem f;, achieves the smallest 0-1 error among all classifiers.
feo(x) =argmaxPp(X =x,Y =y)=argmaxPp(Y =y |[X =x),VxeEX
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Example Iris dataset classification:
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Bayes error rate: alternative form

Lp(fzo) = Pp(Y # fzo(X))
=2xPp(Y # fpo(x) | X = x) Pp(X = x)
=2x(1=Pp(Y = fpo(x) | X = x)) Pp(X = x)
=Zx(1—m3§1XPD(Y=y|X=x))PD(X=x)

= E[l—maxPD(Y=y|X)]
y

« Special case: binary classification

* Lp(fo) = XxPp(Y # fpo(x),X = x)
=), mn(Pp(Y =4+1,X =x),Pp(Y = —-1,X =x))

p(x/w1)Prob(w1l)
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When is the Bayes error rate nonzero?

Lo (Fao) = z min( Py(Y = +1,X = x), Py (Y = —=1,X = x))

* Limited feature representation '

* Noise in the training data

* Feature noise
 Label noise

« Sensor failure
 Typo in reviews for sentiment classification

* May not be a single “correct” answer
* Inductive bias of the model / learning algorithm

rrrrrrr
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New measures of classification performance

 True positive rate (TPR) actual class

_TP _ P(P=+1y=+1) - A —

-~ P(y=+1) positive negative

e s r

(aka recall, sensitivity) positive true positives false positives

- True negative rate (TNR) = — (TP) (FP)
o s N predicted <
(specificity) o~ . .
L FP negative false negatives true negatives
 False positive rate (FPR) = ~ (FN) (TN)
\ I
« False negative rate (FNR) = ? P=TP+FN N=FP+TN
TP __ P(y=+1y=+1)

* Precision = . P —called = TP + FP

P—called P(y=+1)



OUTPUT: Y

Linear Regression

Regression Learn a function that
predicts outputs from inputs,

y = f(x)

Outputs y are real-valued

Linear Regression As the name
suggests, uses a linear function:

y=wlx+b

I I
0 1

INPUT: X

S We will add noise later...



Linear Regression

Input-output mapping is not exact, so we will add
zero-mean Gaussian noise,

Multivariate Normal
(uncorrelated)

y:wT:E+e where EN_/\/'((),OQ)

TPUT: Y

ou

This is equivalent to the likelihood function,

ply | w,z) =Ny | wTﬂfaUQ) - _I1NPLOJT:)1( |
Because Adding a constant to a Normal RV is still a Normal RV,

z ~ N(m,P) z4+c~N(m+c, P)

In the case of linear regressionz — ¢ and ¢ — w! x



Great, we’re done right?

Data — We have this

We need to fit it to

data by learning the l
regression weights T Random; Can’t do
y—w X + € — anything about it
How to do this? ‘
Don’t know these;
What makes QOOd need to learn them

weights?



Learning Linear Regression Models

There are several ways to think about fitting regression:
* Intuitive Find a plane/line that is close to data
* Functional Find a line that minimizes the least squares loss

« Estimation Find maximum likelihood estimate of parameters

They are all the same thing...



Learning Linear Regression Models

There are several ways to think about fitting regression:

« Estimation Find maximum likelihood estimate of parameters

They are all the same thing...



MLE for Linear Regression

Given training data { (x;, v:) V. likelihood function
IS given by,

N N 3
log Hp(yz | T, w) = Zlogp(yi |z, w) 7
1=1 i=1

PU

ouT

Recall that the likelihood is GGaussian:

p(y | w,z) =N(y | w'z,0%)

INPUT: X

So MLE maximizes the log-likelihood over the whole data as,

N
wMt = arg max Z log N (y; | whz;, 0?)
i=1



MLE of Gaussian Mean

Assume data are i.i.d. univariate Gaussian,

|—> Variance is known
p(Y | 1) HN (i | py0%)

Log-likelihood function:

Zlog (\/ﬁ exp (—%(yi — u)202>>

Constant doesn’t N

1 _
depend onmean  _ . nqp 5 Zl ((yz — M)2U 2)

MLE doesn’t change when we:
1) Drop constant terms (in )

MLE estimate is least squares estimator- 2) Minimize negative log-likelihood

N N
1
MLE 2 .
= —— arg ma E ; — = ar mmg —
H 952 I'g Mxi_l(yz () g L ¢:1<y



MLE of Linear Regression

® Actual response, y;

B Predicted response, f(x;) = by + b1 X;

01 — Estimated regression line, f(x) =bo+ bi1x
== = Residual, y;—f(x;)

Substitute linear regression
prediction into MLE solution
and we have,

N
min > (y; — wz;)?
i=1
So for Linear Regression,

MLE = Least Squares
Estimation

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/



https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/

MLE of Linear Regression

Using previous results, MLE is equivalent to [ Image: Murph
minimizing squared residuals,

y, K. (2012)]

N
min Y (y; — w”e:)” = [ly - w' X
1=1

B o

30 O @
Some slightly more advanced linear algebra \./O
gives us a solution, s o

L T —1~T Derivation a bit involved for lecture but...
W = (X X) X Yy « We know it has a closed-form and why

« We can evaluate it
« Generally know where it comes from

Ordinary Least Squares (OLS) solution



Basis Functions

* A basis function can be any function of the input features X
* Define a set of m basis functions ¢ (x), ..., ¢m(x)
* Fit a linear regression model in terms of basis functions,

Y = Zwi@(ﬂ?) = w' ¢(x)

* Regression model is linear in the basis transformations
* Model is nonlinear in the data X



Kernel Functions

A kernel function is an inner-product of some basis function
computed on two inputs

M

bz, 7)) = p(a) p(a') =D dilx) ()

1=1

A consequence is that kernel functions are non-negative real-
valued functions over a pair of inputs,

k(z,z') € R k(z,2') >0

Kernel functions can be interpreted as a measure of
distance between two inputs



Kernel Functions

Example The linear basis ¢(x) = x produces the kernel,

k(z, ') = ¢p(x)" ¢(a’) = 2" 2]

It is often easier to directly specify the kernel rather than the
basis function...

Example Gaussian kernel models similarity according to an
unnormalized Gaussian distribution,

/ 1 N Note Despite the name,
/ﬁ:(aj, X ) — eXp | — a9 (33 — & ) this is not a Gaussian
20 probability density.

Also called a radial basis function (RBF)



Kernel Functions

Given any set of data {z;}}., a necessary and sufficient
condition of a valid kernel function is that the nxn gram matrix,

[ k(z1,71) K(T1,72) ... K(ZT1,Zn)
. k(xe,x1) k(xo,22) ... K(T2,2,)
\ k(Tp,m1) K(Tp,T2) ... KT, TH)

Is a symmetric positive semidefinite matrix.



Kernel Ridge Regression

Kernel representation requires inversion of NxN matrix

Primal Dual

1 ¢i(z1) ... omlx) k(rx1,21) k(x1,22) ... K(x1,2h)
/ 1 ¢1(x2) ... on(x2) \ / k(re, 1) kK(T2,72) ... K(T2,%0) \
\ 1 ¢1(;UN) ¢M(.Q;N) / \ K(Tn,x1) K(Tp,x2) ... K(Tp,xy) /

w= (7% + A1) 18Ty y(z) =k(x)" (K+ M)y
A\ ~ _J \/_/
MxM Matrix Inversion NxN Matrix Inversion
O(M3) O(N?)

Number of training data N greater than basis functions M



