Computer
Science

CSC580: Principles of Data Science

Feed Forward Neural Networks

Jason Pacheco

Basis Functions

Basis functions transform linear models into nonlinear ones...

Classification

Linear Regression (Logistic Regression)
Y = wTQj Y — O'(’lUTZU)
y =w' ¢(z) y = o(w ¢(z))

...but it is often difficult to find a good basis transformation

Learning Basis Functions

What if we could learn a basis function so that a simple linear
model performs well...

Data Space Warped Space
Neural Net : oL
.
o) e
o
Wl

Ignore the circled points...|
reused these from the SVM slides

...this is essentially what standard neural networks do...

Neural Networks

* Flexible nonlinear transformations of data
* Resulting transformation is easily fit with a linear model
* Relatively efficient learning procedure scales to massive data

* Apply to many Machine Learning / Data Science problems
* Regression
» Classification
* Dimensionality reduction
* Function approximation
* Many application-specific problems

Neural Networks

Forms of NNs are used all over the place nowadays...

ChatGPT
Al Chat Bots Self-Drlvmg Cars
m— Machine Translation
Hello world! X jHola Mundo! 2. w

<) 12 /5000 - L D) I_D V4 <

Send feedback

Rosenblatt's Perceptron

Despite recent attention, In 1957 Frank Rosenblatt constructed

neural networks are fairly old the first (single layer) neural network
known as a “perceptron”

perceptron

A 0B

g, " A '

He demonstrated that it is capable of
recognizing characters projected onto a
20x20 “pixel” array of photosensors

Rosenblatt's Perceptron

FIG. 1 — Organization of a biological brain. (Red areas indicate
active cells, responding to the letter X.)

Association

Perceptron

Mosaic of Projection area System Response
Sensor y (In some models) (A-units) Units
Point

- :'o.. < Ry Output Signal .]vl (
‘: 0 o,0 0
A R 8o
.ot.o ...'...- o. -.0.0. ..ooo
° °. .‘,0,. pa— oa.,':..OO oo
a: %) oo ..: - Ra
° v ¢ ®p 0%, 0
0 0o 00 000 o @0°" fo
e ° e e®e ...o.’o'.° “ .
L] Ld
e ee PR : ITo O' out pl 11
o%, 507 0o 0° -~
°®s 0 o & 0°.° ° |
-
|
Topographic Random
Connec tions Connec tions R i
— ——

FIG. 2 — Organization of a perceptron.

In Rosenblatt’s perceptron, the inputs are tied directly to output

“Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanics” (1962)

Criticized by Marvin Minsky in book “Perceptrons” since can only learn linearly-separable functions
The perceptron is just logistic regression In disguise

Multilayer Perceptron

Hidden layer
perceptrons
Input layer . .
perceptrons ﬁ l Adding hidden layers
allows NN to learn

arbitrary functions

PN
SR

Vel
XX output

This is the quintessential Neural Network...
...also called Feed Forward Neural Net or Artificial Neural Net

[Source: http://neuralnetworksanddeeplearning.com]

http://neuralnetworksanddeeplearning.com/

224

22E§?

[Source: Krizhevsky et al. (NIPS 2012)]

48

Modern Neural Networks

Modern Deep Neural networks add many hidden layers

...and have many trillions of parameters to learn

— BN -
\TZ: % S\ J
______________ 3 : a % 3 N it
e 192 192 128 2048 2048 \dense
- »7 128 o
N Y E R 13 13
)) 3 AN\
~~~~~~~~~ 3,” o 3 "::- » > >
= 31 13 T 3= ' 13 dense | [dense g
e 1. 1000
\ 192 192 128 Max
- , 2048
Stride Max 128 Max pocling o
U of 4 pooling pooling



Handwritten Digit Classification

Classifying handwritten digits is the "Hello World” of NNs

O Hl /7] g AN 3 1] 4 [3] Each character is centered
1 3] (@] [1] [7] [H [#] [6] [§] M in a 28x28=784 pixel
O 71/ A2 [¥] B R (7] grayscale image
L [C] (720 516 [0 = [6] []
& (7] 17 3] 9] (8] 5] Q] (3] [S
o027 20194 /[
/164 A6 Qa1
ZI 1] [&l 3] 18] @ [/] 2] [Z] [
gl 8l &7 21 g 0 e
2! 4] (6] [2] 0] (7] [£] 3] [Z] [3]
Modified National Institute of
Standards and Technology

(MNIST) database contains 60k
training and 10k test images




[ Source : 3Blue1Brown : hitps://www.youtube.com/waich?v=aircAruvniKk ]

784

Each image pixelisa | I AR 057
numer in [0,1] indicated ) ' 25 7
by highlighted color

{',./

/



https://www.youtube.com/watch?v=aircAruvnKk

Feedforward Procedure

Each node computes a
weighted combination of nodes
at the previous layer...

W1T1 + Woko + ...+ WhTh

Then applies a nonlinear
function to the result

OC ~I O O = W I

,0/0/6/0/8/0,8/0)0

<O

o(wix1 + wexs + ... + wpxy, + 0)

Often, we also introduce /

a constant bias parameter

s

7@,
@
O
@F ;.
()
()77
{ ) 7

e
g




Nonlinear Activation functions

We call this an activation function and typically write it in vector form,

a(wlxl Wax9 + ...+ WnTn

An early choice was the logistic function,

b) = o(w! z +b)

1

<

1 0.5
T _
o(w z+b) = ———r, J
Later found to lead to slow learning and ridge =
functions like the rectified linear unit (ReLU),

o(w!z +b) = max(0,w! z + b)




Multilayer Perceptron

Final layer is typically a linear
model...for classification this is
a Logistic Regression

1
U(’U}Tﬂf —+ b) — 1 T 6_(,wT$_|_b)

\ Vector of activations from

previous layer

OC ~I O O = W I

Recall that for multiclass
logistic regression with K
classes,

,0/0/6/0,010,0/0,0

<O

s
7@,
o
O
@F ;.
()
( )%
{ ) 7
) 7
9
$

p(Class = k | ) o< o(wi = + by,)



[ Source : 3Blue1Brown :

T84 x16+16x16 + 16x10

weights

16 +16 + 10
biases

13,002

Each parameter has some impact
on the output...need to tweak
(learn) all parameters
simultaneously to improve
prediction accuracy

(84



https://www.youtube.com/watch?v=aircAruvnKk

Training Multilayer Perceptron

Our cost function for it" input is error in terms of weights / biases...

Costi(wl, c o ,wn,bl, .. ,bn)

\ J
Y

13,002 Parameters
in this network

..minimize cost over all training data...
min £(w, b) ZCost (W1, ..., Wn,b1,...,b,)

w,b

This is a super hlgh-dlmensmnal optimization (13,002
dimensions in this example)...how do we solve it?

Gradient descent!



Learning algorithm intuition

» Gradient descent: Move in direction of greatest improvement

* “Knob turning”

* "’knob” = weight of an edge

* If a neuron increases the probability of an incorrect prediction, its
knobs will be turned down.

* If a neuron increases the probability of a correct prediction, its knobs
will be turned up.



Training Multilayer Perceptron

Need to find zero derivative (gradient) solution...

Convex Cost Function Non-convex Cost Function High-Dimensional Non-convex

\ f(z) =z sin (2*) + 1
4 ! \ /
\ A= (-2,251)

A /

- - 0 T T T T T
! ? f ! o\ 0 1 v 3
'(-2) = —5.99

-2

YAY! Super Boo!

Actually, the situation is much worse, since the cost is super
(13,002) high dimensional...but we proceed as if...



1 00

High

1

O00Mmommonton »

[Moooomooootmon

NOomof

§
oo oo
0 0d oo

High

19



1 OO0

0000000Mmon

[

anni

N

0 0Momoomon

20



1 00

[

anni

N

21



1 00

[

anni

N

22



1 00

[

anni

N

23



1 0o

[

anni

N

24



1 0o

[

anni

® o
‘/‘ @

0 00mboimmbtmmorongoooog o
[0 O LT O o O (o A

N

25



[ OO0 i O m 0w I M 0000 0 0000w

|00 O0oMmooom o omoo o0 bood
(11 01 (T 0 T 8 T e i O



Algorithm 7: Stochastic gradient descent algorithm for the training of neural

networks.

1 initialize parameters in ©

2 while not converged do
3 for each training example x; in X do

for each 6 in © do
0=0—aLCi(0)

end

end

@ NN & o s

end




Algorithm 7: Stochastic gradient descent algorithm for the training of neural

networks.

1 initialize parameters i ﬂ

2 while not converged do

3

@ NN & o s

for each training example

for each 6 in © do
0=0—aLCi(0)

end

end

end

Collection of all
weights and biases in
the network

28



Algorithm 7: Stochastic gradient descent algorithm for the training of neural

networks.

1 initialize parameters in ©

2 while not converged do

3

@ NN & o s

for each 6 in © do
0=0—aLCi(0)

end

end

end

for each training exampld x; in X do

One training example J

29



Algorithm 7: Stochastic gradient descent algorithm for the training of neural

networks.

1 initialize parameters in ©

2 while not converged do

3

@ NN & o s

for each training example x; in X do

for each 6 in © do
0=0—¢.%C;(0)

end

end

end

Partial derivative of the cost R

function C for each
parameter (weight or bias) in

N the network y

30



Algorithm 7: Stochastic gradient descent algorithm for the training of neural

networks.

1 initialize parameters in ©

2 while not converged do

3 for each training example x; in X do
4 for each 6 _in © do

5 | 6=0 E%C,-(@)

6 end

7 end

8 end

N\
Learning rate, which
IS @ hyper parameter




Training Multilayer Perceptron

For each training example,
predict label and adjust
weights

[P =T R IS
Rl [NsiMN RN
HeN A= HONO

MR/ [NENRY
il S YERIIEI(O NS S
NNN SN R
=SSN
NRIN[NNHQNS|S)he)
SO St e
Qb0 RAMNSN

XTrain

— O

<

SO

\7 4 6

YTrain

« How to score final layer output?

« How to adjust weights?




Training Multilayer Perceptron

Score based on difference between final layer and one-
hot vector of true class...

(\)

(43—,
0.28 — 0
0.19 — 0.00

V)

(\V)

Input

R
O

[\

(

(

(0
088—100
(()7‘)—« 0):
(0.
(0
(
(
(

¥ % /
W
)

OO0O000
X /;/}f
5

Q) |

pele)

(\V)

Ol — (
64 — |
0.86 — 0
0.99 — 0
0.63 — 0.0

(\V)

AL

*e0C 00000000000,

(\V) \V)

(\V)

ol TYeislelel 1 [ Jolo
+ + + + +“ + + + +

QOQQO00Q -

[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKKk ]



https://www.youtube.com/watch?v=aircAruvnKk

Computing the Derivative

So we need to compute derivatives of a super complicated
function...

d d .
Jwt(w) = ) g Costi(w) - Dropres e bme

* Tells us how much to turn the “tuning knob” (i.e. weight)

* But how do we compute derivatives for edge weights not directly
connected to the output layer?

« Backpropagation!



Backpropagation
[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKKk ]
Activation at final layer involves
weighted combination of
activations at previous layer...

o(w! x)

Which involves a weighted
combination of the layer before
it...

o (wy, 0 (wy,_17))

;
1
d
6
7
8

<O

And so on...

T

n0(Wn_y0(wy_50(...)))

o(w


https://www.youtube.com/watch?v=aircAruvnKk

Computing the Derivative

Recall the derivative chain rule

d d d
T Halw) = = Fg(w) (egtw))
Y / Hr—j
Derivative of f at its Differentiate g with

argument g(w) respect to w
e.g. treat g(w) as a variable

Alternatively we can write this as...

. flgw)) = £ (o(w))g/(w)



Derivative Chain Rule

Example Derivative of the logistic function,

d . d 1
EU(Z) dz1l+4e 3
fla) =~ ooy =1+e= 0




Backpropagation

Backpropagation is the procedure of repeatedly applying the
derivative chain rule to compute the full derivative

Example

d d
—-0(0(2)) = 0(0(2))(1 = 0(0(2)) 70 (2)

This is simply the derivative chain rule applied through the
entire network, from the output to the input



Backpropagation

* Implementation-wise all we need is a function that computes
the derivative of each nonlinear activation

* We can repeatedly call this function, starting at the end of the
network and moving backwards

* In practice, neural network implementations use auto
differentiation to compute the derivative on-the-fly

» Can do this efficiently on graphical processing units (GPUS)
on extremely large training datasets



Universal Approximation Theorem

(Informally) For any function f(x) there exists a multilayer
perceptron that approximates f(x) with arbitrary accuracy.

» Specific cases for arbitrary depth (number of hidden layers) and
arbitrary width (number of nodes in a layer)

* Not a constructive proof (doesn’'t guarantee you can learn parameters)
» Corollary : The multilayer perceptron is a universal turing machine

* Also means it can easily overfit training data (regularization is critical)



Regularization



Regularization

With four parameters | can fit an elephant. With five |
can make him wiggle his trunk. - John von Neumann

w = arg min Cost(w) + « - Regularizer(Model)

w

Our example model has 13,002
parameters...that’s a lot of elephants!

Regularization is critical to avoid overfitting... v
...numerous regularization schemes ;

are used in training neural networks




L2 Regularization

Formalize the regularized cost function as,

-~

J(60; X,y) = J(6; X,y) + af2(0)

Consider an L2 penalty,

J(w; X, y) = ngw + J(w; X, y)

Gradient (derivative) with respect to w is given by,

_~

Vwd (w; X,y) = aw + Vo J(w; X, y)
Take a single step in the direction of the gradient,

w <+ w — € (aw + VJ (w; X,y))



L2 Reguilarization (Weight Decay)

Written another way, a single gradient step is:

w < (1 —ea)w — eV J(w; X, y)

Learning Rate T T Regularization
(how big of a step) Strength (Coefficient)

« Can see this is a modification to the learning rule (gradient descent)
 “Shrinks” the weight by constant factor on each step
* Then perform usual gradient step



Regularization : Weight Decay

w = arg min Cost(w) + %Hwﬂz
w

alpha 0.10

alpha 0.32 alpha 1.00 alpha 3.16 alpha 10.00

alpha 3.16

9

alpha 3.16

alpha 10.00

alpha 10.00




L1 Regularization

~

J(w) = J(w) + afjwl;
(Sub-)gradient given by,

-

vw'](w; Xa y) — asign(w) + vw'](‘Xa Y, w)

 Very different effect from L2 weight decay

* Regularization contribution no longer scales linearly with each w
» Constant addition with sign equal to sign(w)

* Has a sparsity-inducing property (forces some weights to w=0)



L1 Regularization

. * * a
w; = sign(w, ) max 4 |w;| — 77 5,0
1,1

— ~ - ——

Consider the case where w; > 0 for all i. There are two possible cases,

* (87
Wi < H;

* Optimal value is just w;=0
« Contribution of J(w;X,y) is “overwhelmed” by L1 regularizer

* a .
w,; > Hii -

 Shifts w; in the direction of O by distance equal to a/H

Similar process for w<0 but in opposite direction.



Sparse Representations

L1 regu_larlz_atlon Induces sparse Sparse Parameterization
parameterization — many parametersO 1 2-
5) 0o o0 -1 0 3 O _32
Representational sparsity enforces i I R B I
. 1
many data elements O (or close to it) ' -3] Lto o0 o -5 0] |,
y € R™ A € Rmxn z € R™
Accomplished by same set of 147 (3 -1 2 5 4 17 |,
mechanisms as sparse param—norm | ' | | 4 2 781 1 3 1
penalty on representation o | |3 1 9 3 o0 _3 0
) 23 | -5 4 -2 2 -5 -1 | _03
J(0; X,y)=J(0; X,y) +afd(h) y € R™ B € R™*" h € R"

e.g. L1 penalty Sparse Representation

(Goodfellow 2016)



Parameter Tying / Sharing

* Introduces inductive bias
* There should be dependencies among parameters
« Parameters should be close / similar

« Can use previously-trained model on similar task
» Parameter norm penalty is one way

* Hard constraints force sets of parameters to be equal
« Known as parameter sharing
* Only subset of unique parameters needs to be stored in memory

(Goodfellow 2016)



Dataset Augmentation

 Train on more data (always more data)

 What if we don’t have more data”? (Make up more)

 Easiest for classification

« Generate new (x,y) pairs by transforming x in dataset for each y

* Not readily applicable to many other tasks
« E.g. hard for density estimation unles we’ve solved the density estimation prob.

* Particularly effective for object recognition
* Translation
 Scaling
* Rotation



Dataset Augmentation

Affine Distortion Noise Elastic Deformation

A 4

Random Translation Hue Shift

(Goodfellow 2016)



Dataset Augmentation

* Need to avoid transformations that change class
* For example mirror “b” to produce “d”
» Rotation turns “6” into “9”

« Some transformations are not easy to perform, e.g. out-of-
plane rotation



Label Smoothing

* Many datasets have some mistakes in labels y

* Inject noise Iin labels at output
« Assume label is correct with probability 1-e (for some small )
» Otherwise any other label is assigned

 Can incorporate this into cost function analytically

» Label smoothing regularizes model based on softmax
* Replaces hard assignment with 1-e and e/(k-1) ; for k labels
« Can use standard cross-entropy loss with soft targets



Loss (negative log-likelihood)

Learning Curves — Early Stopping

Early stopping: terminate while validation set
performance is better

0.20 /

e—e Training set loss
0.15 — Validation set loss |-

0 50 100 150 200 250
Time (epochs)

Figure 7.3

(Goodfellow 2016)



Algorithm 7.1 The early stopping meta-algorithm for determining the best
amount of time to train. This meta-algorithm is a general strategy that works
well with a variety of training algorithms and ways of quantifying error on the
validation set.
Let n be the number of steps between evaluations.
Let p be the “patience,” the number of times to observe worsening validation set
error before giving up.
Let 6, be the initial parameters.
0«80,
10
3«0
V4 00
0" — 0
i1
while j < p do
Update 0 by running the training algorithm for n steps.
1<1+n
v’ < ValidationSetError(0)
if v/ < v then
7«0
g 0
1
v+
else
j+—73+1
end if
end while
Best parameters are 6%, best number of training steps is 7*.

(Goodfellow 2016)



Early Stopping

 Think of it as efficient hyperparameter selection algorithm (number of
training steps)
* Requires almost no change to underlying training procedure
« Contrast with weight decay that requires hyperparameter tuning

» Can be used alone or in conjunction with other regularization

« Can conclude with a training stage that includes all training data
* |nitialize model and retrain for same number of steps
« Same number of parameter updates or epochs?

« Continue from current parameters
 How many training steps?
 Periodically check validation set (which is now part of training)

(Goodfellow 2016)



Dropout

Provides ensemble of exponentially
many ANNs - all subnetworks formed
by removing subset of edges / nodes

Each time we load a minibatch,

Figure 7.6

>

&

Oan6

eexg

O
©

&

randomly remove set of edges / nodes G G

Base network

Includes input and hidden nodes — typically
different probabilities of dropping each

Oloe®

o ac

®

S

®

Ensemble of subnetworks

(Goodfellow 2016)



Dropout

* Srivastava et al. (2014) showed more effective than weight decay and
other “simple” regularization methods

« Computationally very cheap; O(n) computation per example per update
* Doesn’t significantly limit type of model that can be used

» Can slow training and require larger model sizes
* Less effective when very few training examples available

» "Fast Dropout” — Don’t stochastically drop edges; estimate average



Regularization

» L1+L2 (elastic net) regularization

* Dropout Each iteration randomly selects a small number of
edges to temporarily exclude from the network (weights=0)

» Data Augmentation Synthetically expand training data by
applying random transformations

» Early stopping Just as it sounds...stop the network before
reaching a local minimum...dumb-but-effective



Example

Play with a small multilayer perceptron on a
binary classification task...

https://playground.tensorflow.org/



https://playground.tensorflow.org/

sklearn.neural network.MLPClassifier

hidden_layer sizes : tuple, length = n_layers - 2, default=(100,)
The ith element represents the number of neurons in the ith hidden layer.

activation : {“identity’, ‘logistic’, ‘tanh’, ‘relu’}, default="relu’
Activation function for the hidden layer.

solver : {'lbfgs’, 'sgd’, ‘adam’}, default="adam’
The solver for weight optimization.

alpha : float, default=0.0001
L2 penalty (regularization term) parameter.

learning_rate : {‘constant’, ‘invscaling’, ‘adaptive’}, default='constant’

Learning rate schedule for weight updates.

early_stopping : bool, default=False
Whether to use early stopping to terminate training when validation score is not improving. If set to true,



Scikit-Learn : Multilayer Perceptron

Fetch MNIST data from www.openml.org :

X, y = fetch_openml("mnist_784", version=1, return_X_y=True)

X =X/ 255.0

Train test split (60k / 10k),

X[:60000], X[600080: ]
y[:60000], y[60000: ]

X_train, X_test
y_train, y_test

Create MLP classifier instance,
 Single hidden layer (50 nodes)

» Use stochastic gradient descent

« Maximum of 10 learning iterations

« Small L2 regularization alpha=1e-4

mlp = MLPClassifier(
hidden_layer_sizes=(59,),

max_iter=10,
alpha=1le-4,
solver="sgd",
verbose=10,
random_state=1,
learning_rate_init=06.1,


http://www.openml.org/

Scikit-Learn : Multilayer Perceptron

Iteration 1, loss = ©.32009978
. . Iteration 2, loss = ©.15347534
Fit the MLP and print stuft... et B T = B e
Iteration 4, loss = ©.09279764
mlp.'Fit(X tr'ain, y tr'ain) Iteration 5, loss = ©.087889367
- - Iteration 6, loss = ©.087170497
print("Training set score: %f" % mlp.score(X_train, y_train)) Iteration 7, loss = ©.06282111
print("Test set score: %" % mlp.score(X_ test, y test)) Iteration 8, loss = ©.65536788
Iteration 9, loss = ©.04960484
Iteration 1@, loss = ©.04645355

. . . Training set score: ©.986800

Visualize the weights for each node... Test set score: ©.97000

vmin, vmax = mlp.coefs [0].min(), mlp.coefs [0].max()
for coef, ax in zip(mlp.coefs [0].T, axes.ravel()):
ax.matshow(coef.reshape (28, 28), cmap=plt.cm.gray,
hmin=0.5 * vmin, vmax=0.5 * vmax)
ax.set xticks(())
ax.set yticks(())

...magnitude of weights indicates which
input features are important in prediction




Convolutional Neural Networks



NNs for images

 Fully-connected (FC) layers do not scale well to images (width x height x
#channels)

» Need for smaller number of parameters

. L . V) @G oV
* Note: FCs can learn (pattern, location) combinations in images R
- The learned patterns do not generalize to different spatial locations.

« Can we capture local patterns (e.g. existence of a wheel in an image) regardless of
the spatial location in the image and leverage them for better classification?

* low level: edge of some orientation, a patch of some color
* high level: shape of a wheel
* i.e. can we learn a group of neurons that detect patterns at all locations?

 Encodes inductive bias

65



Convolutional neural networks (CNN)

 A.K.A. ConvNet architecture

A set of neural network architecture that consists of
 convolutional layers
 pooling layers
* fully-connected (FC) layers

RELU RELU ELU RELU RELU RELU
\Y CONV

AT I TR TR RN

i LR | A | B [\ ¥ \
' . Ly | x " 2
- | : | L

El
' ‘
-
| . ;
=
4 .

(Stanford CS231n) *°



Convolution for single-channel images

Consider one filter with weights {w; ;} with size F x F

* For every F x F region of the image, perform inner product (= element wise
product, then sum them all)

* Q: given a w X h image, after convolution with a F x F filter, what is the size of
the resulting image?

« Terminologies: filter size, receptive field size, kernel.

.......

01| 1 [LIBLO) 0. -
olo]1 BEERRON 6. .. . 114341
olojoj1f1f1]o 1{0]1 1/21413]3
ofo|o|Tf+|0[0t-+_[0]1]0f ="[1{2[3]|4]|1
0{0[1[1]0[0[0 .. 1{of1 13311
o|1|1]{0]o[0f0] 3|3[|1]1]0
1{1]o]of{ofo|o0]

Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning



https://arxiv.org/abs/1603.07285

Convolution: Some Intuition

Define the convolution of filter f on image | as:
(@) =) Y flx—my—m)i(mn)
m n
Many ML libraries actually implement cross-correlation:

(F+DG) =) > FEMICx+my+n)

Learning finds good values for the convolution filter...

68



Convolutional layer for multi-channel images

Input: w (width) x h (height) x ¢ (#channels)

* 3 channels: R, G, and B

*E.g.32x32x 3 .

ey
—=0 0000
A convolutional filter on such image is of
shape F xF xc A
* Only spatial structure in the first two a
dimensions

* Denoted by { }

image from Stanford CS231n




» Consider one filter with weights {
 Imagine a sliding 3D window.

Convolutional layer: visual explanation

}with 5 x5x 3

« Convolution: For every 5 x 5 region of the image, perform inner product (= element wise

product, then sum them all)

* Then apply the activation function (e.g., ReLU)
* Results in 28 x 28 x 1 — called activation map.

* Now, we can do K of these filters but with different weights {w.(’?) } for £ € [K] =>
output is 28 x 28 x K

4
[

w |

00800

B

i,j,k
of1]1]Tl8f0]0t... |
0]0]1 RSN (.. . F1413]4|1
olofofrfL]1fo 1{0]{1 1214133
olofo[il+]0]07=«_Jo]1 =114%[3|4[1
olof1f{1]o]o]07-. 1{0]1 113]3]1]1
o|1]|1]0]0]0]0 313(1(1]0
111 ToloToloTo filter weights

(depth=1 here)

(image from https://www.quora.com/Why-do-we-use-convolutional-layers))



Convolutional Layer: Why is it useful?

The set of weights represent a pattern (i.e., diagonal edge). The
activation map represents ‘where the pattern has occurred’.

image from Stanford CS231n 7



Convolutional Layers Beyond the First Layer

Generalization: conv layer as the 2" |ayer or more

* Input volume (3d object with size w x h x d):
 the d (called depth) is not necessarily 3

* Output volume: size w' x h’ x d’, where d’ is the number of filters at the
current layer.

Interpretation: patterns over the patterns.

« Each filter now convolves and combines d’
activation maps for each spatial location.

* e.g., combinations of particular edges and textures 3

O000®

sﬁ\;\
V




Convolutional Layer: More Detalls

Stride length S
« Skip input regions; Move the sliding window of a filter not by 1 but by S.
* E.g., S=2 means skipping every other 5 by 5 region.

Zero-padding P: add P number of artificial pixels
with value 0 around the input image on both sides

» To ensure the spatial dimension is maintained
(otherwise, patterns at the corners are not detected well)

* |f we use P=1, then the activation map will be 30 x 30,
not 28 x 28 in our example!

73
image from https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7



Example

Filter Paddlng = Same
0 .
Stride X —
0.5 Output
o0 0|0 |O0] O
0.5 0 |0.25(0.25
0 1 0 [05|05] 0
0 |125| 05 | 0.5
[0 fofo5]1fo0of0 | —
2 = 0 05 |075| 1.5
=1 0| O 1 105 1 0 g
< 05 (025125 | 1
0 [1]05[(05|1 (0]}
0 0 0 0 0 0 —” outDim = (inpDim)/strideDim

image from https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7



Convolutional Layer: More Detalls

Stride length S

 Skip input regions; Move the sliding window of a filter not by 1 but by S.

* E.g9., S=2 means skipping every other 5 by 5 region.

Zero-padding P: add P number of artificial pixels with value 0

input image.

* To ensure the spatial dimension is maintained (otherwise, patterns at the corners are not
detected well)

* If we use P=2, then the activation map will be 32 by 32 not 28 by 28 in our example!

Rules (same goes for )
* \W: input volume . F: filter (usually, the filter has the same width and height)
* The output K = floor((W - F + 2P)/S) + 1

« E.g.,, W=32, F=5,P=0,S=1 => K=28
« E.g.,, W=32,F=5,P=2,5=1 => K=32



Strides and padding: animations

Strides only Padding only Strides + Padding

Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

76


https://arxiv.org/abs/1603.07285

Convolutional Layer: Summary
Input W, xH;xD; (width, height, depth)

Hyperparameters # of filters K, filter size (=width=height) F, stride S,
zero-padding P

Output W, xH, XD, /32
W, = |2+ 1 @§>ooooo

g

More terminology: depth slice (W by H by 1), depth column (1 by 1 by D)




Comparison: FC vs Conv

Conv layer allows parsimonious representations:
* Inter-layer connections are local
« parameter is shared across spatial locations.

In AlexNet, input is 227 by 227 by 3, and the first conv layer output is 55 by 55 by 96 (96 filters)
« Each filter has 11*11*3 weights with 1 bias => 364 parameters
« 364*96 = 34,944 total parameters are used to compute the output 55*55*96 = 290,400

What if we didn’t do parameter sharing? |.e., for each region of image, use independent filter
parameter w.

* roughly, 290,400 * 364 = 105,705,600

What if we use FC to compute the same number of outputs? (the parsimony of local connections)
« 230,187 * 290,400 = 66,846,304,800 parameters

Conv layer can be seen as imposing inductive bias specialized for images

This also prevents overfitting: idiosyncratic pattern that appear in few images are not picked up
while training! => useless filters are ‘squeezed out’ or ‘crowded out’ by useful filters.



Pooling layer

* The role: Summarize the input and scale down the spatial size.
 has the effect of routing the region with the most activation.

» Recall depth slice: take the matrix at a particular depth.

« Max pooling: run a particular filter that computes maximum, for each depth slice.

224x224x64

12s412x6d Single depth slice
pos [11]1]2]4
X max pool with 2x2 filters
SeN 7 | 8 and stride 2 6 | 8
| x 3 | 2 I ] 3| 4
1 | 2 -
ez downsampling ] e
112 >
224 y

 Variation: average pooling (but not popular).

« Recommended: Filter size F=2, stride length S=2. (F=3, S=2 is also commonly use — overlapping
pooling).

* Note: There are no parameters for this layer!
figure from Stanford CS231n



Typical architectural patterns in CNN

RELU RELU

CONV

=
=
L
id
=
=
L
id

RELU RELU

——

R U

.

—-LEEEYSSEER RN

CONV

— RN _ﬂ, RN &

—

— N Eﬂﬁ% VLS

CONV | CONV

l

Iv:,,_ B I

lCONV

CONV




CNN examples



LeNet-5

* Proposed in “Gradient-based learning applied to document
recognition” , by Yann LeCun, Leon Bottou, Yoshua Bengio and
Patrick Haffner, in Proceedings of the IEEE, 1998

* Apply convolution on 2D images (MNIST) and use
backpropagation

. IStructure: 2 convolutional layers (with pooling) + 3 fully connected
ayers

* Input size: 32x32x1
 Convolution kernel size: 5x5
* Pooling: 2x2



LeNet-5

(depth 1) C3: f. maps 16@10x10
TR C1. feature maps S4:f. maps 16@5x5
32x32 @ 52: f. maps

C5: layer
120 Fs layer OUTPUT

SO\

6@14x14

’ Full conr{echon Gaussnan connections
Convolutions Subsampling Convoutions Subsampllng Full oonnednon
5 by 5 filters 2x2 pooling 5 by 5 by 6 filters 2x2 pooling
K=6 stride 2 K=16 stride 2

stride 1 stride 1

84
“Gradient-based learning applied to document recognition” , by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner, in Proceedings of the IEEE



AlexNet (2012)

* Won the ImageNet competition with top-5 test error rate of 16.4%
(second place was 26.2%). (1000 classes)

* Almost just an extension of LeNet-5. But, uses RelLU for the first time.

LeNet AlexNet
| Image: 28 (height) x 28 (width) x 1 (channel) | |Image: 224 (height) x 224 (width) x 3 (channels)|
v v
| Convolution with 5x5 kernel+2padding:28x28x6 | | Convolution with 11x11kernel+4stride:54x54x96 |
\, sigmoid J RelLu
| Pool with 2x2 average kernel+2 stride:14x14x6 | | Pool with 3x3 max. kernel+2 stride: 26x26x96 |
v v
| Convolution with 5x5 kernel (no pad):10x10x16 | | Convolution with 5x5 kernel+2 pad:26x26x256 |
. sigmoid vRelLu
\ Pool with 2x2 average kernel+2 stride: 5x5x16 \ ] Pool with 3x3 max.kernel+2stride: 12x12x256 \
\ flatten !
| Dense: 120 fully connected neurons || Convolution with 3x3 kernel+1 pad:12x12x384 |
\ sigmoid v ReLu
| Dense: 84 fully connected neurons || Convolution with 3x3 kernel+1 pad:12x12x384 |
\, sigmoid vRelLu
| Dense: 10 fully connected neurons || Convolution with 3x3 kernel+1 pad:12x12x256 |
v v Relu
Output: 1 of 10 classes | Pool with 3x3 max.kermnel+2stride:5x5x256 |
\ flatten

| Dense: 4096 fully connected neurons |
v ReLu, dropout p=0.5

| Dense: 4096 fully connected neurons |
v RelLu, dropout p=0.5

| Dense: 1000 fully connected neurons |

v
https://en.wikipedia.org/wiki/AlexNet Output: 1 of 1000 classes

Krizhevsky, Sutskever, and Hinton, ImageNet Classification with Deep Convolutional Neural Networks, 2012.




VGGNet (2014): 7.3% error on ImageNet

Mimic large convolutional filters with multiple small (3x3) convolutional filters

Every time it halves the spatial size, double the # of filters

(not counting biases)

INPUT: [224x224x3] memory: 224*224*3=150K params: 0

ConvNet Configuration

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728 = = =
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864 13 weight | 16 weight || 16 weight | 19
POOL2: [112x112x64] memory: 112*112*64=800K params: 0 layers layers layers
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728  put (221 x 224 RGB imag :
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456 Om 01 | som-o8 |f com-or | <
POOL2: [56x56x128] memory: 56*56*128=400K params: 0 maxpool
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912 comv3-128 | conv3-128 JJcom3-128 | co
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 S Col“"3'128 conv3-128 | ca
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 T e
POOL2: [28x28x256] memory: 28*28*256=200K params: 0 conv3-256 | conv3-256 [f conv3-256 | co
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648 conv1-256 |f conv3-256 | co
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 o ]
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 =30 T oSt Tomimn s
POOL2: [14x14x512] memory: 14*14*512=100K params: 0 conv3-512 | conv3-512 [§ conv3-512 | co
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 convl-512 |f conv3-512 | co
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 e =
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296  Tom3312 | comv3312 Weom3312 T oo
POOLZ2: [7x7x512] memory: 7*7*512=25K params: 0 conv3-512 | conv3-512 ff conv3-512 | co
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 sl bl §
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216 maxpool
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000 FC-4096

FC-4096

FC-1000

soft-max

[Simonyan and Zisserman, 2014] slide from Stanford CS231n

86



ResNet (2016): 3.5% error on ImageNet

* Proposed in “Deep residual learning for image recognition” by He,
Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. In Proceedings
of the IEEE conference on computer vision and pattern recognition,.
2016.

* Apply very deep networks with repeated residual blocks.

 Structure: simply stacking residual blocks, but the network is very
deep.

e Let's see the motivation.



Microsoft

Research
Revolution of Depth 28.2
{ 152 layers ]
A
\
\
\
\
\
\
\
‘ 22 layers ’ 19 Iayers
% 6.7
ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet
- ImageNet Classification top-5 error (%)
l.
T— Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.

88
http://image-net.org/challenges/talks/ilsvrc2015 deep_residual_learning_kaiminghe.pdf



Deep nets seem to suffer

CIFAR-10 ImageNet-1000
20— Y _ oo g
AW\ 60— \ v Iu
56-layer \‘-\_W_]n
44-layer 50 -
S A 32-layer S | 341
10 s 5 -layer
= VNN 20-layer £ 40 / y
A\\ . LN 2
N\ 7 \./'\_ﬂ/ ek
3 plain-20| 30
plain-32 B
; . plain-18
o I | | . | solid: test/val | =plain-34 | | | - 1&layer
% 1 2 3 4 5 6 0 10 20 30 40 50
iter. (1e4) iter. (1e4)

 “Overly deep” plain nets have higher training error
* A general phenomenon, observed in many datasets

http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf



a shallower
model
(18 layers)

“extra”
layers

| 33conv, 128 |
3x3 conv, 128
3x3 conv, 128

3x3 conv, 512
3x3 conv, 512

Microsoft

a deeper Research
counterpart (slides from Kaiming He
(34 layers)

* A deeper model should not have
higher training error

* A solution by construction:
e original layers: copied from a
learned shallower model
* extra layers: set as identity
* atleast the same training error

* Optimization difficulties: solvers
cannot find the solution when going
deeper...

http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.



Skip connections for better optimization

 Skip connections e Residual net

X
* F(x) encodes residual representations, which has previously

been explored in early works weight layer

F(x) l relu

- When backprop’ing, by the chain rule, gradients will ‘flow’ weight layer

directly to the previous layer.

. Recall: when the computation graph splits, the gradient ~ H(x) = F(x) +x
is a summation of the gradients of the branches.

* In contrast, plain CNNs suffer from vanishing gradient
problem

identity
X

http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf



ResNet

* VGG-style scheme: halve the special
size, double the # of filters

* Max pool appears only once.

» Use conv layer with stride 2 occasionally
to reduce the spatial dimension => called
“bottleneck” blocks.

http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

plain net

7x7 conv, 64, /2

7x7 conv, 64,/2 |

v v
pool, /2 pool, /2
I 3x3 conv, 64 I [ 3x3 conv, 64 ]
l 3x3 conv, 64 I I 3x3 C:IV, 64 _]
3x3 c:\v, 64 | | 3x3conv, 64 |
I 3x3 conv, 64 ] [ 3x3 C:IV, 64 _]

v
3x3 conv, 64

| | | 3x3 conv, 64
A 2 A
[ 3x3 conv, 64 ] | 3x3 conv, 64 |
2 V.
| 3x3conv,128,/2 | | 3x3cony,128,/2 |
¥ W
I 3x3 conv, 128 ] [ 3x3 conv, 128 ] __,.'
e e

3x3 conv, 128

3x3 conv, 128

<

3x3 conv, 128

3x3 conv, 128

»

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

I 3x3 conv, 128 I I 3x3 conv, 128
2 \ 2
I 3x3 conv, 128 I I 3x3 conv, 128
v ¥
| 3x3conv, 256,72 | | 3x3conv, 256,02 |

-

3x3 conv, 256

€

3x3 conv, 256

3x3 conv, 256

v

| 3x3conv,256 | | 3x3conv, 256
A 4

| 3x3conv,256 | | 3x3conv,256 |
v

3x3 conv, 256

3x3 conv, 256

-

3x3 con

<

, 256

3x3 conv, 256 I

-

3x3 conv, 256

3x3 conv, 256 I

-

3x3 con

<

, 256

3x3 conv, 256 ]

<

3x3 conv, 256

3x3 conv, 256

-

3x3 con

<

, 256

3x3 conv, 256 |

-

3x3 conv, 256

3x3 conv, 256 I

-

3x3 conv, 512, /2

<

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512 I

v

3x3 conv, 512

3x3 conv, 512 I

3x3 conv, 512

3x3 conv, 512 |

3x3 conv, 512

3x3 conv, 512 |

v \ T
avg pool avg pool
| fc 1000 | | fc 1000 |

ResNet



ResNet in PyTorch

Torchvision implementation:
https://pytorch.org/vision/0.8/ modules/torchvision/models/resnet.html

class Bottleneck(nn.Module):

def forward(self, x): P“R’—."-'
identity =
e 3x3 conv, 128
out = self.convl(x) *
out = self.bnl(out)
out = self.relu(out) 3!3 conV, 128
i

out = self.conv2(out)
out = self.bn2(out)

out = self.relu(out) r""!-_.'f:'
. - .

out = self.conv3(out) 3!3 COﬂV, 128, /2 .‘.

out = self.bn3(out) ]
¥ Y

if self.downsample is not None: 3Ix3 conv, 128 o?

identity = self.downsample(x) I ............

out += identity
out = self.relu(out)

return out 93


https://pytorch.org/vision/0.8/_modules/torchvision/models/resnet.html

ImageNet nowadays

105

Top-5 accuracy is boring

O 95
é VGG-19
O 90 MSRA
<
n Five Base + Eive"HiRes
[~
= AlexNet
= 85
80
75
2013 2014 2015
100

SoTA top-1 accur

>
O
= 80
=)
U] VGG-19
o
< MSRA
= 70 :
= Five Base + Five-HiRes
= AlexNet

60

50

2013 2014 2015

https://paperswithcode.com/sota/image-classification-on-imagenet

View Top 5 Accuracy V| by Date v | for All models

FixResNeXt-101 32x48d

AmoebaNet;A
ResNeXt-101 64x4

Inception V3
2016 2017 2018 2019 2020 2021
Other models Models with highest Top 5 Accuracy
View Top 1 Accuracy V| by Date v | for All models

Meta Pseudo Labels (EfficientNet-L2)

PNASNet:5

cy is around 90.88%

ResNeXt-101 64x4
Inception V3

2016 2017 2018 2019 2020 2021

Other models State-of-the-art models

Florence-CoSwin-H

2022

Model soups (BASIC-L)

2022

94



Autoencoder

95



Unsupervised Learning Review

 Recall: unlabeled data.

* Q: what is the main goal of unsupervised learning?

« Examples: clustering, PCA.

« Recall PCA can be used for
‘representation learning’ =
learning useful (and compact)
features.

(learned features = projected feature vector)

* NNs can be used to do
generalizations of PCA.

Example: MNIST dataset /> (exe= =5d et

PC1 vs PC2 for MNIST Images 0 == 9

PC 1

96




Introductory Example

* Suppose you have a number in {0,1,2,3,4,5,6,7}

* What would be a compact representation (say, for
computers)?

* Q: how many bits do we need?



Train a neural net by
imposing squared loss on all
the output units &
backpropagation.

Q: What do the hidden
values look like?

Early Observations

Input Hidden Output
Values »

10000000 — .89 .04 .08 — 10000000
01000000 — .15 99 .99 — 01000000
00100000 — .01 97 .27 — 00100000
00010000 — 99 97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .01 .11 .88 — 00000100
00000010 — 80 .01 98 — 00000010
00000001 — 60 94 .01 — 00000001

FIGURE 4.7 .

Learned Hidden Layer Representation. This 8 x 3 x 8 network was trained to learn the identity
function, using the eight training examples shown. After 5000 training epochs, the three hidden unit
values encode the eight distinct inputs using the encoding shown on the right. Notice if the encoded
values are rounded to zero or one, the result is the standard binary encoding for eight distinct values.

p107, Tom Mitchell, “Machine Learning”



Autoencoder using deep networks

Input Output
VS~ =7
\ -~ ~ - - /
/ \ ~ -~ / \
\ Code /
A I ] B AN LN Ny
/ \ ~ - / \
\ / \ / \ /
/ \ \ / / \
\ / / \ \ /
/ \ \ / / \
) ( < )\ ) {
A / \ \ / / \ I\
/ \ / / \ \ / \
;o \[ |/~ ~A\[ |/ \
\ / - ~< \ /
/ — -~ \
// - ~ - \\ PC1 vs PC2 for MNIST Images
N J N\ J
g g
Encoder Decoder

PC1

We can do this for any data!

How to use it:
- Encoder: for dimensionality reduction T
- Decoder: generate new samples from the distribution by varying the input ‘code’

99
image from https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798



PCA as a linear neural network

linear = no activation

PCA pseudocode

Input: data matrix X € R4

Preprocess: Let y = %Z}Ll x;. Compute x; = x; — u, Vi € [n]

Compute the top k eigenvectors V = [vq, ..., V] of - Z L1 X; (x )

Feature map: ¢(x) = kvlT(x — ), ..., vp (x — ) | € R¥
(o?{ﬁ(?@'\?\‘-

Decorrelating property: (N whitening ")
/..
‘—Z _1¢(x;) =0 } )\1/\03%
¢ _Z 1¢(X )¢(xl)T Dlag&;’i‘/}lc_)’__—r____) [ - )\K}

 Reconstruction (the actual projection): apply u + V¢ (x)

(v Vi)

100




PCA as a linear NN

* K units in the hidden layer.
* The PCA can be represented as a NN

* Reconstruction (the actual projection): apply 1 + V¢ (x)

* Feature map: ¢(x) = (vlT(x — ), o, vp (x — /,L)) € Rk
AN (o?'{'

T

* Decorrelating property: (" whitening ")
U
f ¢ IV plx) =0
1 .
o« =N 9D = Diag(Ay, -, i)

(with constant bias added in each layer):

— V1~ —v) W
 Encoder: h = - X +
— Vk —V U
| | |
 Decoder: x = | 14 Ve |-h+1| U

101



Autoencoder using deep networks

Input Output
\\ ™~ - //
\ -~ ~~ - - /
/ \ ~ - / \

\ Code /

\ / \ / WV 7 \ / \ /

/ \ ~ ~ / \

\ / \ / \ /

/ \ \ / / \

\ / / \ \ /

/ \ \ / / \

) ( X )\ ) {

/ \ / \ \ / / \ / \

/ \ / / \ \ / \

;0\ /- ~_\ 7 /
;o \ /- ~ A\ / \
/ \ / - ~ \ / \
\ / - ~< \ /

/ — ~ \
// — - -~ ~ \\
g J _ J
Y Y
Encoder Decoder

We can do this for any datal!

What about images?

102
image from https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798



Training autoencoders

Input Output

 Given:
e data x4, ..., x,, € R%,
 Embedding dimension k (k « d)

~
N
N 7
P

NS
PR
~

[ [T T TT]

» Goal: obtain
» Encoder network f5: R? —» R¥ - )

K
-
(‘

[T T T T]

-

<
<

» Decoder network g,: R* - R?
* Such that for every i, x; = g4 (fo(x;))

Encoder Decoder

* Most commonly used formulation (can be straightforwardly trained
by gradient-based methods):

minimizeg,qb Z?=1Hxi — Yo (fH (xl))Hz
I ]

[
Reconstruction error



Autoencoder for images

* Encoder: conv-conv-pool-conv-conv-pool-...,

* Decoder: conv-conv-pool-...?7? It will reduce the spatial dimension
rather than increasing it.

* How to do the opposite of pooling (or conv with stride length >= 2)7?

24

/

I 14

Following slides largely based on Stanford cs231n https://youtu.be/nDPWywWRIR0?7t=1109
http://cs231n.stanford.edu/slides/2017/cs231n_2017 lecture11.pdf 194



Nearest Neighbor

1 2
3 | 4
Input: 2 x 2

“Un”pooling

112 2
112 2
3|14 4
314 4
Output: 4 x 4

“Bed of Nails”

Input: 2 x 2

1 . 012 O
L O 0|0 O
3 014 O
O 00 O
Output: 4 x 4

(fig. from Stanford cs231n)*



Max unpooling

Max Pooling

. Max Unpoolin
Remember which element was max! P 9

Use positions from

216 | 3 pooling layer olol21o0
58 2 | 1 5 6 112 0f1]0]0
> " B BN 3 4 !
2 | & | | T |8 Rest of the network | 0101010 |
314 1|8 3| 0|0 (4
Input: 4 x 4 Output: 2 x 2 Input: 2 x 2 Output: 4 x 4

Corresponding pairs of

downsampling and The network must be symmetric
upsampling layers y

(fig from Stanford ¢s231n)'™°



Transposed convolution

» Other names: upconvolution, fractionally strided convolution,
backward strided convolution, deconvolution (don’t use this
name)

* Recall: 3 x 3 convolution with stride 2 pad 1.

> Filter moves 2 pixels in

Dot product the input for every one

between filter pixel in the output

and input
Stride gives ratio between
movement in input and
output

Input: 4 x 4 Output: 2 x 2

(fig from Stanford c¢s231n)



Transposed convolution

Sum where

3 x 3 transpose convolution, stride 2 pad 1 output overlaps

Filter moves 2 pixels in

Input gives the output for every one
weight for pixel in the input
filter
Stride gives ratio between
movement in output and
input
Input: 2 x 2 Output: 4 x 4

Disclaimer: this is not the inverse of convolution!
Rather, it's just a variation of the convolution. (fig from Stanford cs231#}




1D transposed convolution

Output

In pUt Filter Output contains
axX copies of the filter
weighted by the
X ay input, summing at .
a where at overlaps in
the output
y az f+|bx
b —
Z

/
\ ™

|

(fig from Stanford cs231r)



1D transposed convolution: matrix form

We can express convolution in
terms of a matrix multiplication

z Y B

0 0 &« ¢ 8 0O

rxa=Xa

0 0 o] _[ ay + bz

bx 4+ cy + dz

=R R

Example: 1D conv, kernel
size=3, stride=2, padding=1

|

Output
Input Filter -
=
X ay
a / , bx
k z / by
. AR bz
Transposed convolution multiplies by the
transpose of the same matrix:

T4 g=XTg

o

(z 0]  ar |
y 0 ay
g [a] _ |az+bx
0 wyl| [b] by
0 2 bz
g 0 0]

Example: 1D transposed conv, kernel
size=3, stride=2, padding=0

(fig from Stanford cs231RY



Resources

“The Deep Learning Book™ by Goodfellow et al.
https://www.deeplearningbook.org/

3Blue1Brown Youtube channel has a nice four-part intro:
https://www.youtube.com/watch?v=aircAruvnKk

Free book by Michael Nielson uses MNIST example in Python:
http://neuralnetworksanddeeplearning.com/

Prof. Stephen Bethard often teaches an excellent class:
ISTA 457 / INFO 557


https://www.youtube.com/watch?v=aircAruvnKk
http://neuralnetworksanddeeplearning.com/
https://www.deeplearningbook.org/

