16 Reinforcement learning (RL)

Jason Pacheco

Department of Computer Science

A THE UNIVERSITY
. OF ARIZONA

*slides credit: built upon CSC 580 Fall 2021 lecture slides by Kwang-Sung Jun & Chicheng Zhang
1

Reinforcement learning references

* “Reinforcement learning”’ by Sutton & Barto (available online)

* RL course by David Silver:
https://www.youtube.com/watch?v=2pWv7GOvufQ&list=PLzuuYNsE1EZAXYR4F)75jc)JseBmo4KQ9-

https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLzuuYNsE1EZAXYR4FJ75jcJseBmo4KQ9-

Outline

* Background / Markov Decision Processes (MDPs)
* Planning in MDPs

e Reinforcement Learning in MDPs

Background / Markov Decision Processes

Source: David Silver

Computer Science

Engineering Neuroscience

Mathematics

Psychology

Source: David Silver

Unsupervised
Learning

Supervised
Learning

Machine
Learning

Reinforcement
Learning

Reinforcement Learning (RL)

e Task of an agent embedded in an environment

* repeat forever:
* 1) sense world (=state)
)
 3) take an action (this changes the state)
4)
)

5) learn from the feedback

reason

get feedback (usually a real-valued reward),

AlphaGo Zero
Starting from scratch

-
-

Characteristics of RL

How does RL differ from other ML frameworks?

* There is no supervisor, only a reward signal
* Feedback is not instantaneous (decisions lead to delayed reward)
e Datais noti.i.d. (it is sequential, time matters)

* The agent’s actions affect subsequent data it receives

Source: David Silver

Examples of RL

e Fly stunt maneuvers in a helicopter (reward: not crashing)
* Manage an investment portfolio (reward: S)

e Play many different video games (reward: score)

* Make a humanoid robot walk (reward: distance traveled)

» Defeat world champion in Backgammon (reward: win/lose)

» Defeat world champion in Go! (reward: win/lose)

Examples

* https://www.youtube.com/watch?v=TmPfTpjtdeg

* https://www.youtube.com/watch?v=0JL04)Jjocc

* https://www.youtube.com/watch?v=gn4nRCCOTwQ

10

https://www.youtube.com/watch?v=TmPfTpjtdgg
https://www.youtube.com/watch?v=0JL04JJjocc
https://www.youtube.com/watch?v=gn4nRCC9TwQ

Markov Decision Process (MDP)

agent

state/ /Irewa rd \l action

environment

Environment model M

Set of states S ro r r>
Set of actions A
at each time t, agent observes state s; € S, then chooses action a; € A

then receives a reward 1 and moves to state s;,1; repeat.

11

Markov Decision Process (MDP)

agent
Markov assumption:
P(r¢|se, ag, se—1, r—q, ...) = P(r¢lse ag) _
P(s¢+1l5e agr Se—1, g1, .) = P(S¢4+1]5e, ag) state reward action

I

environment

These are unknown to the learner!

i.e. the future is independent of the past,
given the present

Markov Decision Process (MDP)

A policy is the agent’s behavior
It is @ map from state to action, e.g.
Deterministic policy: a = m(s)

Stochastic policy:
n(als)=P(As=alS; =5s)

agent

state/ /Irewa rd \l action

environment

13

Markov Decision Process (MDP)

agent
Goal:
Learn a policy m: S — A for choosing actions that state/ /Ireward \] action
maximizes expected cumulative (discounted) reward
E [ro+yr +y%r,+ - 1sg]where0 <y <1 environment
for every possible starting state s
% aj ar
So > S > 5 ->

14

The intention behind the RL formulation

* Note that the formulation is reward-driven.

* Example: Robot learning: move a dish from one place to another
* We can assign reward +10 when it accomplishes the task
* We can also assign reward +1 when it picks up the dish successfully

* Evaluative feedback (cf. Instructive feedback — supervised learning)

Main Hypothesis:

All goals can be described by the maximization of expected cumulative reward. (from David Silver’s lecture)
I R
Walk Forward displacement
Escape maze -1 if not out yet; O if out
Robots for recycling soda cans +1 if a new can collected; -10 if run into things;
0 otherwise.

Win chess 0 if not finished; +1 if win; -1 if lose

17

The grid world: Learning to Navigate

* The grid world

L L7

G
1
| 100

—>
0

 State s: the location of the agent

* Each arrow represents an action a and the associated number represents reward (s, a) (assume

that it is deterministic for now).

18

The structure of returns

e Define return at time step t:

Ge =T¢ +YTpqq +ViTeqp +

* The goal of RL: find a policy ™ that maximizes its return at the start:

Erlro +ymr +y%r+ -] =E;[Go]

* @, satisfies the following recurrence:
Ge =7t + V(g1 +VTeqn +0) =12 + VGryq

Current return Immediate reward Future return

19

Value Function

* Prediction of future reward

* Used to evaluate goodness / badness of states

* And therefore, to select actions, e.g.

V*(s) = E[1p + ¥Tpe1 + ¥ Tesp + o | 5S¢ = 5, 7]

* We explicitly notate that the value depends on the policy

20

Value function for a policy

Given a policy m: S — A, define its value function V™ (s) = E[X2y 1 | sg = s, 1]

Important property (Bellman consistency equation):
VT[(S) — IE[GO | SO S S,T[]
=E[ryg|so=sm]+VE[Gy|sy=5s1]

= R(s,m(s)) + VIES'|S,7T(S) [V (s"]
where R(s,a) = E[r; | s; = s,a; = a

Fact: there is a policy " such that " = argmax V™ (s) forall s
T

e 1t is called the optimal policy

V*(s) := the value function achieved by the optimal policy — optimal value function

* Note: We assume deterministic policies for simplicity; nondeterministic policy would assign probabilities
to actions given state; i.e., p(a|s) =:m(al|s) => V™(s) = X ea n(als)(R(s, a) + VIES’|s,a[VT[(S’)])

21

Value function for a policy

e Suppose 1 is shown by red arrows, y = 0.9

V™ (s) values are shown in red optimal policy *
0
90 100
73 81 0 0 100 (7
0 100 9]
b I p —+ G
0 0 0 0
110 110 0 110 119 1
ol ol [100 ol ol 1 100
JR o| . 0 0
T o0 1o T i
66 0 90 0 100 81] 0 90 N 0 100

e The Bellman consistency equation:

V™(s) = R(s,m(s)) +v - g P(s']s,m(s)) V7 (s')

* stochastic policy: V™(s) = Yam(als) (R(s,a) +y - X P(s'|s,a) VT(s"))

Policy evaluation

* How to compute V" given MDP M and policy rr?

e Recall Bellman consistency equation:
VT(s) = Xqm(als) (R(s,a) +y - Xy P(s'ls,a) V™ (s"))

= §a m(als)R(s, a|) +y- ZS’|(Za (als) P(s'ls, a))| VT(s")

|
R”I(S) M™(s,s")

* |In matrix form (denote by VT = (V”(s))ses e RIS etc):
V® =R"+yM™V™ (recall the vector/matrix notation here)

* Alinear system! How to solve it?

e Gaussian elimination

* |s this efficient?

* Time complexity: O(|S|?)

23

Policy evaluation (cont’d)

Fixed point iteration for policy evaluation

Initialize: V™ arbitrarily (e.g., all zero).

VT(s) = Z (als)

a

(R(s, a)+vy- z P(s'|s,a) V”(s’))

* While V™ does not change much from the previous iteration

e WT « |
e Foreachs € S

¢ V() « Sam(als) (R(s,a) + g P(s'ls,@) -y W(s"))

* This is called synchronous update

* Asynchronous update: remove W™ « V™ and perform in-place updates for V'™

e Preferred method.

24

Fixed point iteration: an illustration

Episodic MDP (i.e., terminal states involved) with
y =1

Shaded squares are terminal states

4 actions

Actions to the wall end up with the same state.

Rewards are -1 until the terminal state is reached.

The policy mr: take an action uniformly at random.

+

10

11

ion
actions 1o

13

14

r= -1
on all transitions

Side Q: what’s the optimal policy under this reward setting?

25

Example

* Synchronous updates.

e Values are propagated!

V[for the
Random Policy

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

k=0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

0.0

0.0

-1.7

-2.0

-2.0

k=2 -1.7

-2.0

-2.0

-2.0

-2.0

-2.0

-2.0

-1.7

-2.0

-2.0

-1.7

0.0

k=3
k=10
k= o0

VT(s) « 2 m(als) (R(S, a) + yz P(s'|s,a) - W”(s’))

0.0

2.4

-2.9

-3.0

-2.4

-2.9

-3.0

-2.9

-2.9

-3.0

-2.9

-2.4

-3.0

-2.9

-2.4

0.0

0.0

-6.1

-8.4

-9.0

-6.1

-7.7

-8.4

-8.4

-8.4

-8.4

-1.7

-6.1

-9.0

-8.4

-6.1

0.0

0.0

-14.

-20.

-22.

-14.

-18.

-20.

-20.

-20.

-20.

-18.

-14.

-22.

-20.

-14.

0.0

26

Planning in MDPs

Planning in MDPs

Given: full specification of M, (specifically R(s, a) and P(s’|s, a) are known)

Goal: find optimal policy m* of M

Recall: V*(s) is the value function of the optimal policy.
Claim: To find the optimal policy, it suffices to find V*(s) for every state s

Why?

w'(s,) = argmax R(s,@) +7) P(sess = 15, @ V*(5)
a

SES

How to find V*(s)?

28

Bellman optimality equation

Fact: V*(s) = max V™ (s) satisfies the following equation:
T

V*(s) = max (R(S, a)+vy- z P(s'|s,a) V*(S’)) (v) W

This is known as the Bellman optimality equation

Intuition:

* R(s,a) +y -2 P(s'[s,a) V*(s") is the return achieved by: (1) taking action a; and (2) behave
optimally afterwards

e Optimal behavior = optimal action a + optimal behavior afterwards

Issue: Bellman optimality equation has no closed form solution. (unlike computing V1)

However, V™ can still be seen as a fixed point

29

Algorithm: Value iteration

Key idea: perform fixed point iteration on Bellman optimality equation

V*(s) = max <R(s, a)+y- Z P(s'|s,a) V*(S')>

Initialize VV (s) arbitrarily

While {V (s)}.cs is not much different from the previous iteration’s {V (s) }ccs

e Foreachs €S

e V(s) « max R(s,a) +y Xges P(s'[s,a) - V(s")

 End For
End While

30

Algorithm: Policy iteration

* The idea:
estimate optimal value V* and optimal policy ©* simultaneously & iteratively

* QObserve:
e " isgreedy wrt V"
e V" isthe value function of T*

* Can we obtain a pair (1, V) that exhibit the above properties?

Algorithm:
e Start from an arbitrary policy m (e.g., assign actions randomly)

* Repeat the following:
 [Policy evaluation] V « VT (either solve the linear system or iterative method)
 [Policy improvement] Update the policy: m < greedy(V)
Foreverys € S, m(s) « arg mc?xr(s, a) +yXaes P(s'|s,a)V™(s")

evaluation

/Iy VvV

7 ~ greedy (V)

improvement

>
- v*

31

Policy iteration with inexact policy evaluation

Suppose we perform fixed-point iteration for evaluating V®, withm(a | s) = 1/4,Vs,a

V[for the
Random Policy

0.0

0.0

0.0

0.0

Greedy Policy
w.rt. Uk

0.0

0.0

0.0

0.0

0.0

-2.4

-2.9

-3.0

~
v

-2.9

-3.0

-2.9

0.0

0.0

0.0

0.0

- k=3 -2.4

N
v
~
v
N

-2.9

-3.0

-2.9

2.4

-

0.0

0.0

0.0

0.0

N
v
v
N

-3.0

-2.9

-2.4

0.0

—

N
v

0.0

-1.0

-1.0

-1.0

]
T

“
r

0.0

-1.0

-1.0

-1.0

-6.1

-8.4

-9.0

k=1 -1.0
-1.0

-1.0

-1.0

-1.0

-7.7

-8.4

8.4

-8.4

-8.4

-1.7

-6.1

-1.0

-1.0

-1.0

0.0

8.4

-6.1

0.0

—

0.0

-1.7

-2.0

-2.0

J
t,

a
r

0.0

-2.0

-2.0

-2.0

-14.

-20.

-22.

|-18.

-20.

-20.

-2.0

-2.0

-2.0

-1.7

.[-20.

-18.

-14.

pP—

-2.0

-2.0

-1.7

0.0

.[-20.

-14.

0.0

—

S
v

o
T

“a
r

/ what you get if you apply the policy improvement step

optimal
policy

32

Algorithm: Modified policy iteration

* From previous slide: inexact value functions are still useful!

 Start from an arbitrary policy m (e.g., assign actions randomly)

* [(Inexact) Policy evaluation] V « take k fixed-point iterations for computing V™ (so V = V™)

This is not a valid value function anymore (no
corresponding m that achieves this value in general)

* [Policy improvement] Update the policy:
* Foreverys €S, m(s)=argmaxR(s,a)+VXqesP(s'|s,a)V(s)
a

33

summary

Policy evaluation: just evaluates the value function for a given
* closed form / fixed-point iteration

Planning:
* Policy iteration: policy evaluation + policy improvement
* Modified policy iteration: only k steps of policy evaluation
* Value iteration: k=1

Recall: so far, we are in the planning setting, where we are already given a model of the world: i.e.
know P(s'|s,a) and P(r | s,a)

What if we don’t? This is called the “learning in MDPs” problem

34

Learning in MDPs

Learning in MDPs: basic setup
w
* Given: A
e MDP M (unknown) <—-’:*-—>
* The ability to interact with M for T steps v
* Obtaining trajectory sg, ag, g, ---, ST, A1, T'T
agent

state /]rewa rd \ action

 Goal:
environment

* (Online learning) maximize cumulative reward [E| {:0 vErl

e Useful in applications where every action taken has real-world consequences (e.g. medical
treatment)

e (Batch learning) output a policy 7 such that V7 is competitive with VV*

e Useful in applications where experimentations are affordable (e.g. laboratory rats,
simulators)

Learning in MDPs: A Taxonomy of Approaches

RL Algorithms

* Model-based RL: :

i R
Re peat: Model-Free RL Model-Based RL
* M <« Estimate M based on data (e.g. by MLE)] (—i (% .
bt Plan according to M Policy Optimization Q-Learning Learn the Model Given the Model
Policy Gradent.%— —P) DQN b‘ —>.‘ World Models L’ AlphaZero |
. —> DDPG }4— , . / '
« Model-free RL: do not estimate M explicitly 2/ = F_ﬂ =) e
D . t I . h PPO ‘4— } —>} QR-DQN —> MBMF
¢ virect policy searc I - A _ :
P Y RPO B —> MBVE |

e E.g. policy gradient (REINFORCE)

* Value-based methods
e E.g. Q-learning (this lecture)

e Actor-critic: combination of the two ideas

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html 37

Unique challenges in RL |: Temporal Credit Assighment

Performance measure:
» focuses on the quality of a sequence of interdependent states / actions

O O

E g _ Cumulative Reward

Aim for maximization of long-term rewards

* Daily exercise: short term — long term ++ x ‘/ 2 3 /

e Stay up all night playing video games: short term + long term --
e Chess tactics: sacrifice pieces

Different from supervised learning: correct classification on every individual examples

Need to answer questions like: “what is the key step that caused me to lose this game?” — temporal
credit assignment

38

Unique challenges in RL Il: Exploration

Learning agent’s data is induced by its own actions

* This is another key difference with supervised learning * agent
T state/ /reward \action
* How to collect useful data? +al> R
v

* The exploration challenge

Rough intuition: collect data that “covers” all states and actions
e Uniform exploration: take actions uniformly at random

Caveat: uniform exploration may fail because of some hard-to-reach states
* E.g. RiverSwim [Strehl & Littman, 2008]

0 : 0.6 Hae 0.6 . 0.6 . 0.6 e 0.6
<2 0.6 ey RSB @3 2 D35 Sene #WEEE T

https://rlgammazero.github.io/docs/2020_AAAIl tut_part0.pdf

39

Unique challenges in RL II: Exploration (cont’d)

* Extra challenge in the online learning setting

. f
KX
* Need to take good actions that yield high rewards > t

* Unobserved
responses

* Balance exploration vs. exploitation
* Not anissue in the batch learning setting

Observed
decisions and
response

* Unobserved
responses

Mechanical
ventilation? Sedation? Vasopressors?

Time

e Popularidea:

* e-greedy: w.p. 1 — €, choose action that is believed to be optimal based on the information
collected so far; otherwise, choose actions uniformly at random.

e Again, e-greedy may fail in some hard MDP environments

https://www.nature.com/articles/s41591-018-0310-5 40

Monte Carlo Reinforcement Learning

* MC methods learn directly from episodes of experience

* MC is model-free: no knowledge of MDP transitions / rewards
* MC learns from complete episodes (no bootstrapping)

* MC uses the simplest idea: value = mean return

e Caveat: Can only apply MC to episodic MDPs (must terminate)

Credit: David Silver

41

Monte Carlo Reinforcement Learning

Goal: learn V™ from episodes of experience under policy :
Sl’Al’ Rz, ...,Sk ~ TT

Recall that return is total discounted reward:

Gt = Ry + YRey1 + V?Reyp + -

And recall that the value function is expected return:

VT(s) = Ex| G, | S = s]
MC policy evaluation uses empirical mean return instead of expected return

Credit: David Silver 42

First-Visit MC Policy Evaluation

* To evaluate s

* The first time-step t that s is visited in an episode
* Increment counter N(s) « N(s) + 1

* Increment total return S(s) « S(s) + G,

* Estimate value by mean return V(s) « S(s)/N(s)

* By the law of large numbers V(s) - V* as N(s) —» o

Credit: David Silver

43

Every-Visit MC Policy Evaluation

* To evaluate s

* Every time-step t that s is visited in an episode

* Increment counter N(s) « N(s) + 1

* Increment total return S(s) « S(s) + G,

* Estimate value by mean return V(s) « S(s)/N(s)
* Again, V(s) > V™ as N(s) »

Credit: David Silver

44

Example: Blackjack

Objective: Have your card sum be greater than the dealer’s without
going over 21

States (200 of them)
e Current sum (12-21)

* Dealer’s showing card (Ace-10) [:\./

BLACKJACK

e Do | have a useable ace?

Reward +1 for winning, O for draw, -1 for losing

Actions Hold (stop receiving cards), Hit (receive another card)

Credit: David Silver 45

Example: Blackjack

After 10,000 episodes

Usable
ace

No
usable
ace

Policy Hold if sum at least 20, otherwise hit

Credit: David Silver

After 500,000 episodes

46

Q-functions: motivation

* Issue of V™: only encodes the quality of states
* But we need to learn what actions are good

* Is there a function that encodes the quality of actions as well?

Action-value functions (Q-functions):
0"(s,a) = E[Gy | 59 = s,a9 = a,] = R(s,a) + z P(s'ls,)V™(s")
s’'es
The optimal Q function
Q*(s,a) =E[Gy|so=s,ap=a,] =R(s,a) +y 2 P(s'|s,a)V*(s")
s'es

The optimal policy can be extracted from Q*:
n*(s) = argmax Q*(s,a)
a

47

Q-values

oV

|, (2°

G
1
|

1

<J

o

oV
I

100
—>
0

—> —

IV

b

4> O

100

r(s, a) (immediate reward) values

90 100
o ol (2
> G
81 0
AL72 A 81 A
81 |1 90 IV [100
81 90
_9 —
e_ I
72 81

Q*(s,a) values

V*#(s) values

48

Q-learning: motivation

We do not know the state transition nor th

e reward function.

Instead of learning these model parameters, we directly attempt to estimate Q

Similar to V™, Q" also satisfies a Bellman-optimality equation:

Q*(s,a) = R(s,a) +

Y- E P(s'|s,a)maxQ*(s’,a’)
a’
Sl

Recall: Q*(s,a) = 7(s,a) + ¥y X P(S'|s,a)V " (s")

We will use this to design our learning rule

49

A‘gO ch m-. Q‘ | edarn | ng (deterministic transitions/rewards)

Assume that we are in the tabular setting: S and A are both finite

Initialize: Q(s,a) = 0,Vs,a

Observe the initial state s

Repeat:

* Select an action a and execute it (e.g., e-greedy)

Receive a reward r
Observe a new state s’

Update: Q(s,a) « r + ymaxQ(s’,a’)
a

S« s’

(similar to value iteration)

Q*(s,a) = R(s,a) +y - ZP(S' | S,a)rrha,lx Q*(s',a’)

50

Q-learning: update example

100 | ((;70
i)
I

| I
olv oly 100
100 100 s 2

72 90 L
—> > —1> —-> 0 0
< <t
63 63
| 81 S

v a

81 r(s, a) (immediate reward) values

right

Q(Sl?arig/ﬁ) —r+ 7/ maXa' Q(SZDa')

< 0+0.9max{63.81,100}
<~ 90

51

Q-learning for stochastic transitions/rewards

Our update equation is problematic: Q(s,a) « r + y maxQ(s’,a’)
a

For stochastic worlds:

* Fix s, a, (next state, reward) s’, r seen is stochastic
* Even if Q = Q* in the previous iteration, Q (s, a) will deviate from Q*(s, a) after the update

AY))

* This results in Q(s, a) not converging

How to fix this? Recall:

Q*(s,a) = R(s,a) +y - ZP(S’ | S,a)rraa’lx Q*(s',a’)

We can use the idea of stochastic approximation (also called temporal difference learning in the RL

context)

Iy

> S

)

52

Stochastic approximation

Given a stream of data points X3, ..., X,;, ~ N(u, 1)

How to estimate u in an anytime manner?
Idea 1: at time step n, output estimate fi,, = X,

Can we do better?

|dea 2: at time step n, output estimate ji,, = %(Xl + -+ X))

This is equivalent to i,, = (1 — a,,){l,,—1 + a,X,,, where a,, = %

1]
| |_|_l
Old estimate New data
(conservativenss) (correctivenss)

53

Q-learning for nondeterminstic transitions/rewards

Initialize: Q(s,a) = 0,Vs,a
Observe the initial state s

Repeat
 Take an action a

Q*(s,a) = R(s,a) +y - ZP(S’ | S,a)rrg;,lx Q*(s',a’)

* e.g., e-greedy (taking argmax,Q(s,a) w.p. 1 — €)

Receive the reward r

Observe the new state s’

I

« is a hyperparameter! (next slide)

Update: Q(s,a) « (1 — a)Q(s,a) + « (r +ymax Q(s’, a’))

54

The choice of

* Q(s,a) « (1 —a)Q(s,a) + (r +y max Q(s’,a’))

1
1 + #times(s,a)’

* For example, a =

* Q: Why is this a reasonable choice?

55

Discussion

* Q-learning will converge to the optimal Q function (under certain niceness assumptions on the MDP,
exploration policy, and step size scheme)

* |n practice, it takes a lot of iterations!

* Comparison: Model-based learning vs. Q-learning when choosing actions
* Model-based

* need to look ahead using some estimates of rewards and transition probabilities (Model Predictive
Control)

e Q-learning (model-free)
* just choose the action with the largest Q value

56

Challenge of Q-learning: large state spaces

* Q-learning requires us to maintain a huge table, which is clearly infeasible with large state spaces

states
S0 Y o P Sy
aj
ar % %
actions a ... Q(s2, az)] i
A

* How to design a Q-learning-style algorithm that can handle large state spaces?

https://www.microsoft.com/en-us/research/uploads/prod/2018/09/Reinforcement-Learning-with-Rich-Observations-SLIDES.pdf

Q function approximation

* We can use some other function representation (e.g. a neural net) to compactly encode a substitute
for the big table.

* We've been thinking states as discrete (the set S), but in fact, they can be a feature vector!

Q(S’ a])

Q(S’ a2)

encoding of the state

Q(S’ ak)

each input unit can be a sensor value
(or more generally, a feature)

Q: why is this a good idea?

58

Why Q function approximation?

1. memory issue

2. is able to generalize across states! may speed up the convergence.

Example: 100 binary features for states. 10 possible actions.
Q table size = 10 x 2190 entries

NN with 100 hidden units:
e 100 x 100 + 100 x 10 = 11k weights (not counting bias for simplicity)

Q(S’ a])

Q(S’ aZ)

Q(S! ak)

59

Algorithm: fitted Q-learning

Repeat

* observe the state s

compute Q(s, a) for each action a (forward pass on the NN)

select action a (e.g. use e-greedy) and execute it

observe the new state s’ and the reward r

compute Q(s’,a") for each action a’ (forward pass on the NN)

update the NN with the instance
* X« S
ey (1—-a)Q(s,a)+a (r +y - max Q(s’, a’)) (label for Q(s,a))
a

Calculate Q value you would have put into the Q-table and use it as the training label.
Use the squared loss and perform backpropagation!

60

Fitted Q-learning example: Atari games

 Human-level control through deep reinforcement learning (Mnih et al, 2013, 2015)

* Tested Fitted Q-learning on 49 Atari games
L D

e Achieves >=75% of human professional players’ scores on 29 games

e Can significantly outperform human players in many games

https://arxiv.org/pdf/1312.5602.pdf
https://www.nature.com/articles/nature14236

61

Fitted Q-learning example: Atari games (cont’d)

* The neural network for fitting Q values =y
* Convolutional architecture to handle F]
states as images]

B @
&
.|

e Learning curve: (Space Invaders, e-greedy with € = 0.05)

a 2,200,
8 2,000}
1,800}
2 1,600}
1,400}
1,200}
1,000}
800 |
600 |
400 }

(o]
K2
o
—
(9]

p

e

Average sco

200

0
0 20 40 60 80 100 120 140 160 180 200

Training epochs

Convolution
.

Fully connected
v

Fully ccvmnected

62

Fitted Q-learning example: Atari games (cont’d)

* Q-network’s last hidden layer extracts useful representations

e Consequently Q-network provides Q-value estimates that generalize across states

bk W, 8 LTIl pd? =y Y
05 Tk . W LT f..r/(:“.{? %
_ﬁ%". r‘s %2 . P “;‘ » .- .'-.'.’ g i .
& ') s .
P N ". B y
rw‘é ;‘3 . ’ /
LIRS 2
R i ‘:‘

63

Fitted Q-learning example: Atari games (cont’d)

* The learned Q functions are sensible

o
3 B

Action-Values (Q)
O
(6] O

1
-t

64

summary

MDPs: Reward driven philosophy
Policy evaluation: Bellman consistency equations; fixed point iteration
Planning in MDPs: value iteration; policy iteration

Learning in MDPs: Q-learning; function approximation

65

