
CSC580: Probabilistic Graphical Models

Final Exam Review

Jason Pacheco

Final Exam

• Similar format to Midterm but take-home

• Some students need to take it early so I will release in the next
day or two (Due: 12/13)

• 6+1 Questions
• 1 of these is only for CSC580 students
• No coding (might use minimal code for one problem)

Random Variables

Example X is the sum of two dice with values,

(Informally) A random variable is an unknown
quantity that maps events to numeric values.

Example Flip a coin and let random variable Y
represent the outcome,

Random Variables and Probability

is the event that X takes the value x

Capitol letters represent
random variables

Lowercase letters are
realized values

Example Let X be the random variable (RV) representing the sum of two
dice with values,

X=5 is the event that the dice sum to 5.

Probability Mass Function

A function is a probability mass function (PMF) of a discrete
random variable if the following conditions hold:

(a) It is nonnegative for all values in the support,

(b) The sum over all values in the support is 1,

Intuition Probability mass is conserved, just as in physical mass.
Reducing probability mass of one event must increase probability mass

of other events so that the definition holds...

Joint Probability

Definition Two (discrete) RVs X and Y have a joint PMF denoted by
 and the probability of the event X=x and Y=y denoted by
 where,

(a) It is nonnegative for all values in the support,

(b) The sum over all values in the support is 1,

Joint Probability

Let X and Y be binary RVs. We can represent the
joint PMF p(X,Y) as a 2x2 array (table):

Y

X
0.04 0.36

0.30 0.30

0 1

0

1

All values are nonnegative

Joint Probability

Let X and Y be binary RVs. We can represent the
joint PMF p(X,Y) as a 2x2 array (table):

Y

X
0.04 0.36

0.30 0.30

0 1

0

1

The sum over all values is 1:
0.04 + 0.36 + 0.30 + 0.30 = 1

Joint Probability

Let X and Y be binary RVs. We can represent the
joint PMF p(X,Y) as a 2x2 array (table):

Y

X
0.04 0.36

0.30 0.30

0 1

0

1

P(X=1, Y=0) = 0.30

Tabular Method

P(x1)=P(x1,y1)+P(x1,y2)
P(x2)=P(x2,y1)+P(x2,y2)
 [i.e., sum across rows]

0.4

0.6
P(x2)

P(x)

P(x1)

Y

X
0.04 0.36

0.30 0.30

y1 y2

x1

x2

0.34 0.66

P(y2)P(y1)

P(y)

Let X, Y be binary RVs with the joint probability table

P(y1)=P(x1,y1)+P(x2,y1)
P(y2)=P(x1,y2)+P(x2,y2)
 [i.e., sum down columns]

For Binomial use K-by-K
probability table.

Tabular Method

0.4

0.6
P(x2)

P(x)

P(x1)

Y

X
0.04 0.36

0.30 0.30

y1 y2

x1

x2

0.34 0.66

P(y1)

Censored!

We don’t care about
event Y=y2

P(x|y1)=?

Tabular Method

X

Y=y1

x1

x2

0.34

P(y1)

P(x|y1)
0.04 / 0.34

0.30 / 0.34

These sum to one:
A conditional probability distribution is

still a probability distribution

0.04

0.30

Graphical Models

[Source: Erik Sudderth, PhD Thesis]

Bayes Network Factor Graph Markov Random Field

A variety of graphical models can represent the same
probability distribution

Undirected ModelsDirected Models

Graphical Models

Bayes Network Factor Graph Markov Random Field

A variety of graphical models can represent the same
probability distribution

Undirected ModelsDirected Models
[Source: Erik Sudderth, PhD Thesis]

From Probabilities to Pictures

A probabilistic graphical model allows us to pictorially represent
a probability distribution

Probability Model:
Graphical Model:

Conditional distribution on each RV is dependent on its parent
nodes in the graph

Discriminative vs Generative modeling

Discriminative model:
• Only models 𝑃 𝑦 𝑥, 𝜃 -- i.e. doesn’t model data x
• Recall linear regression: 𝑦 ∣ 𝑥; 𝜃 ∼ 𝑁(𝑥!𝜃, 𝜎")
• Logistic regression: 𝑦 ∣ 𝑥; 𝜃 ∼ Bernoulli(𝜎(𝑥!𝜃))

Generative model:
• Models everything including data: 𝑃 𝑘, 𝑦 = 𝑃 𝑘 𝑃(𝑦 ∣ 𝑘, 𝜃)
• e.g., Gaussian mixture model (GMM)

• 𝜃 = 𝜋#,𝜇!, Σ! #$%
&

• 𝑘 ∼ Categorical(𝜋) (hidden), i.e. 𝑃 𝑘 = 𝑙 = 𝜋"
• 𝑦 ∣ 𝑘 ∼ 𝑁(𝜇#, Σ#)

16

k

y

Unknowns

Parameters
Observations

x

y

Barbershop Example

Suppose you go to a barbershop at every last Friday of the month. You want to be
able to predict the waiting time. You have collected 12 data points (i.e., how long it
took to be served) from the last year: 𝑆 = {𝑥#, … , 𝑥#$}

• 1. Modeling assumption: 𝑥% ∼ Gaussian distribution 𝑁(𝜇, 1)
• 𝑝 𝑥; 𝜇 = %

"'
exp − ()* !

"
• Observation: this distribution has mean 𝜇

• 2. Find the MLE 𝜇̂ from data S
• (2.1) write down the neg. log likelihood of the sample
 𝐿+ 𝜇 = − ln𝑃 𝑥%, … , 𝑥+; 𝜇 = 12	ln 2𝜋 + %

"
∑,$%%" 𝑥, − 𝜇 "

17

Is this a generative or discriminative model?

Generative model: basic example I (cont’d)

2. Find the MLE 𝜇̂ from data S
• (2.2) compute the first derivative, set it to 0, solve for 𝜆
 (be sure to check convexity)
 𝐿+- 𝜇 = ∑,$%%" (𝑥, − 𝜇) = 0 ⇒ 𝜇 = (".⋯("!

%"

3. The learned model 𝑁(𝜇̂, 1) is yours!
• Simple prediction: e.g., predict the next wait time by 𝔼0~2(4*,%) 𝑋
• which is J𝜇 = (".⋯("!

%"

4. (Optional: Model Checking) Generate some data... Does it look realistic?

18

Sample Mean

Conditional Independence

Recall two RVs and are conditionally
independent given (or) iff:

Idea Apply chain rule with ordering that
exploits conditional independencies to

simplify the terms

Ex. Suppose and then:
Can visualize conditional

dependencies using directed
acyclic graph (DAG)

a
b

c

What is the joint factorization?

p(a,b,c) = p(a)p(b)p(c)

a
b

c

a
b

c

Are a and b independent ()?

p(a,b,c) = p(a)p(b)p(c)

p(a,b,c) = p(a)p(b|a)p(c|a,b)

Note there are no conditional independencies

Case one where c is observed

Case one where c is observed

Shading & Plate Notation
Convention: Shaded nodes are observed, open nodes are latent/hidden/unobserved

Y

Xj
D

Plates denote
replication of
random variables

Features X are
conditionally
independent,

given Y

Naïve Bayes for supervised learning

• Motivation: supervised learning for classification
• high-dimensional 𝑥 = (𝑥(1), … , 𝑥(𝐹)), modeling 𝑃(𝑥 ∣ 𝑦) can be tricky
• In general, 𝑃 𝑥 𝑦 = 𝑃 𝑥(1) 𝑦 ⋅ 𝑃 𝑥 2 𝑥 1 , 𝑦 ⋅ … ⋅ 𝑃(𝑥(𝐹) ∣ 𝑥(1), … , 𝑥(𝐹 − 1), 𝑦)

• A modeling assumption: 𝑥(1), … , 𝑥(𝐹) are conditionally independent given 𝑦
 i.e. for all 𝑖
 𝑥(𝑖) ⫫ 𝑥 1 ,… , 𝑥 𝑖 − 1 , 𝑥 𝑖 + 1 ,… , 𝑥 𝐹 ∣ 𝑦
 (Conditional independence notation: 𝐴 ⫫ 𝐵 ∣ 𝐶)

• Equivalently 𝑃 𝑥 𝑦 = 𝑃 𝑥(1) 𝑦 ⋅ …𝑃(𝑥(𝐹) ∣ 𝑦)

27

Recall : Class Preference Prediction

Define the labeled training dataset 𝑆 = 𝑥K , 𝑦K KLM
N

28

Labels

Features

Feature
Values

Data Point

To make this a binary
classification we set
“Liked” = {+2,+1,0}

“Nah” = {-1,-2}

Naïve Bayes: binary-valued features

Training Data 𝑆 = 𝑥%, 𝑦% %&#
' 	, 𝑥% ∈ 0,1 (𝑦% ∈ {0,1}

Generative Story
 𝑦 ∼ Bernoulli 𝜋 ; for all 𝑗 ∈ [𝐹], 𝑥 𝑗 ∣ 𝑦 = 𝑐 ∼ Bernoulli(𝜃),+)
 #parameters = 1 + 2𝐹	
Training (denote by 𝜃 = {𝜃),+})
 max#,% ∑&'() ln	𝑃 𝑥&, 𝑦&; 𝜋, 𝜃 =∑&'() ln	𝑃 𝑦&; 𝜋 + ∑&'() ln	𝑃 𝑥& ∣ 𝑦&; 𝜃

 =	max# ∑&'() ln	𝑃 𝑦&; 𝜋 + max
{%!,#}	

∑&:.$'/ ln	𝑃 𝑥& ∣ 𝑦&; 𝜃 + max
{%%,#}	

∑&:.$'(ln	𝑃 𝑥& ∣ 𝑦&; 𝜃

 Key observation: optimal 𝜋, optimal {𝜃,,+}	, optimal {𝜃#,+}	can be found separately
 Optimal 𝜋: max- ∑%&#' ln	𝑃 𝑦%; 𝜋 = max- 𝑛,ln(1 − 𝜋)+ 𝑛#ln 𝜋 => P𝜋 = '3

'

29

Likelihood only related to 𝜃!,#

Learning / Training

Model random data with hyperparameters :

y2y1

θ θ

y ∼ p(y | θ)
p(y; θ)

Sometimes we use:

Given training data:

{yi}ni=1

i.i.d.
∼ p(y | θ)

Learn parameters, e.g. via maximum likelihood estimation:

θ̂MLE = argmax
θ

log p(y1, . . . , yn | θ)

Other estimators are possible:
• Maximum a posteriori (MAP)
• Minimum mean squared error (MMSE)
• Etc.

We will talk more
about MLE in
coming weeks

Likelihood (Intuitively)
Suppose we observe N data points from a Gaussian

model and wish to estimate model parameters…

High
Likelihood

Low
Likelihood (mean)

Low
Likelihood (variance)

Likelihood Principle Given a statistical model, the likelihood function
describes all evidence of a parameter that is contained in the data.

Likelihood Function

• We call this the likelihood function, often denoted
• It is a function of the parameter , the data are fixed
• Measures how well parameter describes data (goodness of fit)

Suppose , then what is the joint probability over N
independent identically distributed (iid) observations ?

How could we use this to estimate a parameter ?

Maximum Likelihood

Maximum Likelihood Estimator (MLE) as the name suggests,
maximizes the likelihood function.

Question How do we find the MLE?
Answer Remember calculus…

Is convex?

Unique, closed-
form solution

Gradient-based
optimization

Yes

No

Approach
• Compute derivative
• Set to zero and solve

Still have to compute
derivative…

Maximum Likelihood

Maximizing log-likelihood makes the math easier (as we will see) and
doesn’t change the answer (logarithm is an increasing function)

Derivative is a linear operator so,
MLE

One term per data point
Can be computed in parallel

(big data)

Maximum Likelihood
[Source: Wasserman, L. 2004]

Likelihood function for Bernoulli
with n=20 and heads

Example Suppose we have N coin
tosses with but
we don’t know the coin bias . The
likelihood function is,

where . The log-likelihood is,

Set the derivative of to zero and solve,
Maximum likelihood is
equivalent to sample

mean in Bernoulli

Marginal Likelihood

More often, we have a joint distribution with observations y, unknown
variables z, and parameters

Prior Likelihood

Need to marginalize out unknown variables, hence the name marginal
likelihood:

Typically, this integral lacks a closed-form solution…so we need to
compute approximate MLE solutions

Marginal likelihood is
normalizer of posterior:

Bayes’ Rule

Example: Gaussian Mixture Model

Model is often specified in terms of unknown parameters

How likely are parameters for observed data?

GMM

Marginal Likelihood (likelihood function):

Low Likelihood High Likelihood

Intuition Learn / estimate parameters that
assign highest probability (under the model)

to data we’ve observed.
Source: Bishop, PRML

Sum over all possible KN assignments,
which we cannot compute

Conditionally-independent model with partial observations…

Lower Bounding Marginal Likelihood

Observations

Parameters
Unknowns

Shorthand
z = z1, …, zN(Multiply by q(z)/q(z)=1)

(Definition of Expected Value)

(Jensen’s Inequality)

q(z) is any distribution with
support over Z

Jensen’s Inequality

f(x)

chord

a x! b

f(E[X])  E[f(X)]
Valid for both discrete (expectations are sums)
and continuous (expectations are integrals)
random variables, for any convex function f.

ln(E[X]) � E[ln(X)]

The logarithm is concave.

Expectation Maximization
Find tightest lower bound of marginal likelihood,

Solve by coordinate ascent…

Initialize Parameters:
At iteration t do:

E-Step:

M-Step:
Until convergence

Fix

Fix q

E-Step

Concave (in q(z)) and optimum occurs at,

Initialize Parameters:
At iteration t do:

E-Step:

M-Step:
Until convergence

Set q(z) to posterior with
current parameters

Source: Chris Bishop, PRML

Source: Chris Bishop, PRML

Source: Chris Bishop, PRML

Source: Chris Bishop, PRML

Source: Chris Bishop, PRML

Example: Gaussian Mixture Model

Commonly refer to q(zn) as responsibility

E-Step:

Example: Gaussian Mixture Model

M-Step:

Start with mean parameter ,

where

Example: Gaussian Mixture Model

M-Step:

Repeat for remaining parameters,

• Solving for mixture weights requires a bit more work
• Need constraint
• Use Lagrange multiplier approach

Example: Gaussian Mixture Model

M-Step:

Repeat for remaining parameters,

• Solving for mixture weights requires a bit more work
• Need constraint
• Use Lagrange multiplier approach

K-Means Clustering

Clustering
• Input: 𝑘: the number of clusters (hyperparameter)

 𝑆 = {𝑥2, … , 𝑥3}
• Output

• partition 𝐺4 4526 s.t. 𝑆 =	∪4 𝐺4 (disjoint union).
• often, we also obtain ‘centroids’

• Q: what would be a reasonable definition of centroids?

53

𝑘-means clustering
• Idea: to partition the data, it would be great if someone gives us 𝑘 reasonable centroids 𝑐2, … , 𝑐6,

since then we can partition the data with them.

• But we don’t have those centroids => Let’s find them with an optimization formulation.

 minimize
7!,…,7"

𝑓(𝑐2, … , 𝑐6), where 𝑓 𝑐2, … , 𝑐6 = ∑4523 min
9∈ 6

𝑥 − 𝑐9 ;
;

54

𝐴 𝑥 = arg min
9∈[6]

𝑥 − 𝑐9 ;

Special case: 𝑘=1
• min
7!,…,7"

∑4523 min
9∈[6]

𝑥4 − 𝑐9 ;
;

 => min
7
∑4523 𝑥4 − 𝑐 ;

;

• Let 𝐹 𝑐 = ∑4523 𝑥4 − 𝑐 ;
; convex; minimizer 𝑐∗ satisfies that ∇𝐹 𝑐∗ = 0

 => ∑4523 𝑥4 − 𝑐∗ = 0 => 𝑐∗ = 2
3
∑4523 𝑥4

55

For 𝑘 ≥ 2
• minimize

7!,…,7"
𝑓(𝑐2, … , 𝑐6), where 𝑓 𝑐2, … , 𝑐6 = ∑4523 min

9∈ 6
𝑥 − 𝑐9 ;

;
 => NP-hard even when 𝑑 = 2

• K-means algorithm: solve it approximately (heuristic)

• Observation: The chicken-and-egg problem.
• Cluster center location depends on the cluster assignment
• Cluster assignment depends on cluster location

• Very common heuristic (that may or may not be the best thing to do)

56

(Also called Lloyd’s algorithm)

Andrea Vattani, “the hardness of k-means clustering in the plane”

Initialization
Sample Run of Lloyd’s Algorithm

(a)

−2 0 2

−2

0

2

Arbitrary initialization of 1 and 2

57

Arbitrary/random initialization of 𝑐2 and 𝑐;

Iteration 1
Sample Run of Lloyd’s Algorithm

(b)

−2 0 2

−2

0

2

Iteration 1

Optimize assignments �i

58

(A) update the cluster assignments.

Sample Run of Lloyd’s Algorithm

(c)

−2 0 2

−2

0

2

Iteration 1

Optimize representatives j

(B) Update the centroids {𝑐9}

Iteration 2
Sample Run of Lloyd’s Algorithm

(d)

−2 0 2

−2

0

2

Iteration 2

Optimize assignments �i

59

(A) update the cluster assignments.

Sample Run of Lloyd’s Algorithm

(e)

−2 0 2

−2

0

2

Iteration 2

Optimize representatives j

(B) Update the centroids {𝑐9}

Iteration 3
Sample Run of Lloyd’s Algorithm

(f)

−2 0 2

−2

0

2

Iteration 3

Optimize assignments �i

60

(A) update the cluster assignments.

Sample Run of Lloyd’s Algorithm

(g)

−2 0 2

−2

0

2

Iteration 3

Optimize representatives j

(B) Update the centroids {𝑐9}

Iteration 4Sample Run of Lloyd’s Algorithm

(h)

−2 0 2

−2

0

2

Iteration 4

Optimize assignments �i

61

(A) update the cluster assignments.

Sample Run of Lloyd’s Algorithm

(i)

−2 0 2

−2

0

2

Iteration 4

Optimize representatives j

(B) Update the centroids {𝑐9}

K-means clustering

62

Input: 𝑘: num. of clusters, 𝑆 = {𝑥2, … , 𝑥3}
[Initialize] Pick 𝑐2, … , 𝑐6 as randomly selected points from 𝑆 (see next slides for alternatives)

For t=1,2,…,max_iter

• [Assignments] ∀𝑥 ∈ 𝑆, 	 𝑎?(𝑥) = arg min
9∈[6]

𝑥 − 𝑐9 ;
;

• If t ≠ 1	 AND	 𝑎? 𝑥 = 𝑎?@2 𝑥 , ∀𝑥 ∈ 𝑆
• break

• [Centroids] ∀𝑗 ∈ 𝑘 ,	 𝑐9← average 𝑥 ∈ 𝑆: 𝑎?(𝑥) 	= 𝑗 	

Output: 𝑐2, … , 𝑐6 and 𝑎? 𝑥4 4∈[3]

Sample Run of Lloyd’s Algorithm

(b)

−2 0 2

−2

0

2

Iteration 1

Optimize assignments �i

Sample Run of Lloyd’s Algorithm

(c)

−2 0 2

−2

0

2

Iteration 1

Optimize representatives j

63

Dimensionality Reduction
and Principal Component Analysis (PCA)

Motivation
Data often have a lot of redundant information…

Example A dataset consisting of a hand-drawn 3 at random locations
and rotations in a 100x100 pixel image.

Data Dimension 100 x 100 = 10,000

Intrinsic Dimension 3 (X-position, Y-position, Rotation)
[Source: Bishop, C.]

Example : Iris Dataset
Recall that the Iris dataset has 4 features:

sepal length / width, petal length / width…

Example : Iris Dataset

Data still cluster in a two-dimensional subspace

We can fit model in 2D to
reduce complexity, visualize

results, etc.

Linear Dimensionality Reduction

Project data onto a line or plane…

…one of the simplest dimensionality
reduction approaches

First, let’s review some linear
algebra…

[Source: Bishop, C.]

Linear Dimensionality Reduction

Projecting data onto a vector is a simple
inner product,

[Source: Bishop, C.]

x̃n = u
T
xn

We call u the linear subspace

Linear Dimensionality Reduction
Which choice of subspace is best? And why?

Idea Choose the subspace that captures the most
variation in the original data

Principal Component Analysis (PCA)
Identify directions of maximum variation as subspaces…

…we call each direction a principal component
[Source: Bishop, C.]

Principal Component Analysis (PCA)
First, center the data by subtracting the sample mean,

Variance of projected subspace,

Projection of
nth data point

Projection of
mean

Maximum Variance Formulation
A little algebra…

Pull out u

Quadratic form

Define:

Then:

This is what we will
optimize over u

Maximum Variance Formulation

Don’t want to cheat with large magnitude u, so we add penalty,

Find u so that projected variance is maximal…

Set the derivative (gradient) to zero and solve…

What equation is this?

u is an eigenvector with
eigenvalue

Recap of Concepts

• Learning a reduced intrinsic dimension is useful for a bunch of reasons
• The easiest approach is to find a linear subspace
• PCA defines the linear subspace as that which maximizes variance of the

projected data
• The set of subspaces are defined by the eigenvectors,

Eigenstuff

Eigenvectors / values of a matrix solve the equation

• Matrix S may have multiple eigenvectors / values that solve the above
equation

• For D-dimensional u can find all vectors in O(D3) time
• PCA finds M<D vectors with largest eigenvalues
• Can find M<D sorted eigenvectors in O(MD2) time
• Note that D can be large!

Principal Component Analysis (PCA)
How much variance is captured by just the first principal component (i.e.

eigenvector with largest eigenvalue)?

[Source: Bishop, C.]

Let be the first principal component, then
variance of first PC is,

How much in the second PC?

Explained Variance
How much variance is captured in M < D principal components?

We call this the explained variance of
the first M principal components

Divide by total variance to find
percentage of the total variance

explained by the subspace
[Source: Bishop, C.]

Fully Connected Neural Networks

Multilayer Perceptron

[Source: http://neuralnetworksanddeeplearning.com]

Input layer
perceptrons

Hidden layer
perceptrons

This is the quintessential Neural Network…
…also called Feed Forward Neural Net or Artificial Neural Net

Adding hidden layers
allows NN to learn
arbitrary functions

http://neuralnetworksanddeeplearning.com/

Handwritten Digit Classification
Classifying handwritten digits is the “Hello World” of NNs

Modified National Institute of
Standards and Technology (MNIST)
database contains 60k training and

10k test images

Each character is centered in a
28x28=784 pixel grayscale

image

Multilayer Perceptron for MNIST Classification
[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk]

Each image pixel is a
number in [0,1] indicated

by highlighted color

https://www.youtube.com/watch?v=aircAruvnKk

Feedforward Procedure
Each node computes a weighted

combination of nodes at the
previous layer…

Then applies a nonlinear function
to the result

Often, we also introduce
a constant bias parameter

Multilayer Perceptron
Final layer is typically a linear

model…for classification this is a
Logistic Regression

Recall that for multiclass logistic
regression with K classes,

Vector of activations from
previous layer

[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk]

Each parameter has some impact on
the output…need to tweak (learn) all

parameters simultaneously to
improve prediction accuracy

https://www.youtube.com/watch?v=aircAruvnKk

Convolutional Neural Networks

Convolutional neural networks (CNN)
• A.K.A. ConvNet architecture

• A set of neural network architecture that consists of
• convolutional layers
• pooling layers
• fully-connected (FC) layers

86(Stanford CS231n)

Convolution for single-channel images
Consider one filter with weights {𝑤%,+} with size F x F

• For every F x F region of the image, perform inner product (= element wise product,
then sum them all)

• Q: given a w x h image, after convolution with a F x F filter, what is the size of the
resulting image?

• Terminologies: filter size, receptive field size, kernel.

87Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

https://arxiv.org/abs/1603.07285

Define the convolution of filter f on image I as:

𝐼 ∗ 𝑓 𝑥 =)
N

)
O

𝑓 𝑥 −𝑚, 𝑦 − 𝑛 𝐼(𝑚, 𝑛)

Convolution: Some Intuition

88

Many ML libraries actually implement cross-correlation:

𝑓 ∗ 𝐼 𝑥 =)
N

)
O

𝑓 𝑥, 𝑦 𝐼(𝑥 + 𝑚, 𝑦 + 𝑛)

Learning finds good values for the convolution filter…

Convolutional layer for multi-channel images
Input: w (width) x h (height) x c (#channels)

• E.g. 32 x 32 x 3
• 3 channels: R, G, and B

A convolutional filter on such image is of shape F
x F x c

• Only spatial structure in the first two dimensions
• Denoted by {𝑤4,9,6}

89image from Stanford CS231n

Convolutional layer: visual explanation
• Consider one filter with weights {𝑤%,+,!} with 5 x 5 x 3

• Imagine a sliding 3D window.
• Convolution: For every 5 x 5 region of the image, perform inner product (= element wise product,

then sum them all)

• Then apply the activation function (e.g., ReLU)

• Results in 28 x 28 x 1 – called activation map.

• Now, we can do 𝐾 of these filters but with different weights {𝑤%,+,!
(ℓ) } for ℓ ∈ [𝐾] => output is

28 x 28 x 𝐾

90(image from https://www.quora.com/Why-do-we-use-convolutional-layers)

filter weights

(depth=1 here)

Convolutional Layer: More Details
Stride length S
• Skip input regions; Move the sliding window of a filter not by 1 but by S.

• E.g., S=2 means skipping every other 5 by 5 region.

Zero-padding P: add P number of artificial pixels
with value 0 around the input image on both sides
• To ensure the spatial dimension is maintained

(otherwise, patterns at the corners are not detected well)

• If we use P=1, then the activation map will be 30 x 30,
not 28 x 28 in our example!

91
image from https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

Example

image from https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7

Convolutional Layer: More Details
Stride length S
• Skip input regions; Move the sliding window of a filter not by 1 but by S.
• E.g., S=2 means skipping every other 5 by 5 region.

Zero-padding P: add P number of artificial pixels with value 0 around the input
image.
• To ensure the spatial dimension is maintained (otherwise, patterns at the corners are not detected

well)
• If we use P=2, then the activation map will be 32 by 32 not 28 by 28 in our example!

Rules (same goes for height)
• W: input volume width, F: filter width
• The output width K = floor((W – F + 2P)/S) + 1
• E.g., W=32, F=5, P=0, S=1 => K = 28
• E.g., W=32, F=5, P=2, S=1 => K = 32 93

(usually, the filter has the same width and height)

Strides and padding: animations

94Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

Strides only Padding only Strides + Padding

https://arxiv.org/abs/1603.07285

Supervised learning setup: putting it together

• Goal: design learning algorithm 𝒜 such that its output 𝑓 on
 iid training data 𝑆 has low generalization error

96

supervised
learning
algorithm

𝒜

predictor
𝒇

𝑓(𝑥)

training

test

𝐷

,
cat

ℓ 𝑦, 𝑓(𝑥)

𝑦𝑥

Generalization error: 𝐿#(𝑓) = E $,& ∼#	ℓ 𝑦, 𝑓(𝑥)

training data 𝑆

𝑘-nearest neighbors (𝑘-NN): main concept

Training set: 𝑆 = { 𝑥M, 𝑦M	 , … , 𝑥N , 𝑦N 	 }

Inductive bias: given test example 𝑥, its label should resemble the
labels of nearby points

Function
• input: 𝑥

• find the 𝑘 nearest points to 𝑥 from 𝑆; call their indices 𝑁(𝑥)

• output: the majority vote of {𝑦%: 𝑖 ∈ 𝑁(𝑥)}
• For regression, the average.

97

k-NN classification example

98

decision boundary

𝑘-NN classification: pseudocode

• Training is trivial: store the training set
• Test:

• Time complexity (assuming distance calculation takes 𝑂(𝑑) time)
• 𝑂 𝑚	𝑑	 + 𝑚	log	𝑚	 + 𝑘	 = 𝑂 𝑚 𝑑	 + log	𝑚

• Faster nearest neighbor search: k-d trees, locality sensitive hashing
99

list

append to list

sort in first coordinate

Majority vote of {𝑦(: 𝑖 ∈ 𝑁(𝑥)}

Variations

• Classification
• Recall the majority vote rule: 4𝑦 = arg max

S∈{M,…,V}
∑K∈X Y 1{𝑦K = 𝑦}

• Soft weighting nearest neighbors: 4𝑦 = arg max
S∈{M,…,V}

∑KLMN 𝑤K 1{𝑦K = 𝑦},

 where 𝑤K ∝ exp(−𝛽	𝑑(𝑥, 𝑥K)), or ∝ M
MZ[Y,Y. /

• Class probability estimates
• B𝑃 𝑌 = 𝑦 𝑥 = M

\
∑K∈X Y 1{𝑦K = 𝑦}

• Useful for “classification with rejection”

100

Inductive Bias

Training

101

How would you label the test examples?

Test

Overfitting vs Underfitting

Source: ibm.com

Bayes optimal classifier

Theorem 𝑓]^ achieves the smallest 0-1 error among all classifiers.

103

𝑓@A 𝑥 = argmax
B∈𝒴

𝑃D(𝑋 = 𝑥, 𝑌 = 𝑦) = argmax
B∈𝒴

𝑃D 𝑌 = 𝑦	 𝑋 = 𝑥) , ∀𝑥 ∈ 𝒳

Iris Setosa

Example Iris dataset classification:

Iris Versicolor Iris Virginica

Bayes error rate: alternative form

𝐿D 𝑓@A = 𝑃D 𝑌 ≠ 𝑓@A 𝑋
 = ∑E𝑃D 𝑌 ≠ 𝑓@A 𝑥 ∣ 𝑋 = 𝑥 𝑃D 𝑋 = 𝑥
 = ∑E(1 − 𝑃D 𝑌 = 𝑓@A 𝑥 ∣ 𝑋 = 𝑥) 𝑃D(𝑋 = 𝑥)
 = ∑E 1 −max

B
	𝑃D 𝑌 = 𝑦 ∣ 𝑋 = 𝑥 𝑃D 𝑋 = 𝑥

 = E 1 −max
B
	𝑃D 𝑌 = 𝑦 ∣ 𝑋

• Special case: binary classification
• 𝐿8 𝑓9: = ∑(𝑃8 𝑌 ≠ 𝑓9: 𝑥 , 𝑋 = 𝑥
 = ∑(min(𝑃8 𝑌 = +1, 𝑋 = 𝑥 , 𝑃8 𝑌 = −1, 𝑋 = 𝑥)

104

When is the Bayes error rate nonzero?

• Limited feature representation
• Noise in the training data

• Feature noise
• Label noise
• Sensor failure
• Typo in reviews for sentiment classification

• May not be a single “correct” answer
• Inductive bias of the model / learning algorithm

105

𝐿A 𝑓BC =Z
D

min(𝑃A 𝑌 = +1, 𝑋 = 𝑥 , 𝑃A 𝑌 = −1, 𝑋 = 𝑥)

New measures of classification performance

• True positive rate (TPR)
 = FG

G
= H(IB&J#,B&J#)

H(B&J#)
 (aka recall, sensitivity)
• True negative rate (TNR) = FK

K
 (specificity)
• False positive rate (FPR) = LG

K

• False negative rate (FNR) = LK
G

• Precision = FG
GM)NOOPQ

= H(IB&J#,B&J#)
H(IB&J#)

, P − 𝑐alled = TP + FP

106

P = TP + FN N = FP + TN

Type I error

Type II error

Linear Regression

Regression Learn a function that
predicts outputs from inputs,

Linear Regression As the name
suggests, uses a linear function:

Outputs y are real-valued

INPUT: X

O
U

TP
U

T:
 Y

We will add noise later…

Linear Regression

Input-output mapping is not exact, so we will add
zero-mean Gaussian noise,

INPUT: X

O
U

TP
U

T:
 Y

ϵ ∼ N (0,σ2)where

Multivariate Normal
(uncorrelated)

This is equivalent to the likelihood function,
p(y | w, x) = N (y | wT

x,σ
2)

Because Adding a constant to a Normal RV is still a Normal RV,

In the case of linear regression and

Great, we’re done right?

We need to fit it to
data by learning the
regression weights

Don’t know these;
need to learn them

Data – We have this

Random; Can’t do
anything about it

How to do this?
What makes good

weights?

Learning Linear Regression Models

There are several ways to think about fitting regression:

• Intuitive Find a plane/line that is close to data

• Functional Find a line that minimizes the least squares loss

• Estimation Find maximum likelihood estimate of parameters

They are all the same thing…

Learning Linear Regression Models

There are several ways to think about fitting regression:

• Intuitive Find a plane/line that is close to data

• Functional Find a line that minimizes the least squares loss

• Estimation Find maximum likelihood estimate of parameters

They are all the same thing…

MLE for Linear Regression

INPUT: X

O
U

TP
U

T:
 Y

Recall that the likelihood is Gaussian:
p(y | w, x) = N (y | wT

x,σ
2)

Given training data likelihood function
is given by,

So MLE maximizes the log-likelihood over the whole data as,

w
MLE = argmax

w

N∑

i=1

logN (yi | w
T
xi,σ

2)

MLE of Gaussian Mean
Assume data are i.i.d. univariate Gaussian,

Variance is known

Log-likelihood function:

Constant doesn’t
depend on mean

MLE estimate is least squares estimator:

MLE doesn’t change when we:
1) Drop constant terms (in)
2) Minimize negative log-likelihood

MLE of Linear Regression

Substitute linear regression
prediction into MLE solution

and we have,

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/

So for Linear Regression,
MLE = Least Squares

Estimation

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/

MLE of Linear Regression

Using previous results, MLE is equivalent to
minimizing squared residuals,

[Image: Murphy, K. (2012)]

Some slightly more advanced linear algebra
gives us a solution,

Ordinary Least Squares (OLS) solution

Derivation a bit involved for lecture but…
• We know it has a closed-form and why
• We can evaluate it
• Generally know where it comes from

Basis Functions

• A basis function can be any function of the input features X
• Define a set of m basis functions
• Fit a linear regression model in terms of basis functions,

• Regression model is linear in the basis transformations
• Model is nonlinear in the data X

Kernel Functions

A kernel function is an inner-product of some basis function
computed on two inputs

A consequence is that kernel functions are non-negative real-
valued functions over a pair of inputs,

Kernel functions can be interpreted as a measure of
distance between two inputs

Kernel Functions

Example Gaussian kernel models similarity according to an
unnormalized Gaussian distribution,

Also called a radial basis function (RBF)

Note Despite the name,
this is not a Gaussian
probability density.

Example The linear basis produces the kernel,

It is often easier to directly specify the kernel rather than the
basis function…

Kernel Functions

Given any set of data a necessary and sufficient
condition of a valid kernel function is that the nxn gram matrix,

Is a symmetric positive semidefinite matrix.

Kernel Ridge Regression

Kernel representation requires inversion of NxN matrix

y(x) = k(x)T (K+ λI)−1y

Primal Dual

MxM Matrix Inversion
O(M3)

NxN Matrix Inversion
O(N3)

Number of training data N greater than basis functions M

