Monte Carlo Estimation

One reason to sample a distribution is to approximate expected values under that distribution...

Expected value of function $f(x)$ w.r.t. distribution $p(x)$ given by,

$$\mathbb{E}_p[f(x)] = \int p(x)f(x) \, dx \equiv \mu$$

- Doesn’t always have a closed-form for arbitrary functions
- Suppose we have iid samples: $\{x_i\}_{i=1}^N \sim p(x)$
- Monte Carlo estimate of expected value,

$$\hat{\mu}_N = \frac{1}{N} \sum_{i=1}^N f(x_i) \approx \mathbb{E}_p[f(x)]$$

Samples must be independent!
Markov chain Monte Carlo methods

• The approximations of expectation that we have looked at so far have assumed that the samples are independent draws.

• This sounds good, but in high dimensions, we do not know how to get good independent samples from the distribution.

• MCMC methods drop this requirement.

• Basic intuition
 – If you have finally found a region of high probability, stick around for a bit, enjoy yourself, grab some more samples.
Markov chain Monte Carlo methods

• Samples are conditioned on the previous one (this is the Markov chain).

• MCMC is often a good hammer for complex, high dimensional, problems.

• Main downside is that it is not “plug-and-play”
 – Doing well requires taking advantage to the structure of your problem
 – MCMC tends to be expensive (but take heart---there may not be any other solution, and at least your problem is being solved).
 – If there are faster solutions, you can incorporate that (and MCMC becomes a way to improve/select these good guesses).
Metropolis Algorithm

We want samples $z^{(1)}$, $z^{(2)}$,

Again, write $p(z) = \tilde{p}(z)/Z$

Assume that $q(z^{(prev)} | z^{(prev)})$ can be sampled easily

Also assume that $q(\)$ is symmetric, i.e., $q(z_A | z_B) = q(z_B | z_A)$

For example, $q(z^{(prev)} | z^{(prev)}) \sim N(z; z^{(prev)}, \sigma^2)$
Metropolis Algorithm

While not _bored_

{
 Sample $q(z|z^{(prev)})$

 Accept with probability $A(z,z^{(prev)}) = \min\left(1, \frac{\tilde{p}(z)}{\tilde{p}(z^{(prev)})}\right)$

 If accept, emit z, otherwise, emit $z^{(prev)}$.
}

Always emit one or the other

If things get better, always accept. If they get worse, sometimes accept.
Metropolis Algorithm

Note that

\[
A(z, z^{(prev)}) = \min\left(1, \frac{\tilde{p}(z)}{\tilde{p}(z^{(prev)})}\right) = \min\left(1, \frac{p(z)}{p(z^{(prev)})}\right)
\]

So we do not need to normalize \(p(z) \)
Green follows accepted proposals
Red are rejected moves.
Markov chain view

Denote an initial probability distribution by \(p(z^{(1)}) \)

Define transition probabilities by:
\[
T(z^{(\text{prev})}, z) = p(z|z^{(\text{prev})}) \quad \text{(a probability distribution)}
\]

\(T \) can change over time, but for now, assume that it
it is always the same (homogeneous chain)

A given chain evolves from a sample of \(p(z^{(1)}) \), and is
an instance from an ensemble of chains.
Markov Chain Monte Carlo (MCMC)

- Stochastic 1st order Markov process with transition kernel:
 \[T(\tilde{z}^{(t)} \mid \tilde{z}^{(t-1)}) \]
 \[\ldots \rightarrow \tilde{z}^{(t-1)} \rightarrow \tilde{z}^{(t)} \rightarrow \tilde{z}^{(t+1)} \rightarrow \ldots \]

- Each \(x^{(t)}\) full N-dimensional state vector
- MCMC samples \(\ldots, \tilde{z}^{(t-1)}, \tilde{z}^{(t)}, \tilde{z}^{(t+1)}, \ldots\) \textbf{not independent}
- New superscript notation indicates dependence:
 \[
 \left\{ \tilde{z}^{(\ell)} \right\}_{\ell=1}^{L} \quad \left\{ \tilde{z}^{(t)} \right\}_{t=1}^{T}
 \begin{array}{ll}
 \text{Independent} & \text{Dependent}
 \end{array}
 \]

\textbf{Key Question:} How many MCMC samples \(T\) are needed to draw \(L\) independent samples from \(p(x)\)?
Stationary Markov chains

- Recall that our goal is to have our Markov chain emit samples from our target distribution $p(z)$.

- This implies that the distribution being sampled at time $t+1$ would be the same as that of time t (stationary).

- If our stationary (target) distribution is $p()$, then if we imagine an ensemble of chains, they are in each state with (long-run) probability $p()$.
 - On average, a switch from s1 to s2 happens as often as going from s2 to s1, otherwise, the percentage of states would not be stable.
Markov Chain Monte Carlo (MCMC)

- Stochastic 1st order Markov process with transition kernel:
 \[T(\tilde{z}(t) \mid \tilde{z}(t-1)) \]

 \[\ldots \rightarrow \tilde{z}(t-1) \rightarrow \tilde{z}(t) \rightarrow \tilde{z}(t+1) \rightarrow \ldots \]

 E.g. Let, \[T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix} \]

- Initial state dist’n: \(\mu(\tilde{z}^{(1)}) = (0.5, 0.2, 0.3) \)

- Repeated transitions converge to target
 \[\mu(\tilde{z}^{(1)}) \cdot T \cdot T \cdot \ldots \cdot T = (0.2, 0.4, 0.4) = p(\tilde{z}) \]

 True for any initial state distribution

 How can we formalize this?
Detailed balance

- Detailed balance is defined by:

\[p(z)T(z, z') = p(z')T(z', z) \]

(We assume that \(T(\cdot) > 0 \))

- Detailed balance is a sufficient condition for \(p() \) to be a stationary distribution with respect to the positive \(T \).

Sufficient but not necessary
Detailed balance implies stationary

\[p(z) = \sum_{z'} p^{(prev)}(z') T(z', z) \]

(because?)
Detailed balance implies stationary

\[p(z) = \sum_{z'} p^{(prev)}(z') T(z', z) \]
\[= \sum_{z'} p^{(prev)}(z) T(z, z') \]
(marginalization)
(because?)
Detailed balance implies stationary

\(p(z) = \sum_{z'} p^{(prev)}(z') T(z', z) \) \hspace{1cm} (marginalization)

\(= \sum_{z'} p^{(prev)}(z) T(z, z') \) \hspace{1cm} (detailed balance)

\(= p^{(prev)}(z) \sum_{z'} T(z, z') \) \hspace{1cm} (because?)
Detailed balance implies stationary

\[p(z) = \sum_{z'} p^{(prev)}(z') T(z',z) \]
\[= \sum_{z'} p^{(prev)}(z) T(z,z') \]
\[= p^{(prev)}(z) \sum_{z'} T(z,z') \]
\[= p^{(prev)}(z) \sum_{z'} p(z' | z) \]

(marginalization)
(detailed balance)
(moving constant out of sum)
(because?)
Detailed balance implies stationary

\[p(z) = \sum_{z'} p^{(prev)}(z') T(z', z) \]

\[= \sum_{z'} p^{(prev)}(z') T(z, z') \]

\[= p^{(prev)}(z) \sum_{z'} T(z, z') \]

\[= p^{(prev)}(z) \sum_{z'} p(z'|z) \]

\[= p^{(prev)}(z) \sum_{z'} \frac{p(z', z)}{p(z)} \]

(marginalization)

(detailed balance)

(moving constant out of sum)

(definition of T)

(because?)
Detailed balance implies stationary

\[p(z) = \sum_{z'} p^{(prev)}(z') T(z', z) \]
\[= \sum_{z'} p^{(prev)}(z) T(z, z') \]
\[= p^{(prev)}(z) \sum_{z'} T(z, z') \]
\[= p^{(prev)}(z) \sum_{z'} p(z' | z) \]
\[= p^{(prev)}(z) \sum_{z'} \frac{p(z', z)}{p(z)} \]
\[= p^{(prev)}(z) \frac{p(z)}{p(z)} \]
(marginalization)
(detailed balance)
(moving constant out of sum)
(definition of T)
(definition of "|")
(because?)
Detailed balance implies stationary

\[p(z) = \sum_{z'} p^{(prev)}(z') T(z', z) \quad \text{(marginalization)} \]

\[= \sum_{z'} p^{(prev)}(z') T(z, z') \quad \text{(detailed balance)} \]

\[= p^{(prev)}(z) \sum_{z'} T(z, z') \quad \text{(moving constant out of sum)} \]

\[= p^{(prev)}(z) \sum_{z'} p(z'|z) \quad \text{(definition of } T\text{)} \]

\[= p^{(prev)}(z) \sum_{z'} \frac{p(z'|z)}{p(z)} \quad \text{(definition of "\text{"}\text{|}\text{"}\text{"})} \]

\[= p^{(prev)}(z) \frac{p(z)}{p(z)} \quad \text{(marginalization)} \]

\[= p^{(prev)}(z) \quad \text{(because?)} \]
Detailed balance implies stationary

\[p(z) = \sum_{z'} p^{(\text{prev})}(z') T(z', z) \]
\[= \sum_{z'} p^{(\text{prev})}(z') T(z' \mid z) \]
\[= p^{(\text{prev})}(z) \sum_{z'} T(z', z) \]
\[= p^{(\text{prev})}(z) \sum_{z'} p(z' \mid z) \]
\[= p^{(\text{prev})}(z) \sum_{z'} \frac{p(z', z)}{p(z)} \]
\[= p^{(\text{prev})}(z) \frac{p(z)}{p(z)} \]
\[= p^{(\text{prev})}(z) \]

(marginalization)
(detailed balance)
(moving constant out of sum)
(definition of \(T \))
(definition of "|")
(marginalization)
(canceling)
Detailed balance (continued)

- Detailed balance (for $p()$) means that if our chain was generating samples from $p()$, it would continue to due so.
 - We will address how it gets there soon.
 - For MCMC algorithms like Metropolis, it is important that the stationary state is the distribution we want (most Markov chains converge to something),

- Does the Metropolis algorithm have detailed balance?
Metropolis has detailed balance

Recall that in Metropolis, \[A(z,z') = \min\left(1, \frac{p(z)}{p(z')}\right) \]

For detailed balance, we need to show (in general)
\[p(z')T(z',z) = p(z)T(z,z') \]
Metropolis has detailed balance

Recall that in Metropolis, \[A(z,z') = \min \left(1, \frac{p(z)}{p(z')} \right) \]

For detailed balance, we need to show (in general)
\[p(z') T(z',z) = p(z) T(z,z') \]

In Metropolis this is
\[p(z') q(z'|z') A(z,z') = p(z) q(z'|z) A(z',z) \]

Probability of transition from \(z \) to \(z' \) is the probability that \(z' \) is proposed, **and** it is accepted.
Metropolis has detailed balance

Recall that in Metropolis, \(A(z, z') = \min\left(1, \frac{p(z)}{p(z')}\right) \)

\[
p(z')q(z|z')A(z, z') = q(z'|z')\min(p(z'), p(z))
\]

(because?)
Metropolis has detailed balance

Recall that in Metropolis, \[A(z, z') = \min\left(1, \frac{p(z)}{p(z')} \right) \]

\[
p(z')q(z|z')A(z, z') = q(z'|z)\min(p(z'), p(z)) \tag{bring p(z') into A}
\]

\[
= q(z'|z)\min(p(z'), p(z)) \tag{because?}
\]
Metropolis has detailed balance

Recall that in Metropolis,\[A(z,z') = \min\left(1, \frac{p(z)}{p(z')}\right) \]

\[
p(z'q(z|z')A(z,z') = q(z'|z)\min(p(z'), p(z))
\]

\[
= q(z'|z)\min(p(z'), p(z))
\]

\[
= p(z)q(z'|z)\min\left(\frac{p(z')}{p(z)}, 1\right)
\]

(bring $p(z')$ into A)

$q()$ is symmetric

(because?)
Metropolis has detailed balance

Recall that in Metropolis, \(A(z, z') = \min \left(1, \frac{p(z)}{p(z')} \right) \)

\[
p(z') q(z | z') A(z, z') = q(z | z') \min \left(p(z'), p(z) \right) \]

\[
= q(z' | z) \min \left(p(z'), p(z) \right) \quad \text{(bring } p(z') \text{ into } A) \]

\[
= p(z) q(z' | z) \min \left(\frac{p(z')}{p(z)}, 1 \right) \quad \text{(divide the } \min(\text{)} \text{ by } p(z)) \]

\[
= p(z) q(z' | z) \min \left(1, \frac{p(z')}{p(z)} \right) \quad \text{(switch order in } \min(\text{)} \text{))} \]

\[
= p(z) q(z' | z) A(z', z) \quad \text{(because?)}
\]
Metropolis has detailed balance

Recall that in Metropolis, \(A(z, z') = \min \left(1, \frac{p(z)}{p(z')} \right) \)

\[
p(z')q(z | z')A(z, z') = q(z | z') \min(p(z'), p(z))
\]

\[
= q(z' | z) \min(p(z'), p(z))
\]

\[
= p(z)q(z' | z) \min \left(\frac{p(z')}{p(z)}, 1 \right)
\]

\[
= p(z)q(z' | z) \min \left(1, \frac{p(z')}{p(z)} \right)
\]

\[
= p(z)q(z' | z)A(z', z)
\] (definition of \(A(z', z) \))

(bring \(p(z') \) into \(A \))

\(q() \) is symmetric

(divide the \(\min() \) by \(p(z) \))

(switch order in \(\min() \))
Ergodic chains

• Different starting probabilities will give different chains

• We want our chains to converge (in the limit) to the same stationary state, regardless of starting distribution.

• Such chains are called ergodic, and the common stationary state is called the equilibrium state.

• Ergodic chains have a unique equilibrium.
When do our chains converge?

• Important theorem tells us that for finite state spaces* our chains converge to equilibrium under two relatively weak conditions.
 – (1) Irreducible
 • We can get from any state to any other state
 – (2) Aperiodic
 • The chain does not get trapped in cycles

• These are true for detailed balance (there exists a stationary state) with $T>0$ (you can get there).
 – Detailed balance is sufficient, but not necessary for convergence—it is a stronger property than (1) & (2)

*Infinite or uncountable state spaces introduces additional complexities, but the main thrust is similar.
Evolution of ergodic chains

Let $p^{(t)}(z)$ be the distribution at some time (e.g., initial distribution)

Let $\pi(z)$ be the stationary distribution

Let $p^{(t)}(z) = \pi(z) - \Delta^{(t)}(z)$

What is $p^{(t+1)}(z)$ in terms of $\pi(z)$?
Evolution of ergodic chains

Let \(p^{(t)}(z) \) be the distribution at some time (e.g., initial distribution)

Let \(\pi(z) \) be the stationary distribution

Let \(p^{(t)}(z) = \pi(z) - \Delta^{(t)}(z) \)

\[
p^{(t+1)}(z) = \sum_{z'} p^{(t)}(z') T(z,z')
= \sum_{z'} \pi(z') T(z,z') - \sum_{z'} \Delta^{(t)}(z') T(z,z')
= \pi(z) - \Delta^{(t+1)}(z)
\]
Evolution of ergodic chains

Let \(p^{(t)}(z) = \pi(z) - \Delta^{(t)}(z) \)

\[
p^{(t+1)}(z) = \sum_{z'} p^{(t)}(z') T(z, z')
\]

\[
= \sum_{z'} \pi(z') T(z, z') - \sum_{z'} \Delta^{(t)}(z') T(z, z')
\]

\[
= \pi(z) - \Delta^{(t+1)}(z)
\]

Cannot die! Dies out
Evolution of ergodic chains

\[p^{(t+1)}(z) = \sum_{z'} p^{(t)}(z') T(z,z') \]

\[= \sum_{z'} \pi(z') T(z,z') - \sum_{z'} \Delta^{(t)}(z') T(z,z') \]

\[= \pi(z) - \Delta^{(t+1)}(z) \]

Claim that \(|\Delta^{(t)}(z)| < (1 - \nu)^t \)

where \(\nu = \min_{z} \min_{z': \pi(z') > 0} \frac{T(z,z')}{\pi(z)} \)

and we have \(0 < \nu \leq 1 \)
Matrix-vector representation

Chains (think ensemble) evolve according to:

$$p(z) = \sum_{z'} p(z') T(z', z)$$

Matrix vector representation:

$$p = Tp'$$

And, after \(n \) iterations after a starting point:

$$p^{(n)} = T^N p^{(0)}$$
Matrix representation

A single transition is given by

\[p = Tp' \]

Note what happens for stationary state:

\[p^* = Tp^* \]

What does this equation look like?
Matrix representation

A single transition is given by
\[p = Tp' \]

Note what happens for stationary state:
\[p^* = Tp^* \]

So, \(p^* \) is an eigenvector with eigenvalue one.

And, intuitively, if things converge, \(p^* = T^\infty p^{(0)} \) For any \(p^{(0)} \)!
Aside on stochastic matrices

• A right (row) stochastic matrix has non-negative entries, and its rows sum to one.

• A left (column) stochastic matrix has non-negative entries, and its columns sum to one.

• A doubly stochastic matrix has both properties.
Aside on stochastic matrices

• In our problem, T is a left (column) stochastic matrix.
 – If you want to be right handed, take the transpose

• The column vector, p, also has non-negative elements, that sum to one (stochastic vector).
Aside on stochastic matrices

• In our problem, T is a left (column) stochastic matrix.
 – If you want to be right handed, take the transpose

• The column vector, p, also has non-negative elements, that sum to one (stochastic vector).

• Fun facts
 – The product of a stochastic matrix and vector is a stochastic vector.
 – The product of two stochastic matrices is a stochastic matrix.
Aside on (stochastic) matrix powers

Consider the eigenvalue decomposition of T, $T = E\Lambda E^{-1}$

$T^N = ?$
Aside on (stochastic) matrix powers

Consider the eigenvalue decomposition of T, $T = E\Lambda E^{-1}$

$T^N = E\Lambda^N E^{-1}$
Aside on (stochastic) matrix powers

Consider the eigenvalue decomposition of T, $T = E \Lambda E^{-1}$

$T^N = E \Lambda^N E^{-1}$

T^N cannot grow without bound, Why not?
Aside on (stochastic) matrix powers

Consider the eigenvalue decomposition of T, $T = E\Lambda E^{-1}$

$T^N = E\Lambda^N E^{-1}$

T^N cannot grow without bound, because it is a stochastic matrix.
Aside on (stochastic) matrix powers

Consider the eigenvalue decomposition of T, $T = E \Lambda E^{-1}$

$$T^N = E \Lambda^N E^{-1}$$

T^N cannot grow without bound, because it is a stochastic matrix.

Logic:
• Product of stochastic matrix is a stochastic matrix
• Columns of (left) stochastic matrix sum to 1
• Power is a bunch of products
 Aside on (stochastic) matrix powers

Consider the eigenvalue decomposition of T, $T = E\Lambda E^{-1}$

$$T^N = E\Lambda^N E^{-1}$$

Since T^N cannot grow without bound, the eigenvalue magnitudes (remember they can be complex) are inside $[0,1]$.
Aside on (stochastic) matrix powers

Consider the eigenvalue decomposition of T, $T = E\Lambda E^{-1}$

$$T^N = E\Lambda^N E^{-1}$$

Since T^N cannot grow without bound, the eigenvalue magnitudes (remember they can be complex) are inside $[0,1]$.

In fact, for our situation, the second biggest absolute value of the eigenvalues is less than one (not so easy to prove), which also means the biggest one is 1 (otherwise T will go to zero).
Aside on (stochastic) matrix powers

We have \(T^N = E\Lambda^N E^{-1} \)

\[
\Lambda = \begin{pmatrix} 1 & \lambda_2 & \cdots & \lambda_K \\ \lambda_2 & \cdots & & \\ \cdots & & \ddots & \\ \lambda_K & & & 1 \end{pmatrix}
\]

and \(\Lambda^\infty = \begin{pmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{pmatrix} \)
Aside on (stochastic) matrix powers

We have $T^N = E \Lambda^N E^{-1}$

$\Lambda = \begin{pmatrix}
1 & & \\
\lambda_2 & \ddots & \\
& \ddots & \lambda_K \\
\end{pmatrix}$ and $\Lambda^\infty = \begin{pmatrix}
1 & & \\
0 & \ddots & \\
& \ddots & 0 \\
\end{pmatrix}$
Aside on (stochastic) matrix powers

We have \(T^N = E \Lambda^N E^{-1} \)

\[
\Lambda = \begin{pmatrix}
1 & & \\
& \lambda_2 & \\
& & \cdots \\
& & & \lambda_K
\end{pmatrix}
\] and
\[
\Lambda^\infty = \begin{pmatrix}
1 & & \\
& 0 & \\
& & \cdots \\
& & & 0
\end{pmatrix}
\]

\[
\Lambda^\infty E^{-1} = \begin{pmatrix}
? & \\
\end{pmatrix}
\]
Aside on (stochastic) matrix powers

We have $T^N = E \Lambda^N E^{-1}$

$$\Lambda = \begin{pmatrix} 1 & & \\ & \lambda_2 & \\ & \cdots & \\ & & \lambda_K \end{pmatrix} \quad \text{and} \quad \Lambda^\infty = \begin{pmatrix} 1 & & \\ & 0 & \\ & \cdots & \\ & & 0 \end{pmatrix}$$

$$\Lambda^\infty E^{-1} = \begin{pmatrix} E^{-1}(1,:) \\ 0^T \\ \cdots \\ 0^T \end{pmatrix}$$
Aside on (stochastic) matrix powers

Write p in terms of the eigen basis

$$p = \sum_i a_i e_i$$

$$E^{-1}(1,:) \cdot p = \sum_i a_i E^{-1}(1,:) \cdot e_i = a_1$$
Aside on (stochastic) matrix powers

Write p in terms of the eigen basis

$$p = \sum_i a_i e_i$$

$$E^{-1}(1,:) \cdot p = \sum_i a_i E^{-1}(1,:) \cdot e_i = a_1$$

$$E^{-1} \cdot E = I$$

And the columns of E are e_i

So, $E^{-1}(1,:) \cdot E = (1, 0, 0, \cdots 0)$

(first row of the inverse), and

so $E^{-1}(1,:) \cdot e_1 = 1$

and $E^{-1}(1,:) \cdot e_{i \neq 1} = 0$
Aside on (stochastic) matrix powers

Write \mathbf{p} in terms of the eigen basis

$$\mathbf{p} = \sum_i a_i \mathbf{e}_i$$

$$E^{-1}(1,:) \cdot \mathbf{p} = \sum_i a_i E^{-1}(1,:) \cdot \mathbf{e}_i = a_1$$

and,

$$\Lambda^\infty E^{-1} \mathbf{p} = \begin{pmatrix} E^{-1}(1,:) \cdot \mathbf{p} \\ 0 \\ \cdots \\ 0 \end{pmatrix} = \begin{pmatrix} a_1 \\ 0 \\ \cdots \\ 0 \end{pmatrix}$$
Aside on (stochastic) matrix powers

Recall that we are studying $E \Lambda^\infty E^{-1} p$

$$\Lambda^\infty E^{-1} p = \begin{pmatrix} a_1 \\ 0 \\ ... \\ 0 \end{pmatrix}$$

So,

$E \Lambda^\infty E^{-1} p = ?$
Aside on (stochastic) matrix powers

Recall that we are studying $\mathbf{E} \Lambda^\infty \mathbf{E}^{-1} \mathbf{p}$

$$\Lambda^\infty \mathbf{E}^{-1} \mathbf{p} = \begin{pmatrix} a_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

So, $\mathbf{E} \Lambda^\infty \mathbf{E}^{-1} \mathbf{p} = a_1 \mathbf{e}_1$
Aside on (stochastic) matrix powers

So, \[p^* = E\Lambda_\infty E^{-1}p \]

\[E\Lambda_\infty E^{-1}p = p^* \] no matter what the initial point \(p \) is.

So, glossing over details, we have convergence to equilibrium.
Justification relies on Perron–Frobenius theorem

Let $A = (a_{ij})$ be an $n \times n$ positive matrix: $a_{ij} > 0$ for $1 \leq i, j \leq n$. Then the following statements hold.

1. There is a positive real number r, called the Perron root or the Perron–Frobenius eigenvalue, such that r is an eigenvalue of A and any other eigenvalue λ (possibly, complex) is strictly smaller than r in absolute value, $|\lambda| < r$. Thus, the spectral radius $\rho(A)$ is equal to r.

2. The Perron–Frobenius eigenvalue is simple: r is a simple root of the characteristic polynomial of A. Consequently, the eigenspace associated to r is one-dimensional. (The same is true for the left eigenspace, i.e., the eigenspace for A^T.)

3. There exists an eigenvector $v = (v_1, \ldots, v_n)$ of A with eigenvalue r such that all components of v are positive: $A v = r v$, $v_i > 0$ for $1 \leq i \leq n$. (Respectively, there exists a positive left eigenvector w: $w^T A = r w^T$, $w_i > 0$.)

4. There are no other positive (moreover non-negative) eigenvectors except v (respectively, left eigenvectors except w), i.e. all other eigenvectors must have at least one negative or non-real component.

5. \[\lim_{k \to \infty} A^k / r^k = vw^T, \] where the left and right eigenvectors for A are normalized so that $w^T v = 1$. Moreover, the matrix vw^T is the projection onto the eigenspace corresponding to r. This projection is called the Perron projection.

6. **Collatz–Wielandt formula:** for all non-negative non-zero vectors x, let $f(x)$ be the minimum value of $[Ax]_i / x_i$ taken over all those i such that $x_i \neq 0$. Then f is a real valued function whose maximum is the Perron–Frobenius eigenvalue.

7. A "Min-max" Collatz–Wielandt formula takes a form similar to the one above: for all strictly positive vectors x, let $g(x)$ be the maximum value of $[Ax]_i / x_i$ taken over i. Then g is a real valued function whose minimum is the Perron–Frobenius eigenvalue.

8. The Perron–Frobenius eigenvalue satisfies the inequalities

\[\min_i \sum_j a_{ij} \leq r \leq \max_i \sum_j a_{ij}. \]

From Wikipedia
Main points about P-F for positive square matrices

- The maximal eigenvalue is strictly maximal and real valued (item 1).
- Its eigenvector (as computed by software*) has all positive (or negative) real components (item 3).
- The maximal eigenvalue of a stochastic matrix has absolute value 1 (item 8 applied to stochastic matrix).

*P-F says that the positive version exists, but software might hand you the negative of that, but you can negate it to be consistent with P-F.
Summary on matrix version of stationarity

\[p^* = Tp^* \] is an eigenvector with eigenvalue one.

We have written it as \(p^* \parallel e^1 \) because \(e^1 \) is the eigenvector normalized to norm 1 (not stochastic).

Intuitively (perhaps), \(T \) will reduce any component of \(p \) orthogonal to \(p^* \), and \(T^N \) will kill off such components as \(N \to \infty \).
Algebraic proof

Neal ’93 provides an algebraic proof which does not rely on spectral theory.
MCMC so far

• Under reasonable (easily checked and/or arranged) conditions, ensembles of chains over discretized states converge to an equilibrium state.

• Easiest way to prove (or check) that this is the case is to show detailed balance and use T>0.

• Nice analogy with powers of stochastic matrices, which converge to an operator based on the largest magnitude eigenvector (not covered in F18)

• In theory, to use MCMC for sampling a distribution, we simply need to ensure that our target distribution is the equilibrium state.

• In practice we do not know even know if we have visited the best place yet. (The ensemble metaphor runs into trouble if you have a small number of chains compared to the number of states).
MCMC in theory

• The time it takes to get reasonably close to equilibrium (where samples come from the target distribution) is called “burn in” time.
 – I.E., how long does it take to forget the starting state.
 – There is no general way to know when this has occurred.

• The average time it takes to visit a state is called “hit time”.

• What if we really want independent samples?
 – In theory we can take every \(N^{th} \) sample (some theories about how long to wait exist, but it depends on the algorithm and distribution).
MCMC for ML in practice

• We use MCMC for machine learning problems with very complex distributions over high dimensional spaces.

• Variables can be either discrete or continuous (often both)

• Despite the gloomy worst case scenario, MCMC is often a good way to find good solutions (either by MAP or integration).
 – Key reason is that there is generally structure in our distributions.
 – We need to exploit this knowledge in our proposal distributions.
 – Instead of getting hung up about whether you actually have convergence
 • Enjoy that fact that what you are doing is principled and can improve any answer (with respect to your model) that you can get by other means
 – Your model should be able to tell you which proposed solution are good.
Metropolis-Hastings MCMC method

- Like Metropolis, but now $q()$ is not necessarily symmetric.

- Metropolis is a special case of MH.
Metropolis-Hastings MCMC method

While not_bored
{
 Sample \(q(z | z^{(prev)}) \)

 Accept with probability \(A(z, z^{(prev)}) = \min\left\{ 1, \frac{ \tilde{p}(z) q(z^{(prev)} | z)}{\tilde{p}(z^{(prev)}) q(z | z^{(prev)})} \right\} \)

 If accept, emit \(z \), otherwise, emit \(z^{(prev)} \).
}
Does Metropolis-Hastings converge to the target distribution?

- Like Metropolis, but now q() is not necessarily symmetric.

- If Metropolis-Hastings has detailed balance, then it converges to the target distribution under weak conditions.
 - The converse is not true, but generally samplers of interest will have detailed balance.
Does Metropolis-Hastings have detailed balance?

To show detailed balance we need to show

\[p(z')q(z|z')A(z,z') = p(z)q(z'|z)A(z',z) \]

\[p(z')q(z|z')A(z,z') = \min(p(z')q(z|z'), p(z)q(z'|z)) \]
Does Metropolis-Hastings have detailed balance?

To show detailed balance we need to show

$$ p(z')q(z|z')A(z,z') = p(z)q(z'|z)A(z',z) $$

$$ p(z')q(z|z')A(z,z') = \min(p(z')q(z|z'), p(z)q(z'|z)) $$

$$ \left\{ \begin{array}{l}
\text{Recall that} \quad A(z,z') = \min\left(1, \frac{p(z)q(z'|z)}{p(z')q(z|z')} \right)
\end{array} \right\} $$
Does Metropolis-Hastings have detailed balance?

To show detailed balance we need to show

\[p(z')q(z' | z') A(z,z') = p(z)q(z' | z) A(z',z) \]

\[p(z')q(z' | z') A(z,z') = \min \left(p(z')q(z' | z'), p(z)q(z' | z) \right) \]

\[= p(z)q(z' | z) \min \left(\frac{p(z')q(z' | z')}{p(z)q(z' | z)}, 1 \right) \]
Does Metropolis-Hastings have detailed balance?

To show detailed balance we need to show

\[p(z')q(z|z')A(z,z') = p(z)q(z'|z)A(z',z) \]

\[p(z')q(z|z')A(z,z') = \min(p(z')q(z|z'), p(z)q(z'|z)) \]

\[= p(z)q(z'|z)\min\left(\frac{p(z')q(z|z')}{p(z)q(z'|z)}, 1\right) \]

\[= p(z)q(z'|z)\min\left(1, \frac{p(z')q(z|z')}{p(z)q(z'|z)}\right) \]
Does Metropolis-Hastings have detailed balance?

To show detailed balance we need to show

\[p(z')q(z|z')A(z,z') = p(z)q(z'|z)A(z',z) \]

\[p(z')q(z|z')A(z,z') = \min\left(p(z')q(z|z'), p(z)q(z'|z)\right) \]

\[= p(z)q(z'|z)\min\left(\frac{p(z')q(z|z')}{p(z)q(z'|z)}, 1\right) \]

\[= p(z)q(z'|z)\min\left(1, \frac{p(z')q(z|z')}{p(z)q(z'|z)}\right) \]

\[= p(z)q(z'|z)A(z',z) \]
Metropolis-Hastings comments

• Again it does not matter if we use unnormalized probabilities.

• It should be clear that the previous version, where $q()$ is symmetric, is a special case.

• $q()$ can be anything, but you need to specify the reverse move (often tricky)
 – If you are using MH for optimization (not integration), then getting this only approximately right might be OK.
Transition kernel with target distribution:

\[p(x) = \frac{1}{Z} f(x) \]

1. Sample proposal: \(x' \mid x^{(t-1)} \sim q(\cdot) \)
2. Accept with probability:

\[
\min\{1, a\} \quad \text{where} \quad a = \frac{f(x')}{{f(x^{(t-1)})}} \frac{q(x^{(t-1)} \mid x')}{{q(x' \mid x^{(t-1)})}}
\]

Example Gaussian proposal: \(q(x^{(t)} \mid x^{(t-1)}) = \mathcal{N}(x^{(t-1)}, \epsilon^2) \)

- Acceptance ratio simplifies to: \(a = f(x')/f(x^{(t-1)}) \)
- True for any symmetric proposal: \(q(x^{(t)} \mid x^{(t-1)}) = q(x^{(t-1)} \mid x^{(t)}) \)
- Known as Metropolis algorithm in this case
Q How many M-H samples are required for an independent sample?

A Consider Gaussian proposal:

\[q(x^{(t)} \mid x^{(t-1)}) = \mathcal{N}(x^{(t-1)}, \epsilon^2) \]

- Typically \(\epsilon \ll L \) for adequate acceptance rate
- Leads to random walk dynamics, which can be slow to converge
- **Rule of Thumb:** If average acceptance is \(f \in (0, 1) \) need to run for roughly \(T \approx (L/\epsilon)^2 / f \) iterations for an independent sample

This is only a lower bound (and potentially very loose)
Example: Independent Samples

State evolution for $t=1\ldots600$, horizontal bars denote intervals of 50.

Target:

$$p(x) = \begin{cases}
\frac{1}{21} & x \in \{0, \ldots, 20\} \\
0 & \text{otherwise}
\end{cases}$$

From $x_0 = 10$ need ~400 steps to reach both end states (0 and 20). So, ~400 steps to generate 1 independent sample!

Proposal:

$$q(x' \mid x) = \begin{cases}
\frac{1}{2} & x' = x \pm 1 \\
0 & \text{otherwise}
\end{cases}$$

Very important to avoid random walk dynamics.
Administrivia

• Homework 5 out, due Monday, Dec. 7 (2 weeks)
 – Particle filtering
 – Gibbs sampling

• We do have class this Wednesday
Suppose target distribution is:

\[p(x) = \prod_{s \in \mathcal{V}} p(x_s | \text{Pa}(s)) \]

where \(\text{Pa}(s) \) are parents of node \(s \).

Metropolis-Hastings Proposal:

For system with \(K \) variables,

\[
\begin{align*}
x_1^{(t+1)} & \sim P(x_1 | x_2^{(t)}, x_3^{(t)}, \ldots x_K^{(t)}) \\
x_2^{(t+1)} & \sim P(x_2 | x_1^{(t+1)}, x_3^{(t)}, \ldots x_K^{(t)}) \\
x_3^{(t+1)} & \sim P(x_3 | x_1^{(t+1)}, x_2^{(t+1)}, \ldots x_K^{(t)}), \text{ etc.}
\end{align*}
\]

By conditional independence, Gibbs samples drawn from Markov blanket.

Recall for undirected MRFs the Markov Blanket are immediate neighbors.
Gibbs sampling

• Gibbs sampling is special case of MH.

• The proposal distribution will be cycle over \(p(z_n \mid \{z_{i \neq n}\}) \)

• We will always accept the proposal.

• You might notice that the transition function, \(T() \), varies (cycles) over time.
 – This is a relaxation of our assumption used to provide intuition about convergence
 – However, it still OK because the concatenation of the \(T() \) for a cycle converge
Consider a set of N variables, \(z_1, z_2, \ldots, z_N \). Then Gibbs says

Initialize \(\{ z^{(0)}_i : i = 1, \ldots, N \} \)

While not bored
{
 For i=1 to N
 {
 Sample \(z_i^{(\tau+1)} \sim p\left(z_i \mid z_1^{(\tau+1)}, \ldots, z_{i-1}^{(\tau+1)}, z_{i+1}^{(\tau)}, \ldots, z_M^{(\tau)}\right) \)
 Always accept (i.e., emit) \(z = z_1^{(\tau+1)}, \ldots, z_{i-1}^{(\tau+1)}, z_i^{(\tau+1)}, z_{i+1}^{(\tau)}, \ldots, z_M^{(\tau)} \)
 }
}
Examples of Gibbs

• If one can specify the conditional distributions in a way that they can be sampled, Gibbs can be a very good method.

• Typical examples include symmetric systems like the Markov random field grids we had for images.
 – With a Markov property, the conditional probability can be quite simple.
Examples of Gibbs

MRF: $P(x \mid \sim x) = P(x \mid N)$

50%

50%

(From Dellaert and Zhu tutorial)
Examples of Gibbs

Weak Affinity to Neighbors Strong Affinity to Neighbors

(From Dellaert and Zhu tutorial)
Gibbs as Metropolis Hastings (M-H)

To see Gibbs as MH, and to understand why we always accept, consider that if it were MH, then our proposal distribution, \(q_i() \), for a given variable, \(i \), would be

\[
q_i(z^*|z) = p(z_i^*|z_{\backslash i}) \quad \text{and} \quad q_i(z|z^*) = p(z_i|z_{\backslash i})
\]

And we have \(z^*_{\backslash i} = z_{\backslash i} \) because only \(i \) changes.

The “*” here means next state, NOT stationary state.
Gibbs as M-H

\[A(z^*, z) = \min \left(1, \frac{p(z^*) q_i(z|z^*)}{p(z) q_i(z^*|z)} \right) \]

(def'n of A())
Gibbs as M-H

\[A(z^*, z) = \min \left\{ 1, \frac{p(z^*) q_i(z | z^*)}{p(z) q_i(z^* | z)} \right\} \]

(definition of \(A() \))

\[= \min \left\{ 1, \frac{p(z_i^*) p(z^*_i | z_i^*) q_i(z | z^*)}{p(z_i) p(z_i | z_i) q_i(z^* | z)} \right\} \]

(because?)
Gibbs as M-H

\[
A(z^*, z) = \min \left\{ 1, \frac{p(z^*) q_i(z | z^*)}{p(z) q_i(z^* | z)} \right\}
\]

(Def'n of A())

\[
= \min 1, \frac{p(z^*_{\backslash i}) p(z^*_i | z^*_{\backslash i}) q_i(z_i | z^*_{\backslash i})}{p(z_{\backslash i}) p(z_i | z_{\backslash i}) q_i(z^*_i | z_{\backslash i})}
\]

(Def'n of "bar")

\[
= \min 1, \frac{p(z^*_{\backslash i}) p(z^*_i | z^*_{\backslash i}) p(z_i | z^*_{\backslash i})}{p(z_{\backslash i}) p(z_i | z_{\backslash i}) p(z^*_i | z_{\backslash i})}
\]

(because?)
Gibbs as M-H

\[A(z^*, z) = \min \left\{ 1, \frac{p(z^*) q_i(z \mid z^*)}{p(z) q_i(z^* \mid z)} \right\} \]
(def’n of A())

\[= \min \left\{ 1, \frac{p(z_{\backslash i}^*) p(z_i^* \mid z_{\backslash i}^*) q_i(z \mid z^*)}{p(z_{\backslash i}) p(z_i \mid z_{\backslash i}) q_i(z^* \mid z)} \right\} \]
(def’n of “bar”)

\[= \min \left\{ 1, \frac{p(z_{\backslash i}^*) p(z_i^* \mid z_{\backslash i}^*) p(z_i \mid z_{\backslash i}^*)}{p(z_{\backslash i}) p(z_i \mid z_{\backslash i}) p(z_i^* \mid z_{\backslash i})} \right\} \]
(Gibbs, coloring)

\[= \min(1, 1) \quad \text{(cancel colors using } z^*_{\backslash i} = z_{\backslash i} \text{, as only } z_i \text{ changes)} \]

\[= 1 \]
Exploring the space

- Algorithms like Metropolis-Hastings exhibit “random walk behavior” if the step size (proposal variance) is small
 - Random walk dynamics is practical limitation of MCMC
 - Leads to long mixing times (e.g. long burn-in time)

- If the step size is too big, then you get rejected too often

- Adaptive methods exist (see slice sampling in Bishop)
Standard Gibbs suffers same random walk behavior as M-H (but no adjustable parameters, so that’s a plus…)

Block Gibbs Jointly sample subset $S \subseteq \mathcal{V}$ from $p(x_S \mid x_{\sim S})$
- Reduces random walk caused by highly correlated variables
- Requires that conditional $p(x_S \mid x_{\sim S})$ can be sampled efficiently

Collapsed Gibbs Marginalize some variables out of joint:

$$p(x_{\mathcal{V}\setminus S}) = \int p(x) dx_S$$
- Reduces dimensionality of space to be sampled
- Requires that marginals are computable in closed-form
Combined samplers

Different samplers fail in different ways, so combine them…

1. Initialise $x^{(0)}$.
2. For $i = 0$ to $N - 1$
 - Sample $u \sim U_{[0,1]}$.
 - If $u < \nu$
 - Apply the MH algorithm with a global proposal.
 - else
 - Apply the MH algorithm with a random walk proposal.

…can also combine with Gibbs proposals
Consider a set of MCMC kernels T_1, T_2, \ldots, T_K all having target distribution $p(x)$ then the mixture:

$$T = \sum_{k=1}^{K} \pi_k T_k$$

Is a valid MCMC kernel with target distribution $p(x)$

Mixture MCMC Transition kernel given by:

1. Sample $k \sim \pi$
2. Sample $x^{(t+1)} \sim T_k(x \mid x^{(t)})$
MCMC Summary

• Markov chain induced by MCMC transition kernel $T(z,z')$

• Converges to stationary distribution iff chain is **ergodic**
 - Chain is ergodic if it is **irreducible** (can get from any z to any z') and **aperiodic** (doesn’t get trapped in cycles)

• Easier to prove **detailed balance**, which implies ergodicity

$$p(z)T(z,z') = p(z')T(z',z)$$

• Metropolis algorithm samples from symmetric proposal $q(z'|z)$ and accepts sample z' with probability,

$$A = \min \left(1, \frac{\tilde{p}(z')}{\tilde{p}(z)} \right)$$
• Metropolis-Hastings allows non-symmetric proposal $q(z'|z)$ and accepts sample z' with probability,

$$A = \min \left(1, \frac{\tilde{p}(z')}{\tilde{p}(z)} \frac{q(z | z')}{q(z' | z)} \right)$$

• Gibbs sampler on random vector $z = (z_1, \ldots, z_d)^T$ successively samples from complete conditionals,

$$z_1^{\text{new}} \sim p(z_1 | z_2^{\text{old}}, \ldots, z_d^{\text{old}})$$
$$z_2^{\text{new}} \sim p(z_2 | z_1^{\text{new}}, z_3^{\text{old}}, \ldots, z_d^{\text{old}})$$
$$\ldots$$
$$z_d^{\text{new}} \sim p(z_d | z_1^{\text{new}}, \ldots, z_{d-1}^{\text{new}})$$

• Gibbs is instance of M-H which always accepts
Inference (and related) Tasks

- Simulation: \(x \sim p(x) = \frac{1}{Z} f(x) \)

- Compute expectations: \(\mathbb{E}[\phi(x)] = \int p(x)\phi(x) \, dx \)

- Optimization: \(x^* = \arg \max_x f(x) \)

- Compute normalizer: \(Z = \int f(x) \, dx \)
Inference (and related) Tasks

- Simulation: $x \sim p(x) = \frac{1}{Z} f(x)$

- Compute expectations: $\mathbb{E}[\phi(x)] = \int p(x) \phi(x) \, dx$

- Optimization: $x^* = \arg \max_x f(x)$

- Compute normalizer: $Z = \int f(x) \, dx$
Simulated Annealing

- Analogy with physical systems

- Relevant for optimization (not integration)

- Powers of probability distributions emphasize the peaks

- If we are looking for a maximum within a lot of distracting peaks, this can help.
Simulated Annealing

• Define a temperature T, and a cooling schedule (black magic part)

• Lower temperatures correspond to emphasized maximal peaks.
 – Hence we exponentiate by \((1/T)\).

• The terminology makes sense because the number of states accessible to a physical system decreases with temperature.
Simulated Annealing

1. Initialise $x^{(0)}$ and set $T_0 = 1$.

2. For $i = 0$ to $N - 1$

 - Sample $u \sim \mathcal{U}_{[0,1]}$.
 - Sample $x^* \sim q(x^* | x^{(i)})$.
 - If $u < \mathcal{A}(x^{(i)}, x^*) = \min \left\{ 1, \frac{\frac{1}{p^{T_i}(x^*)} q(x^{(i)} | x^*)}{p^{T_i}(x^{(i)}) q(x^* | x^{(i)})} \right\}$

 $$x^{(i+1)} = x^*$$

 else

 $$x^{(i+1)} = x^{(i)}$$

 - Set T_{i+1} according to a chosen cooling schedule.

(From Andrieu et al)
(From Andrieu et al)
(From Andrieu et al)
Simulated Annealing

Let annealing distribution at temp τ be given by:

$$p_\tau(x) \propto (f(x))^{1/\tau}$$

As $\tau \to 0$ we have:

$$\lim_{\tau \to 0} p_\tau(x) = \delta(x^*) \quad \text{where} \quad x^* = \arg \max_x f(x)$$

SA for Global Optimization:
Annealing schedule $\tau_0 \geq \ldots \geq \tau_t \geq \ldots \geq 0$

1. Sample $x^{(t)}$ from MCMC kernel T_t with target $p_{\tau_t}(x)$
2. Set τ_{t+1} according to annealing schedule

SA for Convergence: $\tau_0 \geq \ldots \geq 1$ Final temperature = 1