
CSC535: Probabilistic Graphical Models 

Midterm Review

Prof. Jason Pacheco



Administrative Items

• Midterm out (obviously) 
• Due Friday @ 11:59pm
• 4 questions (15 points) + 1 Extra Credit (2 points)
• You may provide handwritten responses (scanned PDF)
• Make sure handwriting is clear and easy-to-read

• No office hours Friday (I will be traveling)



Midterm
Problem 1 (4 points)

• Provide Bayes Net and Factor graphs for a model
• Give formula for sum-product messages in model
• Show dependence / independence

Problem 2 (3 points)
• Two player game, best of 7 rounds wins
• Compute probability of winning conditioned on current score

Problem 3 (4 points)
• Show variable elimination for two different elimination orderings
• Bound on maximal clique size

Problem 4 (4 points)
• Show variable elimination for two different elimination orderings
• Bound on maximal clique size

Extra Credit (2 points)
• Derive Poisson maximum likelihood estimate
• Derive MAP estimate with Gamma prior
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Probability and Random Events

Fundamental Rules of Probability
 Conditional:
 Law of total probability:
 Probability chain rule:

Independence of RVs
 Two RVs X & Y are independent iff:
 Equivalently:
 X & Y are conditionally independent given Z iff:
 Equivalently:



Tabular Method

P(x1)=P(x1,y1)+P(x1,y2)
P(x2)=P(x2,y1)+P(x2,y2)
[i.e., sum across rows]
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Let X, Y be binary RVs with the joint probability table

P(y1)=P(x1,y1)+P(x2,y1)
P(y2)=P(x1,y2)+P(x2,y2)
[i.e., sum down columns]

For Binomial use K-by-K 
probability table.



Tabular Method
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Censored!

We don’t care about 
event Y=y2

P(x|y1)=?



Tabular Method

X

Y=y1

x1

x2
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These sum to one:
A conditional probability distribution is 

still a probability distribution
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Bayes’ Rule

likelihood function 
for the parametersprior probability

marginal likelihoodposterior probability

Posterior represents all uncertainty after observing data…



Bayesian Inference Example

A recent home test states that you have high 
BP.  Should you start medication?

Getty Images
About 29% of American adults have 
high blood pressure (BP). Home test 
has 30% false positive rate and no 

false negative error.



• Latent quantity of interest is hypertension:
• Measurement of hypertension:
• Prior:
• Likelihood:   

Bayesian Inference Example

About 29% of American adults have 
high blood pressure (BP). Home test 
has 30% false positive rate and no 

false negative error.

Getty Images



Suppose we get a positive measurement, then posterior is:

Bayesian Inference Example

About 29% of American adults have 
high blood pressure (BP). Home test 
has 30% false positive rate and no 

false negative error.

Getty Images



Bayesian Estimation

Task: produce an estimate    of    after observing data  .   

Bayes estimators minimize expected loss function:

Example: Minimum mean squared error (MMSE):

Posterior mean always minimizes squared error.
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Directed Graphical Models

• Distribution factorized as product of conditionals via chain rule

• Choose ordering where terms simplify due to conditional independence
Eg. Suppose                     and                     then:

• Directed graph encodes factorized distribution via conditional 
independence properties

Tail-to-tail

Head-to-tail

Head-to-head

• Test independence using canonical subgraphs:

• Straightforward simulation via 
ancestral sampling



To test if                          roll ball from every node in       …

Bayes Ball Algorithm

If any ball reaches any 
node in       then      

Otherwise:

Tests for property of directed separation (d-separation): if       
separates / blocks      from       then     .



Bayes Ball Algorithm

Tail-to-Tail

Head-to-Head

Head-to-Tail

Blocks

Doesn’t
Block Blocks

Blocks

Doesn’t
Block

Doesn’t
Block



Undirected Graphical Models

• Easier to specify models compared to Bayes nets since:
• Factors do not need to be normalized conditional probabilities
• May specify up to unknown normalization constant

• Joint factorization as nonnegative factors (potentials) over subsets:

• Easier to verify Markov independence via separating sets

• Factorization ambiguous in MRFs, but explicit in
factor graphs (factor graphs generally preferred)

• Simulation is not easy in general.  Can’t do 
ancestral sampling. 



We say      and      are conditionally
independent                       given
variables      iff,

Conditional Independence (Undirected)

[ Source: Michael I. Jordan]

Conditional independence
in undirected graphical models
is defined by separating sets

Def. We say        is globally Markov
w.r.t.     if                       in any 
separating set of    .



Markov Random Fields (MRFs)

A factor           corresponds to a clique          (fully connected 
subgraph) in the MRF

An MRF does not imply a unique factorization, 
for example either of the following are “valid”:

A factorization is valid if it satisfies the Global 
Markov property, defined by conditional 

independencies



Factor Graphs

Factor graphs make factorization explicit…

Factor node for each product term in the joint 
factorization:

where                            the set of variables in 
factor f.  For example:           

Factor nodes correspond to MRF cliques
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Bayes Net  MRF

Difficulty Effort

SATGrade

Letter

JobHappy

Drop local normalization

Difficulty Effort

SATGrade

Letter

JobHappy

Added edges marry
parents (moralization)



Variable Elimination

Difficulty Effort

SATGrade

Letter

JobHappy

Elimination order D, E, H, G, S, L 

Worst-case 
Complexity:



Variable Elimination

Effort

SATGrade

Letter

JobHappy

Elimination order D, E, H, G, S, L 

Worst-case 
Complexity:

Fill-in edge since Effort passes
message to Grade and SAT
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Worst-case 
Complexity:

Fill-in Edge
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Variable Elimination

Job

Elimination order D, E, H, G, S, L 

Worst-case 
Complexity:

What if we choose a 
different elimination order?



Computational Complexity

Difficulty Effort

SATGrade

Letter

JobHappy

Eliminate G first…

Add fill-in edges 
to connect all 

neighbors

Complexity 
depends on 

elimination order…

For N variables 
worst case is:



Computational Complexity

Difficulty Effort

SAT

Letter

JobHappy

Eliminate G first…

Worst-case 
Complexity:

Complexity 
depends on 

elimination order…

For N variables 
worst case is:



Computational Complexity

Difficulty Effort

SATGrade

Letter

JobHappy

Clique Tree

D,E,G E,G,S G,S,L,J H,G,J
E,G G,S G,J

Elimination order    induces graph with 
maximal cliques         and width:

 Complexity of variable elimination is
 Lowest complexity given by the treewidth:

It is NP-hard to compute treewidth, 
and therefore an optimal 

elimination order (of course…)



Variable Elimination Summary

 Variable elimination allows computation of marginals / conditionals

 Algorithm is valid for any graphical model

 Suffices to show variable elimination for MRFs, since Bayes nets 
MRFs by moralization

Worst-case complexity is dependent on elimination order, and is 
exponential in number of variables

 Optimal ordering = treewidth, is NP-hard to compute



Sum-Product Belief Propagation

A

B C

D E F G

Forward-Backward extends to any 
tree-structured pairwise MRF

Pass messages from leaves-
to-root, then root-to-leaves

A

C

F G

Marginal given by incoming
messages (e.g. node C):



Pairwise MRF Sum-Product Belief Propagation

Message

Marginal

Message updates depend only on Markov blanket…

Messages involve a sum over 
products, hence the name “sum-

product algorithm”



Factor Graph Sum-Product Belief Propagation

1

Marginal is product of incoming factor-to-variable messages:



Marginal Inference Algorithms
One Marginal All Marginals

Tr
ee

G
ra

ph

Elimination applied
to leaves of tree

Variable
Elimination

Belief Propagation (BP)
or sum-product

algorithm

Junction Tree Algorithm

BP on a junction tree
(special clique tree)



Junction Tree

X1 X1X2 X1X2X3

X2X4

X2X3X5

X2X5X6
X1 X1X2 X2

X2X3
X2X5

Theorem A clique tree resulting from variable elimination satisfies the 
running intersection property and is thus a junction tree

X1

X2

X3

X4

X5

X6

Clique tree edges are separator sets in original MRF…so clique tree 
encodes conditional independencies



Junction Tree
Definition (Running intersection) For any pair of clique nodes V,W all 
cliques on the unique path between V and W contain shared variables

X1 X1X2 X1X2X3

X2X4

X2X3X5

X2X5X6
X1 X1X2 X2

X2X3
X2X5

Junction Tree Not A Junction Tree

X1 X1X2 X1X2X3

X2X4

X2X3X5

X2X5X6
X1 X1X2 X2

X2X3

X2

Not all clique trees are 
junction trees

Theorem A clique tree resulting from variable elimination satisfies the 
running intersection property and is thus a junction tree



Junction Trees and Triangulation

• A chord is an edge connecting two non-adjacent nodes in some cycle
• A cycle is chordless if it contains no chords
• A graph is triangulated (chordal) if it contains no chordless cycles of length 4 or more 

Theorem:  The maximal cliques of a graph have a corresponding 
junction tree if and only if that undirected graph is triangulated

 Key induction argument in constructing junction tree from triangulation
 Implies existence of elimination ordering which introduces no new edges

Lemma:  For a non-complete triangulated graph with at least 3 nodes, there is a decomposition of 
the nodes into disjoint sets A, B, S such that S separates A from B, and S is complete.



Induced Graph

X1

X2

X3

X4

X5

X6

Recall the induced graph is the union over intermediate graphs from 
running variable elimination

Intermediate
Factor Edges

The induced graph is chordal thus:
• Maximal cliques of the induced graph 

form a junction tree

• It admits an elimination ordering that 
introduces no new edges

Logic of junction tree algorithm:
1. Triangulate the graph

a. Implies a junction tree
b. Induces an elimination order

2. Run sum-product BP on junction tree 
to compute all clique marginals



Loopy Belief Propagation (sum-product)

X1

X4

X7

X3

X6

X9

X2

X5

X8

Initialize Messages
Constant:
Random:

Parallel (Synchronous) Updates
At iteration i update all messages in parallel using 
current messages mi-1 from previous iteration:

• Store, both, the previous messages (from iteration 
i-1) and current messages (from iteration i)

• Many convergence results assume parallel 
updates



Loopy Belief Propagation (sum-product)

X1

X4

X7

X3

X6

X9

X2

X5

X8

Initialize Messages
Constant:
Random:

Asynchronous (Sequential) Updates
Choose an ordering of nodes and update using the 
latest available messages:

• Simplifies updates since only need to keep track 
of one copy of messages

• Makes parallel processing trickier



Pseudocode from Murphy’s Textbook



Loopy BP on Factor Graphs
Set of neighbors of node s:

Marginal Distribution of Each Variable:

Loopy BP:
Message updates can 
be iteratively computed 
on graphs with cycles.

But marginals not 
guaranteed correct!

Marginal Distribution of Each Factor:
Clique of variables linked by factor.



Message Passing Inference Summary

• Brute-force enumeration exponential regardless of graph
• Sum-Product BP

• Exact inference in tree-structure graphs in O(TK2) time for T nodes, 
each taking K states

• Reduces to Forward-Backward in HMMs
• Same for Max-Product BP (reduces to Viterbi in HMMs)

• Variable elimination
• Exact marginals in general graphs
• Worst-case complexity exponential in size of largest clique
• Need to rerun from scratch for each marginal
• Complexity dependent on elimination order (NP-hard to optimize)



Message Passing Inference Summary
• Junction Tree Algorithm

• Exact marginals in general graphs
• Caches messages to compute all marginals
• Worst-case complexity exponential in size of largest clique
• Optimizing Jtree is NP-hard (corresponds to finding treewidth)

• Loopy BP
• BP updates only depend on tree-structured Markov blanket
• Approximate inference in loopy graphs
• No guarantees, but works well empirically in many instances
• Some techniques to improve convergence

• Message damping
• Asynchronous message update schedules
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Maximum Likelihood Estimation

Log-Likelihood Function 
doesn’t change argmax
since log is monotonic

Logarithm serves a couple of practical purposes:

If concave then just solve for zero-gradient solution,

1) Simplifies derivatives for conditionally independent data 

2) Avoids numerical under/overflow



MLE of Gaussian Mean
Assume data are i.i.d. univariate Gaussian,

Variance is known

Log-likelihood function:

Constant doesn’t 
depend on mean

MLE estimate is least squares estimator:

MLE doesn’t change when we:
1) Drop constant terms (in   )
2) Minimize negative log-likelihood



Maximum A Posteriori (MAP) Estimation

Recall the MAP estimator maximizes posterior probability,

Prior serves as regularizer in regularized MLE:

( Bayes’ rule )

( Probability Chain Rule )

( Monotonicity of Logarithm )



Learning Summary

Maximum a posteriori (MAP) maximizes posterior probability,

Parameters are random quantities with prior        .

Corresponds to regularized MLE for specific prior/regularizer pair,

Gaussian prior=L2, Laplacian prior=L1

Straightforward sequential updating, e.g. Bayesian linear regression
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