CSC535: Probabilistic Graphical Models

Variational Inference

Prof. Jason Pacheco

Material adapted from: David Blei, NeurIPS 2016 Tutorial
Outline

• Variational Inference

• Mean Field Variational

• Stochastic Variational
Outline

• Variational Inference
 • Mean Field Variational
 • Stochastic Variational
Posterior on latent variable x given data \mathcal{Y} by Bayes’ rule:

$$p(x \mid \mathcal{Y}) = \frac{p(x)p(\mathcal{Y} \mid x)}{p(\mathcal{Y})}$$

Marginal likelihood given by,

$$p(\mathcal{Y}) = \int p(x)p(\mathcal{Y} \mid x)dx$$

- Posterior: belief over unknowns, given observed data (knowns)
- Marginal Likelihood: quality of model fit to the observed data
Posterior Inference Review

- Tree-structured discrete / Gaussian models can use **sum-product BP**
- Posterior & marginal likelihood intractable in many practical cases

Monte Carlo methods and MCMC

- **PROs** Asymptotic guarantees, easy to implement for most models, more computation = higher accuracy
- **CONS** Difficult to diagnose convergence, few non-asymptotic guarantees, slow

Loopy (sum-product) BP

- **PROs** Often yields good solutions quickly, easy to diagnose convergence
- **CONS** No computation/accuracy tradeoff, restricted to discrete/Gaussian models

Loopy BP is an instance of a wider class of **variational methods**
Variational Inference Preview

- Formulate statistical inference as an optimization problem
- Maximize variational lower bound on marginal likelihood

\[
\log p(Y) \geq \max_{q \in Q} \mathcal{L}(q)
\]

- Solution to RHS yields posterior approximation

\[
q^* = \arg \max_{q \in Q} \mathcal{L}(q) \approx p(x \mid Y)
\]

- Constraint set \(Q \) defines tractable family of approximating distributions
- Very often \(Q \) is an exponential family
Recall EM lower bound of marginal likelihood

\[\log p(Y) = \log \int p(x) p(Y \mid x) \, dx \]

(Multiply by \(q(x)/q(x)=1 \))

\[= \log \int p(x) p(Y \mid x) \left(\frac{q(x)}{q(x)} \right) \, dx \]

(Definition of Expected Value)

\[= \log \mathbb{E}_q \left[\frac{p(x)p(Y \mid x)}{q(x)} \right] \]

(Jensen's Inequality)

\[\geq \mathbb{E}_q \left[\log \frac{p(x)p(Y \mid x)}{q(x)} \right] \]
The entropy is a natural measure of the inherent uncertainty:

\[H(p) = - \int p(x) \log p(x) \, dx \]

Interpretation Difficulty of compression of some random variable

The relative entropy or Kullback-Leibler (KL) divergence is a non-negative, but asymmetric, “distance” between a given pair of probability distributions:

\[KL(p||q) = \int \log \frac{p(x)}{q(x)} \, dx \quad KL(p||q) \geq 0 \]

The KL divergence equals zero if and only if \(p(x) = q(x) \) for all \(x \).

Interpretation The cost of compressing data from distribution \(p(x) \) with a code optimized for distribution \(q(x) \)
EM Lower Bound

\[
E_q \left[\log \frac{p(x)p(y \mid x)}{q(x)} \right] = E_q \left[\log \frac{p(x)p(y \mid x)}{q(x)} \frac{p(y)}{p(y)} \right]
\]

\[
= \log p(y) - KL(q(x) \| p(x \mid y))
\]

(Definition of KL)

Bound gap is the Kullback-Leibler divergence \(KL(q\|p) \),

\[
KL(q(x) \| p(x \mid y)) = \int q(x) \log \frac{q(x)}{p(x \mid y)}
\]

Solution to E-step is,

\[
q^* = \arg \min_q KL(q(x) \| p(x \mid y)) = p(x \mid y)
\]

This doesn’t help us if \(p(x \mid y) \) is intractable
Variational Lower Bound

Idea Restrict optimization to a set Q of analytic distributions

$$\log p(\mathcal{Y}) \geq \max_{q \in Q} \mathcal{L}(q) \equiv \mathbb{E}_q \left[\log \frac{p(x)p(\mathcal{Y} | x)}{q(x)} \right]$$

- If posterior is in set $p(x | \mathcal{Y}) \in Q$ then exact inference $q(x) = p(x | \mathcal{Y})$
- Otherwise, if $p(x | \mathcal{Y}) \notin Q$ posterior is closest approximation in KL

$$q^* = \arg \min_{q \in Q} \text{KL}(q(x) || p(x | \mathcal{Y}))$$

... and we recover strict lower bound on marginal likelihood with gap

$$\log p(\mathcal{Y}) - \mathcal{L}(q^*) = \text{KL}(q^*(x) || p(x | \mathcal{Y}))$$
Variational Lower Bound

Two competing terms in variational bound...

\[\mathcal{L}(q) \equiv \mathbb{E}_q \left[\log \frac{p(x)p(y \mid x)}{q(x)} \right] \]

\[= \mathbb{E}_q[\log p(x, Y)] - \mathbb{E}_q[\log q(x)] \]

\[= \mathbb{E}_q[\log p(x, Y)] + H(q) \]

Average (negative) Energy

- Encourages \(q(x) \) to "agree" with model \(p(x,y) \)

Entropy

- Encourages \(q(x) \) to have large uncertainty (good for generalization)
EM is means for approximate *learning*, but we are using it to motivate approximate *inference*.

EM lower bound takes same form as VI lower bound, but with different constraint sets.

Connection with variational inference (VI) is in E-step, which performs inference with fixed parameters.
Variational Inference

\[\log p(Y) \geq \max_{q \in Q} \mathcal{L}(q) \equiv \mathbb{E}_q[\log p(x, Y)] + H(q) \]

Different sets \(Q \) yield different VI algorithms to optimize bound:

- **Mean Field** Ignore posterior dependencies among variables
- **Loopy BP** *Locally consistent* marginals (exact for tree-structured models)
- **Expectation Propagation (EP)** *Locally consistent moments* (equivalent to Loopy BP for tree-structure exponential families)
Why is it called “variational”?

Differential Calculus
- Typically, we optimize a function $\max_x f(x)$ w.r.t. a variable X
- Use standard derivatives/gradients $\nabla_x f(x)$
- Extrema given by zero-gradient conditions $\nabla_x f(x) = 0$

Calculus of Variations
- Optimize a functional (function of a function): $\max_{q(x)} f(q(x))$
- Functional derivative characterizes change w.r.t. function $q(x)$
- Extrema given by Euler-Lagrange equation; analogous to zero-gradient condition

In practice, we typically parameterize $q_\mu(x)$ and take standard gradients w.r.t. parameters μ
Summary: Variational Inference

1) Begin with intractable model posterior:
\[p(x \mid \mathcal{Y}) = \frac{p(x)p(\mathcal{Y} \mid x)}{p(\mathcal{Y})} \]

2) Choose a family of approximating distributions \(Q \) that is tractable

3) Maximize variational lower bound on marginal likelihood:
\[\log p(\mathcal{Y}) \geq \max_{q \in Q} \mathcal{L}(q) \equiv \mathbb{E}_q[\log p(x, \mathcal{Y})] + H(q) \]

4) Maximizer is posterior approximation (in KL divergence)
\[q^* = \arg\max_{q \in Q} \mathcal{L}(q) = \arg\min_{q \in Q} KL(q(x) \parallel p(x \mid \mathcal{Y})] \]

Still need to show…

a) How to define approximating variational family \(Q \)

b) How to optimize lower bound
Outline

• Variational Inference
• Mean Field Variational
• Stochastic Variational
Mean field assumes Markov with respect to sub-graph F of original graph G:
• Sub-graph picked so that entropy is “simple”, and thus optimization tractable

Mean field provides lower bound on true log-normalizer:
• Optimize over smaller set where true objective can be evaluated

Mean field optimization has local optima:
• Constraint set of distributions Markov w.r.t. subgraph F is non-convex
Naïve Mean Field

Assume discrete pairwise MRF model in *exponential family* form:

\[
p(x \mid \mathcal{Y}) \propto \exp \left\{ \sum_{(s,t) \in \mathcal{E}} \phi_{st}(x_s, x_t) + \sum_{s \in \mathcal{V}} \phi_s(x_s) \right\}
\]

A *naïve mean field method* approximates distribution as fully factorized:

Free parameters to be optimized:

\[
q(x) = \prod_{s \in \mathcal{V}} q_s(x_s) \quad q_s(x_s = k) = \mu_{sk} \geq 0, \quad \sum_{k=1}^{K_s} \mu_{sk} = 1.
\]
Why “Mean Field”?

Originates from the *many body problem* in statistical mechanics…

\[p(\xi) = \frac{1}{Z} e^{-\beta H(\xi)} \approx \prod_i \frac{1}{Z_i} e^{-\beta h_i(\xi_i)} = \prod_i q_i(\xi_i) \]

\(\xi_i \) = “Microstates” e.g. spin, velocity, position, …
Mean Field Lower Bound

Write optimization in terms of parameters μ:

$$\max_{\mu \geq 0} \mathcal{L}(\mu) \equiv \mathbb{E}_\mu[\log p(x, \mathcal{Y})] + H(\mu)$$

subject to $\sum_{k=1}^{K_s} \mu_{sk} = 1 \ \forall s \in \mathcal{V}$

For discrete pairwise MRF terms expand to:

$$H(\mu) = - \sum_{s \in \mathcal{V}} \sum_k \mu_{sk} \log \mu_{sk}$$

$$E(\mu) = \sum_{(s,t) \in \mathcal{E}} \sum_{k,\ell} \mu_{sk} \mu_{t\ell} \phi_{st}(k, \ell) + \sum_{s \in \mathcal{V}} \sum_k \mu_{sk} \phi_s(k)$$
Mean Field Algorithm: Pairwise MRF

1: Initialize parameters $\mu^{(0)}$, set $i=0$

2: While NOT converged

3: \quad i \leftarrow i+1

4: \quad For each node $s \in \mathcal{V}$ and value $k_i = 1, \ldots, K_s$

5: \quad Update parameter μ_{sk_i} holding all others fixed

\[\mu_{sk_i} \propto \psi_s(k_i) \exp \left\{ \sum_{t \in \Gamma(s)} E_{\mu_{s}}^{(i-1)}[\phi_{st}(k_i, x_t)] \right\} \]

6: \quad Check if converged

Where we define: $\psi_s = \exp(\phi_s)$
Mean Field Updates : Pairwise MRF

\[\mathcal{L}(\mu) = \mathbb{E}_\mu[p(x)] + H(\mu) = \sum_{(s,t) \in \mathcal{E}} \sum_{k=1}^{K_s} \sum_{\ell=1}^{K_t} \mu_{sk} \mu_{t\ell} \phi(k, \ell) - \sum_{s \in \mathcal{V}} \sum_{k=1}^{K_s} \mu_{sk} \log \mu_{sk} \]

Updates via coordinate ascent on each parameter,

\[0 = \frac{\partial \mathcal{L}}{\partial \mu_{sk}} = \sum_{t \in \Gamma(s)} \sum_{\ell=1}^{K_t} \mu_{t\ell} \phi(k, \ell) + \phi_s(k) - \log \mu_{sk} - 1 \]

\[\log \mu_{sk} = \sum_{t \in \Gamma(s)} \sum_{\ell=1}^{K_t} \mu_{t\ell} \phi(k, \ell) + \phi_s(k) - 1 \]

\[\mu_{sk} \propto \psi_s(k) \exp \left\{ \sum_{t \in \Gamma(s)} \mathbb{E}_{\mu_t} [\phi_{st}(k, x_t)] \right\} \]

Normalization enforced via Lagrange multiplier
(I glossed over this)
Pairwise MRF Mean Field as Message Passing

\[p(x) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s) \]

\[\phi_{st}(x_s, x_t) = \log \psi_{st}(x_s, x_t) \]

\[q_i(x_i) \propto \psi_i(x_i) \prod_{j \in \Gamma(i)} m_{ji}(x_i) \]

\[m_{ji}(x_i) \propto \exp \left\{ \mathbb{E}_{q_j} [\phi_{ij}(x_i, x_j)] \right\} \]

- Compared to belief propagation, has identical formula for estimating marginals from messages, but a different message update equation.
- If neighboring marginals degenerate to single state, recover Gibbs sampling message.
General Mean Field Updates

1: Initialize mean field distributions \(q_s(x_s) \)

2: While NOT converged

3: For each node \(s \in \mathcal{V} \)

4: Update marginal \(q_s(x_s) \) holding all others fixed

\[
q_s(x_s) \propto \exp \left\{ \mathbb{E}_{q_{\backslash s}}[\log p(x, \mathcal{V})] \right\}
\]

5: Check if converged

- Here \(\mathbb{E}_{q_{\backslash s}}[\cdot] \) is expectation w.r.t. all marginals besides \(q_s(x_s) \)
- Expectation only depends on variables in Markov blanket
Derivation of General Mean Field Updates

Mean field variational lower bound,

$$\log p(\mathcal{Y}) \geq L(q) \equiv \mathbb{E}_q[\log \tilde{p}(x)] + \sum_i H(q_i)$$

where we use shorthand \(\tilde{p}(x) \equiv p(x, \mathcal{Y})\)

Notice joint entropy decomposes to sum of marginal entropies

$$H(q) = -\sum_x \prod_i q_i(x_i) \sum_k \log q_k(x_k) = \sum_i H(q_i)$$

To update \(q_j\) view bound as function of \(q_j\) and do coordinate ascent…
Derivation of General Mean Field Updates

\[L(q_j) = \sum_x \prod_{i} q_i(x_i) \left[\log \tilde{p}(x) - \sum_k \log q_k(x_k) \right] \]

\[= \sum_{x_j} \sum_{x_{-j}} q_j(x_j) \prod_{i \neq j} q_i(x_i) \left[\log \tilde{p}(x) - \sum_k \log q_k(x_k) \right] \]
Derivation of General Mean Field Updates

\[L(q_j) = \sum_x \prod_i q_i(x_i) \left[\log \tilde{p}(x) - \sum_k \log q_k(x_k) \right] \]

\[= \sum_{x_j} \sum_{x_{-j}} q_j(x_j) \prod_{i \neq j} q_i(x_i) \left[\log \tilde{p}(x) - \sum_k \log q_k(x_k) \right] \]

Linearity of expectation \[= \sum_{x_j} q_j(x_j) \sum_{x_{-j}} \prod_{i \neq j} q_i(x_i) \log \tilde{p}(x) \]

\[- \sum_{x_j} q_j(x_j) \sum_{x_{-j}} \prod_{i \neq j} q_i(x_i) \left[\sum_{k \neq j} \log q_k(x_k) + q_j(x_j) \right] \]
Derivation of General Mean Field Updates

\[
L(q_j) = \sum_x \prod_i q_i(x_i) \left[\log \tilde{p}(x) - \sum_k \log q_k(x_k) \right]
\]

\[
= \sum_{x_j} \sum_{x_{-j}} q_j(x_j) \prod_{i \neq j} q_i(x_i) \left[\log \tilde{p}(x) - \sum_k \log q_k(x_k) \right]
\]

Linearity of expectation

\[
= \sum_{x_j} q_j(x_j) \sum_{x_{-j}} \prod_{i \neq j} q_i(x_i) \log \tilde{p}(x)
\]

\[
- \sum_{x_j} q_j(x_j) \sum_{x_{-j}} \prod_{i \neq j} q_i(x_i) \left[\sum_{k \neq j} \log q_k(x_k) + q_j(x_j) \right]
\]

Group terms not involving \(q_j \) to const.

\[
= \sum_{x_j} q_j(x_j) \log f_j(x_j) - \sum_{x_j} q_j(x_j) \log q_j(x_j) + \text{const}
\]

Where,

\[\log f_j(x_j) \triangleq \sum_{x_{-j}} \prod_{i \neq j} q_i(x_i) \log \tilde{p}(x) = \mathbb{E}_{-q_j} [\log \tilde{p}(x)]\]
Derivation of General Mean Field Updates

Thus we have,

\[L(q_j) = \sum_{x_j} q_j(x_j) \log f_j(x_j) - \sum_{x_j} q_j(x_j) \log q_j(x_j) + \text{const} \]

Where,

\[\log f_j(x_j) \triangleq \sum_{x_{-j}} \prod_{i \neq j} q_i(x_i) \log \tilde{p}(x) = \mathbb{E}_{-q_j} [\log \tilde{p}(x)] \]

Observing that by definition of the Kullback-Leibler divergence we have,

\[L(q_j) = -\text{KL}(q_j \mid \mid f_j) \]

Which we maximize by setting \(q_j = f_j \) as,

\[q_j(x_j) = \frac{1}{Z_j} \exp \left(\mathbb{E}_{-q_j} [\log \tilde{p}(x)] \right) \]
The coordinate update does not have a closed form for all models...

\[q_j(x_j) = \frac{1}{Z_j} \exp \left(\mathbb{E}_{-q_j} [\log \tilde{p}(x)] \right) \]

One case where things work out nice is conditionally conjugate models

\[\tilde{p}(x) = \tilde{p}_j(x_j)\tilde{p}_{-j}(x_{-j} | x_j) \propto \tilde{p}_j(x_j | x_{-j}) \]

- In conditionally conjugate models \(\tilde{p}_j(x_j) \) is the **same distribution family** as the complete conditional \(\tilde{p}_j(x_j | x_{-j}) \)
- Similar, but stronger, condition to Gibbs sampler
- In Gibbs sampler the complete conditionals must be easy to sample, not necessarily conjugate
Example: Image Denoising

Model is pairwise MRF on binary variables $x_i \in \{0, 1\}$ (a.k.a. “Ising” model)

$$p(x) = \frac{1}{Z_0} \exp(-E_0(x)) \quad p(y|x) = \prod_{i} p(y_i|x_i) = \sum_i \exp(-L_i(x_i))$$

Where,

$$E_0(x) = -\sum_{i=1}^{D} \sum_{j \in \text{nbr}_i} W_{ij} x_i x_j$$

Source: K. Murphy
Example: Image Denoising

Naïve mean field assumption—fully factorized variational approximation,

\[q(x) = \prod_i q(x_i, \mu_i) \]

Write out unnormalized log-joint probability,

\[\log \tilde{p}(x) = x_i \sum_{j \in \text{nbr}_i} W_{ij} x_j + L_i(x_i) + \text{const} \]

Expectation w.r.t. neighbors of \(x_i \) (e.g. Markov blanket),

\[\mathbb{E}_{q \sim i} [\log \tilde{p}(x)] = x_i \sum_{j \in \text{nbr}_i} W_{ij} \mu_j + L_i(x_i) \]

Update for \(q_i \) is exponentiated expectation w.r.t. Markov blanket,

\[q_i(x_i) \propto \exp \left(x_i \sum_{j \in \text{nbr}_i} W_{ij} \mu_j + L_i(x_i) \right) \]

Source: K. Murphy
• Variational Inference

• Mean Field Variational

• Stochastic Variational
A Generic Class of Directed Models

- Bayesian mixture models
- Time series & sequence models (HMMs, Linear dynamical systems)
- Matrix factorization (factor analysis, PCA, CCA)
- Multilevel regression (linear, probit, Poisson)
- Stochastic block models
- Mixed-membership models (Linear discriminant analysis)

\[p(\beta, z, x) = p(\beta) \prod_{i=1}^{n} p(z_i, x_i | \beta) \]
Minimize KL between \(q(\beta, z; \nu) \) and posterior \(p(\beta, z \mid x) \).
Variational Lower Bound – ELBO

\[\mathcal{L}(\nu) = \mathbb{E}_{q_{\nu}} [\log p(\beta, z, x)] - \mathbb{E}_{q_{\nu}} [\log q(\beta, z; \nu)] \]

- KL is intractable; VI optimizes **evidence lower bound** (ELBO)
 - Lower bounds log p(x) – marginal likelihood, or evidence
 - Maximizing ELBO is equivalent to minimizing KL w.r.t. posterior

- The ELBO trades off two terms
 - The first term prefers q(.) to place mass on the MAP estimate
 - Second term encourages q(.) to be *diffuse* (maximize entropy)

- The ELBO is **non-convex**

[Source: David Blei]
Recall: mean field family is *fully factorized*

\[
q(\beta; z, \lambda, \phi) = q(\beta; \lambda) \prod_{i=1}^{n} q(z_i; \phi_i)
\]

Conditional conjugacy: Each factor is the same expfam as complete conditional

\[
p(\beta | z, x) = h(\beta) \exp\{\eta_g(z, x)^T \beta - a(\eta_g(z, x))\}
q(\beta; \lambda) = h(\beta) \exp\{\lambda^T \beta - a(\lambda)\}.
\]
Mean Field for Generic Directed Model

Recall: mean field family is fully factorized

\[q(\beta, z; \lambda, \phi) = q(\beta; \lambda) \prod_{i=1}^{n} q(z_i; \phi_i) \]

Global parameter ensure conjugacy to (z,x):

\[\eta_g(z, x) = \alpha + \sum_{i=1}^{n} t(z_i, x_i), \]

where \(\alpha \) is prior hyperparameter and \(t(.) \) are sufficient stats for \([z_i, x_i]\)

[Source: David Blei]
Optimize ELBO,

\[\mathcal{L}(\lambda, \phi) = \mathbb{E}_q[\log p(\beta, z, x)] - \mathbb{E}_q[\log q(\beta, z)] \]

By gradient ascent,

\[\lambda^* = \mathbb{E}_\phi[\eta_g(z, x)]; \phi_i^* = \mathbb{E}_\lambda[\eta_\ell(\beta, x_i)] \]

Iteratively update each parameter, holding others fixed

- Obvious relationship with Gibbs sampling
- Remember, ELBO is not convex

Don't forget... entropy decomposes as sum over individual entropies

[Source: David Blei]
Coordinate Ascent Mean Field for Generic Model

Input: data \mathbf{x}, model $p(\beta, z, \mathbf{x})$.
Initialize λ randomly.

repeat
 for each data point i do
 Set local parameter $\phi_i \leftarrow \mathbb{E}_\lambda [\eta_i(\beta, x_i)]$.
 end

Set global parameter

$$\lambda \leftarrow \alpha + \sum_{i=1}^{n} \mathbb{E}_{\phi_i} [t(Z_i, x_i)].$$

until the ELBO has converged

[Source: David Blei]
Stochastic (Mean Field) Variational Inference

Classical mean field VI is inefficient for large data
- Do some local computation \textit{for each data point}
- Aggregate computations to re-estimate global structure
- Repeat

\textit{Idea visit random subsets of data to estimate gradient updates on full dataset}

[Source: David Blei]
A STOCHASTIC APPROXIMATION METHOD

BY HERBERT ROBBINS AND SUTTON MONRO

University of North Carolina

1. Summary. Let \(M(x) \) denote the expected value at level \(x \) of the response to a certain experiment. \(M(x) \) is assumed to be a monotone function of \(x \) but is unknown to the experimenter, and it is desired to find the solution \(x = \theta \) of the equation \(M(x) = \alpha \), where \(\alpha \) is a given constant. We give a method for making successive experiments at levels \(x_1, x_2, \ldots \) in such a way that \(x_n \) will tend to \(\theta \) in probability.

- Use cheaper noisy gradient estimates [Robbins and Monro, 1951]
- Guaranteed to converge to local optimum [Bottou, 1996]
- Popular in modern machine learning (e.g. DNN learning)
Stochastic Gradient Ascent/Descent

- Stochastic gradients update:
 \[\nu_{t+1} = \nu_t + \rho_t \hat{\nabla}_\nu \mathcal{L}(\nu_t) \]

- Gradient estimator must be \textit{unbiased}

\[\mathbb{E}[\hat{\nabla}_\nu \mathcal{L}(\nu)] = \nabla_\nu \mathcal{L}(\nu) \]

- Sequence of step sizes \(\rho_t \) must follow \textit{Robbins-Monro conditions}

\[\sum_{t=0}^{\infty} \rho_t = \infty, \quad \sum_{t=0}^{\infty} \rho_t^2 < \infty \]
The natural gradient of the ELBO [Amari, 1998; Sato, 2001]

\[\nabla_{\lambda}^{\text{nat}} \mathcal{L}(\lambda) = \left(\alpha + \sum_{i=1}^{n} \mathbb{E}_{\phi_{i}^{*}}[t(Z_i, x_i)] \right) - \lambda. \]

- Construct a noisy natural gradient,

\[\hat{\nabla}_{\lambda}^{\text{nat}} \mathcal{L}(\lambda) = \alpha + n\mathbb{E}_{\phi_{j}^{*}}[t(Z_j, x_j)] - \lambda. \]

- This is a good noisy gradient.
 - Its expectation is the exact gradient (*unbiased*).
 - It only depends on optimized parameters of one data point (*cheap*).
Input: data x, model $p(\beta, z, x)$.
Initialize λ randomly. Set ρ_t appropriately.

repeat
 Sample $j \sim \text{Unif}(1, \ldots, n)$.
 Set local parameter $\phi \leftarrow \mathbb{E}_\lambda [\eta_t(\beta, x_j)]$.
 Set intermediate global parameter
 $$\hat{\lambda} = \alpha + n\mathbb{E}_\phi [t(Z_j, x_j)].$$
 Set global parameter
 $$\lambda = (1 - \rho_t)\lambda + \rho_t\hat{\lambda}.$$
until forever
Topic models discover hidden thematic structure in large collections of documents

[Source: David Blei]
Each **topic** is a distribution over words (vocabulary)

Each **document** is a mixture of corpus-wide topics

Each **word** is drawn from one of the topics (they are distributions)

But we only observe documents; everything else is hidden (unsupervised learning problem)

Need to calculate posterior (for millions of documents; billions of latent variables):

\[
P(\text{topics, proportions, assignments} \mid \text{documents})
\]

[Source: David Blei]
Example: Latent Dirichlet Allocation

- Assumes words are *exchangeable* ("bag-of-words" model)
- Reduces parameters while still yielding useful insights
- Complete conditionals are closed-form (we can do mean field)

Latent Dirichlet Allocation (LDA):

\[
\begin{align*}
\beta_k & \sim \text{Dirichlet}(\eta) \\
\theta_d & \sim \text{Dirichlet}(\alpha) \\
z_{d,n} | \theta_d & \sim \text{Cat}(\theta_d) \\
w_{d,n} | z_{d,n}, \beta & \sim \text{Cat}(\beta_{z_{d,n}})
\end{align*}
\]

[Source: David Blei]
Example: Latent Dirichlet Allocation

- Stochastic VI (online) shows faster learning as compared to standard (batch) updates
- Similar learning rate when dataset increased from 98K to 3.3M documents
- Perplexity measures posterior uncertainty (lower is better)

\[
\text{Perplexity} = 2^H(p) = 2^{-\sum_x p(x) \log p(x)}
\]

[Source: David Blei]

Topics found in 1.8M articles from the New York Times
1) Begin with intractable model posterior:

\[p(x \mid Y) = \frac{p(x)p(Y \mid x)}{p(Y)} \]

Marginal Likelihood

2) Choose a family of approximating distributions \(Q \) that is tractable

3) Maximize variational lower bound on marginal likelihood:

\[\log p(Y) \geq \max_{q \in Q} \mathcal{L}(q) \equiv \mathbb{E}_q[\log p(x, Y)] + H(q) \]

4) Maximizer is posterior approximation (in KL divergence)

\[q^* = \arg \max_{q \in Q} \mathcal{L}(q) = \arg \min_{q \in Q} \text{KL}(q(x) \| p(x \mid Y)) \]

Different approximating families \(Q \) lead to different forms of optimizing variational bound
Mean field family assumes fully factorized approximating distribution

\[q(x) = \prod_{s \in \mathcal{V}} q_s(x_s) \]

Mean field algorithm performs coordinate ascent on lower bound

\[q_s(x_s) \propto \exp \left\{ \mathbb{E}_{q \setminus_s} [\log p(x, \mathcal{Y})] \right\} \]

Coordinate ascent updates require complete conditionals to be conjugate
- Similar, but stricter, assumption to Gibbs sampling

MF update takes specific form depending on model \(p(.) \), e.g. pairwise MRF:

\[\mu_{s,k}^{(i)} \propto \psi_s(k) \exp \left\{ \sum_{t \in \Gamma(s)} \mathbb{E}_{\mu_t^{(i-1)}} [\phi_{st}(k, x_t)] \right\} \]
Summary: Stochastic (Mean Field) VI

- MF coordinate ascent updates require visiting all data
 - Doesn’t scale to large datasets

- Stochastic VI updates using stochastic gradient ascent
 - Randomly subsample dataset
 - Compute stochastic estimate of full gradient based on subsample
 - Stochastic gradient step on variational parameters (ν here):
 \[
 \nu_{t+1} = \nu_t + \rho_t \hat{\nabla}_\nu \mathcal{L}(\nu_t)
 \]

- Step sizes must decrease over time while satisfying Robbins-Monro conditions
 \[
 \sum_{t=0}^{\infty} \rho_t = \infty, \quad \sum_{t=0}^{\infty} \rho_t^2 < \infty
 \]

- Often call standard MF “batch” since updates based on full data