CSC535: Probabilistic Graphical Models

Bayesian Probability and Inference
Prof. Jason Pacheco

What is Probability?

What does it mean that the probability of heads is $1 / 2$?

Two schools of thought...
Frequentist Perspective
Proportion of successes (heads) in repeated trials (coin tosses)

Bayesian Perspective

Belief of outcomes based on assumptions about nature and the physics of coin flips

Neither is better/worse, but we can compare interpretations...

Frequentist \& Bayesian Modeling

We will use the following notation throughout:
θ - Unknown (e.g. coin bias)

Frequentist

(Conditional Model)

$$
p(y ; \theta)
$$

- θ is a non-random unknown parameter
- $p(y ; \theta)$ is the sampling / data generating distribution

Bayesian

(Generative Model)
Prior Belief $\rightarrow p(\theta) p(y \mid \theta) \longleftarrow$ Likelihood

- θ is a random variable (latent)
- Requires specifying $p(\theta)$ the prior belief

Bayes' Rule

Posterior represents all uncertainty after observing data...

Bayes’ Rule : Marginal Likelihood

$$
p(\theta \mid y)=\frac{p(\theta) p(y \mid \theta)}{p(y)} \propto \underbrace{p(\theta) p(y \mid \theta)}_{\text {Often hard to calculate }}
$$

Marginal likelihood integrates (marginalizes) over unknown θ :

$$
p(y)=\int p(\theta) p(y \mid \theta) d \theta
$$

This integral often lacks a closed form and cannot be computed...

Aside : Proportionality

Recall PMF / PDF must sum / integrate to 1,

$$
\begin{gathered}
\text { PMF } \\
\sum_{x} p(x)=1
\end{gathered} \quad \int p(x) d x=1
$$

May only know distribution constant that does not depend on RV x,

$$
\int \widetilde{p}(x) d x=\mathcal{Z} \quad \text { so } \quad p(x) \propto \widetilde{p}(x)
$$

Properly normalized distribution by dividing our normalization constant:

$$
\int p(x) d x=\int \frac{1}{\mathcal{Z}} \widetilde{p}(x) d x=\frac{1}{\int \widetilde{p}(x) d x} \int \widetilde{p}(x) d x=1
$$

Aside : Proportionality

Example Let X be a Bernoulli RV (coinflip) with probabilities proportional to:

$$
\widetilde{p}(X=0)=0.5 \quad \widetilde{p}(X=1)=1.5
$$

Greater than 1, but It is an unnormalized probability
Compute normalization constant,

$$
\mathcal{Z}=\widetilde{p}(X=0)+\widetilde{p}(X=1)=2.0
$$

Normalize probability distribution,

$$
p(X)=\frac{1}{\mathcal{Z}} \widetilde{p}(X)=\binom{1 / 4}{3 / 4} \longleftarrow \text { sums to } 1
$$

Bayesian Inference Example

About 29\% of American adults have high blood pressure (BP). Home test has 30% false positive rate and no false negative error.

A recent home test states that you have high BP. Should you start medication?

An Assessment of the Accuracy of Home Blood Pressure Monitors When Used in Device Owners

Jennifer S. Ringrose, ${ }^{1}$ Gina Polley, ${ }^{1}$ Donna McLean, ${ }^{2-4}$ Ann Thompson, ${ }^{1,5}$ Fraulein Morales, ${ }^{1}$ and Raj Padwal ${ }^{1,4,6}$

Bayesian Inference Example

About 29\% of American adults have high blood pressure (BP). Home test has 30% false positive rate and no false negative error.

- Latent quantity of interest is hypertension: $\theta \in\{$ true, false $\}$
- Measurement of hypertension: $y \in\{$ true, false $\}$
- Prior: $p(\theta=$ true $)=0.29$
- Likelihood: $p(y=$ true $\mid \theta=$ false $)=0.30$

$$
p(y=\operatorname{true} \mid \theta=\operatorname{true})=1.00
$$

Bayesian Inference Example

About 29\% of American adults have high blood pressure (BP). Home test has 30% false positive rate and no false negative error.

Suppose we get a positive measurement, then posterior is:

$$
\begin{aligned}
p(\theta=\text { true } \mid y=\text { true }) & =\frac{p(\theta=\operatorname{true}) p(y=\text { true } \mid \theta=\text { true })}{p(y=\text { true })} \\
& =\frac{0.29 * 1.00}{0.29 * 1.00+0.71 * 0.30} \approx 0.58
\end{aligned}
$$

Bayesian Updating

Suppose we plan to take another test...

Question What is our belief about blood pressure status before the second test?
(a) Posterior: $p\left(\theta=\right.$ true $\mid y_{1}=$ true $)$
(b) Likelihood: $p\left(y_{1}=\right.$ true $\mid \theta=$ true $)$
(c) Marginal Likelihood: $p\left(y_{1}=\right.$ true $)$

Bayesian Updating

Suppose we plan to take another test...

Question What is the probability that we get true on the second test if we have high blood pressure?
(a) Posterior: $p\left(\theta=\right.$ true $\mid y_{1}=$ true, $y_{2}=$ true $)$
(b) Likelihood: $p\left(y_{2}=\right.$ true $\mid \theta=$ true $)$
(c) Marginal Likelihood: $p\left(y_{2}=\right.$ true $)$

$$
\text { Why not: } p\left(y_{2}=\text { true } \mid \theta=\text { true }, y_{1}=\text { true }\right)
$$

Bayesian Updating

Suppose we plan to take another test...

Question What is the probability that we get true on the second test if we have high blood pressure?
(a) Posterior: $p\left(\theta=\right.$ true $\mid y_{1}=$ true, $y_{2}=$ true $)$
(b) Likelihood: $p\left(y_{2}=\right.$ true $\mid \theta=$ true $)$
(c) Marginal Likelihood: $p\left(y_{2}=\right.$ true $)$

Because $y_{1} \perp y_{2} \mid \theta \quad$ so $\quad p\left(y_{2} \mid \theta, y_{1}\right)=p\left(y_{2} \mid \theta\right)$

Bayesian Updating

Suppose we receive another positive test $y_{2}=$ true \ldots

Posterior belief given both tests is then,

$$
p\left(\theta=\operatorname{true} \mid y_{1}=\text { true }, y_{2}=\text { true }\right)=
$$

$$
=\frac{p\left(\theta=\text { true } \mid y_{1}=\text { true }\right) p\left(y_{2}=\text { true } \mid \theta\right)}{p\left(y_{2}=\text { true } \mid y_{1}=\text { true }\right) \longleftarrow}
$$

Probability of getting
two positive tests regardless of $B P$ status

$$
\propto \underbrace{p\left(\theta=\operatorname{true} \mid y_{1}=\operatorname{true}\right)}_{\text {Inference from first test }} p(\underbrace{\left.y_{2}=\operatorname{true} \mid \theta=\operatorname{true}\right)}_{\text {Likelihood of positive test }}
$$

Bayesian Updating

Consider two conditionally independent observations X_{1} and X_{2}, their joint distribution is:

Probability chain rule

$$
p\left(\theta, X_{1}, X_{2}\right)=p(\theta) p\left(X_{1} \mid \theta\right) p\left(X_{2} \mid \theta\right)=p\left(\theta \mid X_{1}\right) p\left(X_{1}\right) p\left(X_{2} \mid \theta\right)
$$

So, conditioned on X_{1} :
Update prior belief after seeing X_{1}

$$
p\left(\theta, X_{2} \mid X_{1}\right)=p\left(\theta \mid X_{1}\right) p\left(X_{2} \mid \theta\right)
$$

This is proportional to the full posterior by Bayes' rule:

$$
p\left(\theta \mid X_{1}, X_{2}\right) \propto p\left(\theta \mid X_{1}\right) p\left(X_{2} \mid \theta\right) \quad \text { Normalizer is } \mathrm{p}\left(\mathbf{X}_{2} \mid \mathbf{x}_{1}\right)
$$

Bayesian Updating

Given conditionally independent X_{1}, \ldots, X_{N} posterior belief is,

$$
p\left(\theta \mid X_{1}, \ldots, X_{N}\right)
$$

Receive $\mathrm{N}+1^{\text {th }}$ observation X_{N+1} and update posterior,

$$
p\left(\theta \mid X_{1}, \ldots, X_{N+1}\right) \propto p\left(\theta \mid X_{1}, \ldots, X_{N}\right) p\left(X_{N+1} \mid \theta\right)
$$

Updates are more complicated if observations are dependent...

Frequentist vs. Bayesian Inference

We have data X_{1}, \ldots, X_{N} and want to infer unknown parameter θ

Frequentist Inference

The data uniquely determines θ, e.g. by the likelihood:
Not a distribution on parameter

$$
p\left(X_{1}, \ldots, X_{N} ; \theta\right) \quad \text { How well it explains the data }
$$

Bayesian Inference

The data updates our belief about θ, which is random:

$$
p\left(\theta \mid X_{1}, \ldots, X_{N}\right) \propto p\left(\theta \mid X_{1}, \ldots, X_{N-1}\right) p\left(X_{N} \mid \theta\right)
$$

Minimum Mean Squared Error (MMSE)

Posterior mean minimizes squared error,

$$
\hat{\theta}^{\mathrm{MMSE}}=\arg \min \mathbb{E}\left[(\hat{\theta}-\theta)^{2} \mid y\right]=E[\theta \mid y]
$$

- Minimizes error conditioned on observed data
- MMSE is an unbiased estimator
- MMSE is asymptotically unbiased and asymptotically normal,

$$
\sqrt{N}\left(\hat{\theta}^{\mathrm{MMSE}}-\theta\right) \rightarrow \mathcal{N}\left(0, \sigma^{2}\right)
$$

Example: Beta-Bernoulli MMSE

$$
\text { Let } X_{1}, \ldots, X_{N} \sim \operatorname{Bernoulli}(\pi) \text { and } \pi \sim \operatorname{Beta}(\alpha, \beta) \text {. }
$$

- Beta is a distribution on probabilities $\pi \in[0,1]$
- Shape parameters α and β with mean,

$$
\mathbf{E}[\pi]=\frac{\alpha}{\alpha+\beta}
$$

- Beta-Bernoulli has Beta posterior distribution,

Beta PDF

$$
p\left(\pi \mid X_{1}^{N}\right)=\operatorname{Beta}(\alpha+\text { number of heads, } \beta+\text { number of tails })
$$

MMSE given by posterior mean,

Q What happens to MMSE when we have limited data?

$$
\hat{\pi}^{\mathrm{MMSE}}=\frac{\alpha+\text { number of heads }}{\alpha+\beta+N}
$$

Q What happens to MMSE when we have a lot of data?

Bayes Estimators

Minimizes expected loss function,

$$
\hat{\theta}=\arg \min _{\hat{\theta}} \mathbf{E}[L(\theta, \hat{\theta}) \mid y]
$$

Expected loss referred to as Bayes risk.

MMSE minimizes squared-error loss $L(\theta, \hat{\theta})=(\theta-\hat{\theta})^{2}$
Minimum absolute error (MAE) is posterior median,

$$
\arg \min \mathbb{E}[|\hat{\theta}-\theta| \mid y]=\operatorname{median}(\theta \mid y)
$$

Note: Same answer for linear function: $L(\theta, \hat{\theta})=c|\hat{\theta}-\theta|$

Maximum a Posteriori (MAP)

Very common to produce maximum probability estimates,

$$
\hat{\theta}^{\mathrm{MAP}}=\arg \max p(\theta \mid y)
$$

MAP is the mode (highest probability outcome) of the posterior

Maximum a Posteriori (MAP)

MAP (mode) may not be representative of typical outcomes

Also, not a Bayes estimator (unless discrete),

$$
\lim _{c \rightarrow 0} L(\theta, \hat{\theta})=\left\{\begin{array}{l}
0, \text { if }|\hat{\theta}-\theta|<c \\
1, \text { otherwise }
\end{array}\right.
$$

Degenerate loss function

Despite its issues, MAP is frequently used in "Bayesian" inference and estimation

Example: Beta-Bernoulli MAP

Let $X_{1}, \ldots, X_{N} \sim \operatorname{Bernoulli}(\pi)$ and $\pi \sim \operatorname{Beta}(\alpha, \beta)$ then posterior is,

$$
p\left(\pi \mid X_{1}^{N}\right)=\operatorname{Beta}(\alpha+\underbrace{\text { number of heads }}_{\mathbf{N}_{H}},
$$

Highest probability (mode) of Beta given by,

Take derivative, set to zero, solve.

$$
\hat{\pi}^{\mathrm{MAP}}=\frac{\alpha+N_{H}-1}{\alpha+\beta+N-2}
$$

Beta distribution is not always convex!

- MAP is any value for $\alpha=\beta=1$
- Two modes (bimodal) for $\alpha, \beta<1$

Maximum a Posteriori (MAP)

Equivalent to maximizing joint probability,

$$
\arg \max _{\theta} p(\theta \mid y)=\arg \max _{\theta} \frac{p(\theta, y)}{p(y)^{2}}=\arg \max _{\theta} p(\theta, y)
$$

For iid y_{1}, \ldots, y_{N} solve in log-domain (like maximum likelihood est.),

$$
\hat{\theta}^{\mathrm{MAP}}=\arg \max _{\theta} \log p\left(\theta, y_{1}, \ldots, y_{N}\right)=\underbrace{\sum_{i} \log \log p\left(y_{i} \mid \theta\right)}_{\begin{array}{c}
\text { Log-Likelihood } \\
\text { (how well it fits data) } \\
\text { agrees with prior) }
\end{array}}+\underbrace{\log p(\theta)}
$$

Intuition MAP is like MLE but with a "penalty" term (log-prior)

Priors in AI / ML / Data Science

- Priors are often used as regularizers (promote smoothing)
- Reduces overfitting as random noise is not smooth
- Often regularizers can be of simple form, even conjugate
- Priors often house sophisticated domain knowledge
- Possibly from earlier encounters with data
- Possibly problem constraints (e.g. θ must be nonnegative)
- World knowledge is complex, so good priors are often complex and not conjugate

Choosing a Prior

- Conjugate priors can keep posteriors in closed form
- This can speed up our codes (a lot!)
- The conjugate priors for standard distributions are fairly expressive
- Often they can serve the purpose
- They are cool (better than doing nothing or the wrong thing)
- But they require that the likelihood is of a standard form
- This is often a lot to hope for!
- Simply expressed functions may not be able to encode what you know
- Constraints, non-local relationships

Prediction

Can make predictions of unobserved \tilde{y} before seeing any data,

$$
p(\widetilde{y})=\sum_{k} p(\theta=k) p(\widetilde{y} \mid \theta=k) \begin{aligned}
& \begin{array}{c}
\text { Similar calculation to } \\
\text { marginal likelihood }
\end{array}
\end{aligned}
$$

This is the prior predictive distribution
For continuous parameters sum turns into integral,

$$
p(\tilde{y})=\int p(\theta) p(\tilde{y} \mid \theta) d \theta
$$

This is a prediction based on no observed data

Prediction

When we observe y we can predict future observations \tilde{y},

$$
p(\widetilde{y} \mid y)=\sum_{k} \underbrace{p(\theta=k \mid y)}_{\text {This is now the posterior }} p(\widetilde{y} \mid \theta=k)
$$

This is the posterior predictive distribution
Again, for continuous parameters sum turns into integral,

$$
p(\tilde{y} \mid y)=\int p(\theta \mid y) p(\tilde{y} \mid \theta) d \theta
$$

Prediction Example

About 29\% of American adults have high blood pressure (BP). Home test has 30% false positive rate and no false negative error.

What is the likelihood of another positive measurement?

$$
\begin{aligned}
p(\tilde{y}=\operatorname{true} \mid y=\text { true }) & =\sum_{\theta \in\{\text { true }, \text { false }\}} p(\theta \mid y=\operatorname{true}) p(\tilde{y}=\operatorname{true} \mid \theta) \\
& =0.42 * 0.30+0.58 * 1.00 \approx 0.71
\end{aligned}
$$

Frequentist Inference

Example: Suppose we observe the outcome of N coin flips. $y=\left\{y_{1}, \ldots, y_{N}\right\}$. What is the probability of heads θ (coin bias)?

- Coin bias θ is not random (e.g. there is some true value)
- Uncertainty reported as confidence interval (typically 95\%)

Correct Interpretation: On repeated trials of N coin flips θ will fall inside the confidence interval 95% of the time (in the limit)

- Inferences are valid for multiple trials, never on single trials

Wrong Interpretation: For this trial there is a 95% chance θ falls in the confidence interval

Bayesian Inference

Posterior distribution is complete representation of uncertainty

$$
p(\theta \mid y)=\frac{p(\theta) p(y \mid \theta)}{p(y) \longleftarrow}
$$

- Must specify a prior belief $p(\theta)$ about coin bias
- Coin bias θ is a random quantity
- Interval $p(l(y)<\theta<u(y) \mid y)=0.95$ can be reported in lieu of full posterior, and takes intuitive interpretation for a single trial

Interval Interpretation: For this experiment there is a 95\% chance that
θ lies in the interval

Summary

- Bayesian statistics interprets probability differently than classical stats
- Frequentist: Probability \rightarrow Long run odds in repeated trials
- Bayesian: Probability \rightarrow Belief of outcome that captures all uncertainty
- Bayesian models treat unknown parameter as random, with a prior
- Bayesian inference via the posterior distribution using Bayes' rule

$$
p(\theta \mid y)=\frac{p(\theta) p(y \mid \theta)}{p(y)}
$$

- Bayesian estimators minimize expected risk (e.g. MMSE)
- Maximum a posteriori (MAP) estimate maximizes posterior probability

