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What is Probability?

What does it mean that the probability of heads is ½ ?

Two schools of thought…

Neither is better/worse, but we can compare interpretations…

Frequentist Perspective
Proportion of successes (heads) in repeated 
trials (coin tosses)

Bayesian Perspective
Belief of outcomes based on assumptions 
about nature and the physics of coin flips



Frequentist & Bayesian Modeling

We will use the following notation throughout:

- Unknown (e.g. coin bias) - Data

Frequentist
(Conditional Model)

• is a non-random unknown 
parameter

• is the sampling / data 
generating distribution

Bayesian
(Generative Model)

• is a random variable (latent)
• Requires specifying          the 

prior belief

Prior Belief Likelihood



Bayes’ Rule

likelihood function 
for the parametersprior probability

marginal likelihoodposterior probability
or: evidence

or: partition function
or: normalizer

Posterior represents all uncertainty after observing data…



Bayes’ Rule : Marginal Likelihood

Marginal likelihood integrates (marginalizes) over unknown    :

This integral often lacks a closed form and 
cannot be computed…

Often hard to calculate Often know
this (the model)

Marginal likelihood is
less problematic in

discrete models (not always)



Aside : Proportionality
Recall PMF / PDF must sum / integrate to 1,

PMF PDF

May only know distribution constant that does not depend on RV x,

Properly normalized distribution by dividing our normalization constant:

so



Aside : Proportionality

Example Let X be a Bernoulli RV (coinflip) with probabilities 
proportional to:

Greater than 1, but
It is an unnormalized

probability

Compute normalization constant,

Normalize probability distribution,

Sums to 1



Bayesian Inference Example

A recent home test states that you have high 
BP.  Should you start medication?

Getty Images
About 29% of American adults have 
high blood pressure (BP). Home test 
has 30% false positive rate and no 

false negative error.



• Latent quantity of interest is hypertension:
• Measurement of hypertension:
• Prior:
• Likelihood:   

Bayesian Inference Example

About 29% of American adults have 
high blood pressure (BP). Home test 
has 30% false positive rate and no 

false negative error.
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Suppose we get a positive measurement, then posterior is:

Bayesian Inference Example

About 29% of American adults have 
high blood pressure (BP). Home test 
has 30% false positive rate and no 

false negative error.

What conclusions can be drawn from this calculation?

Getty Images



Bayesian Updating

Question What is our belief about blood pressure status before
the second test?

Suppose we plan to take another test…

(a) Posterior:

(b) Likelihood:

(c) Marginal Likelihood:



Bayesian Updating

Question What is the probability that we get true on the second 
test if we have high blood pressure?

Suppose we plan to take another test…

(a) Posterior:

(b) Likelihood:

(c) Marginal Likelihood:

Why not: 



Bayesian Updating

Question What is the probability that we get true on the second 
test if we have high blood pressure?

Suppose we plan to take another test…

(a) Posterior:

(b) Likelihood:

(c) Marginal Likelihood:

Because so



Bayesian Updating

Suppose we receive another positive test                 …

Posterior belief given both tests is then,

Probability of getting
two positive tests

regardless of BP status

Inference from first test Likelihood of positive test



Bayesian Updating

Consider two conditionally independent observations     and     , their 
joint distribution is:

So, conditioned on     : Update prior belief after seeing X1

This is proportional to the full posterior by Bayes’ rule:

Normalizer is p(X2 | X1)

Probability chain rule

Step 1: Do inference
after seeing X1

Step 2: Update posterior
by multiplying likelihood

of X2



Bayesian Updating

Given conditionally independent                     posterior belief is, 

Receive N+1th observation           and update posterior,

Belief before seeing
N+1th observation

Belief about 
N+1th observation

Belief after seeing
N+1th observation

Updates are more complicated if observations are dependent…



Frequentist vs. Bayesian Inference

We have data                    and want to infer unknown parameter

Frequentist Inference
The data uniquely determines , e.g. by the likelihood:

Bayesian Inference
The data updates our belief about   , which is random:

How well it explains the data

Our belief changes with more data

Not a distribution on parameter



Minimum Mean Squared Error (MMSE)

Posterior mean minimizes squared error,

• Minimizes error conditioned on observed data

• MMSE is an unbiased estimator

• MMSE is asymptotically unbiased and asymptotically normal,



Example: Beta-Bernoulli MMSE

Let                                           and                        .  

• Beta is a distribution on probabilities 
• Shape parameters     and    with mean,  

Beta PDF

• Beta-Bernoulli has Beta posterior distribution,

MMSE given by posterior mean, Prior belief (pseudo-heads)

Q What happens to MMSE
when we have limited data?

Q What happens to MMSE
when we have a lot of data?



Bayes Estimators

Minimizes expected loss function,

MMSE minimizes squared-error loss

Minimum absolute error (MAE) is posterior median,

Note: Same answer for linear function:

Expected loss referred to as Bayes risk.



Maximum a Posteriori (MAP)

Very common to produce maximum probability estimates,

MAP is the mode ( highest probability outcome ) of the posterior

Mode



Maximum a Posteriori (MAP)

Degenerate loss function

Also, not a Bayes estimator (unless discrete),

MAP (mode) may not be representative of typical outcomes

MAP

Typical

Posterior PDF

Despite its issues, MAP is frequently used 
in “Bayesian” inference and estimation



Example: Beta-Bernoulli MAP

Let                                           and                         then posterior is,  

Beta Posterior PDF

Highest probability (mode) of Beta given by,

NH

Beta distribution is not always convex!
• MAP is any value for
• Two modes (bimodal) for  

Take derivative,
set to zero, solve.



Maximum a Posteriori (MAP)

Equivalent to maximizing joint probability,
Constant

For iid solve in log-domain (like maximum likelihood est.),

Log-Likelihood
(how well it fits data)

Log-Prior
(how well it

agrees with prior)

Intuition MAP is like MLE but with a “penalty” term (log-prior)



Priors in AI / ML / Data Science

• Priors are often used as regularizers (promote smoothing)
• Reduces overfitting as random noise is not smooth
• Often regularizers can be of simple form, even conjugate

• Priors often house sophisticated domain knowledge
• Possibly from earlier encounters with data
• Possibly problem constraints (e.g.    must be nonnegative)
• World knowledge is complex, so good priors are often complex and 

not conjugate



Choosing a Prior

• Conjugate priors can keep posteriors in closed form
• This can speed up our codes (a lot!)

• The conjugate priors for standard distributions are fairly 
expressive
• Often they can serve the purpose

• They are cool (better than doing nothing or the wrong thing)

• But they require that the likelihood is of a standard form
• This is often a lot to hope for!

• Simply expressed functions may not be able to encode what you 
know
• Constraints, non-local relationships



Prediction

Can make predictions of unobserved    before seeing any data,

This is the prior predictive distribution

Similar calculation to 
marginal likelihood

For continuous parameters sum turns into integral,

This is a prediction based on no observed data



When we observe   we can predict future observations   ,

This is the posterior predictive distribution

Prediction

Again, for continuous parameters sum turns into integral,

This is now the posterior



What is the likelihood of another positive measurement?

Prediction Example

About 29% of American adults have 
high blood pressure (BP). Home test 
has 30% false positive rate and no 

false negative error.

What conclusions can be drawn from this calculation?

Getty Images



Frequentist Inference

Example: Suppose we observe the outcome of N coin flips.               
.  What is the probability of heads   (coin bias)?

• Coin bias    is not random (e.g. there is some true value)
• Uncertainty reported as confidence interval (typically 95%)

Correct Interpretation: On repeated trials of N coin flips    will fall inside 
the confidence interval 95% of the time (in the limit)

• Inferences are valid for multiple trials, never on single trials
Wrong Interpretation: For this trial there is a 95% chance    falls in the 
confidence interval



Posterior distribution is complete representation of uncertainty

• Must specify a prior belief about coin bias
• Coin bias    is a random quantity
• Interval                                                can be reported in lieu of full 

posterior, and takes intuitive interpretation for a single trial
Interval Interpretation: For this experiment there is a 95% chance that     

lies in the interval

Bayesian Inference

Prior Belief
Likelihood

Marginal Likelihood
(more on this later)



Summary

• Bayesian statistics interprets probability differently than classical stats
• Frequentist: Probability  Long run odds in repeated trials
• Bayesian: Probability  Belief of outcome that captures all uncertainty

• Bayesian models treat unknown parameter as random, with a prior

• Bayesian inference via the posterior distribution using Bayes’ rule

• Bayesian estimators minimize expected risk (e.g. MMSE)

• Maximum a posteriori (MAP) estimate maximizes posterior probability
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