CSC535: Probabilistic Graphical Models

Message Passing Inference
Prof. Jason Pacheco

Homework 3

- Loopy Belief Propagation
- Out today, due 2 weeks (Monday 2 / 27 @ 11:59pm)
- All coding, 2 problems
- Implement loopy sum-product for simple factor graph
- Apply to low density parity check coding problem
- Please submit report as PDF and a separate ZIP file of code!

Outline

$>$ Sum-Product Belief Propagation
> Loopy Belief Propagation
> Variable Elimination
> Junction Tree Algorithm
$>$ Max-Product Belief Propagation

Outline

$>$ Sum-Product Belief Propagation
> Loopy Belief Propagation
> Variable Elimination
> Junction Tree Algorithm
> Max-Product Belief Propagation

Why Graphical Models?

Structure simplifies both representation and computation

Representation
Complex global phenomena arise by simpler-to-specify local interactions

Computation
Inference / estimation depends only on subgraphs (e.g. dynamic programming, belief propagation, Gibbs sampling)

Example: Markov Chain

Suppose we have a chain graph...

...and want to calculate the marginal on B

$$
P(D)=\sum_{a} \sum_{b} \sum_{c} P(a, b, c, D)
$$

$>$ For K-valued variables this is $\mathcal{O}\left(K^{3}\right)$
$>$ For a Markov Chain on N variables calculating $P\left(X_{N}\right)$ takes $\mathcal{O}\left(K^{N-1}\right)$
$>$ We can do better by reordering operations...

Example: Markov Chain

Suppose we just care about marginal on D:

$$
\begin{aligned}
P(D) & =\sum_{a} \sum_{b} \sum_{c} P(a) P(b \mid a) P(c \mid b) P(D \mid c) \\
& =\sum_{c} P(D \mid c) \sum_{b} P(c \mid b) \underbrace{\sum_{a} P(a) P(b \mid a)} \\
& =\sum_{c} P(D \mid c) \underbrace{\sum_{b} P(c \mid b) m_{A}(b)} \\
& =\underbrace{\sum_{c} P(D \mid c) m_{B}(c)} \\
& =m_{C}(D)
\end{aligned}
$$

(Distributive property)

Each message takes $\mathbf{O}\left(\mathrm{K}^{\wedge} 2\right)$ time for total of O(3K^2)

On a Markov Chain of N RVs takes $\mathrm{O}\left((\mathrm{N}-1) \mathrm{K}^{\wedge} 2\right)$

Example: Markov Chain

Convert Bayes net to MRF by ignoring local normalization:

$$
P(A, B, C, D) \propto \psi(A) \psi(B, A) \psi(C, B) \psi(D, C)
$$

Example: Markov Chain

Convert Bayes net to MRF by ignoring local normalization:

$$
P(A, B, C, D) \propto \psi(A) \psi(B, A) \psi(C, B) \psi(D, C)
$$

Repeat same procedure on MRF (we do not assume normalization):

$$
\begin{aligned}
& P(D) \propto \sum_{c} \psi(c, D) \sum_{b} \psi(b, c) \underbrace{\sum_{a} \psi(a, b) \psi(a)} \\
& P(D) \propto \sum_{c} \psi(c, D) \sum_{b} \psi(b, c) m_{A}(b) \\
& P(D) \propto \sum_{c} \psi(c, D) m_{B}(c) \\
& P(D) \propto m_{C}(D)
\end{aligned}
$$

Markov Chain Revisited

Inference viewed as passing messages e.g. $\mathrm{C} \rightarrow \mathrm{D}$:

$$
m_{C}(d)=\sum_{c} m_{B}(c) \psi(c, d)
$$

> Only showed calculation of marginal at rightmost node
> Backward pass of messages calculates all marginals
> General inference on Markov chains called forward-backward alg.
$>$ Extension to other model structures called sum-product algorithm

Forward-Backward Algorithm

Pass messages forward/backward along chain...

Forward message:

$$
\alpha_{n-1}\left(x_{n}\right)=\sum_{x_{n-1}} \alpha_{n-2}\left(x_{n-1}\right) \psi\left(x_{n-1}, x_{n}\right)
$$

Forward message:

$$
\beta_{n+1}\left(x_{n}\right)=\sum_{x_{n+1}} \beta_{n+2}\left(x_{n+1}\right) \psi\left(x_{n}, x_{n+1}\right)
$$

Marginal probability:

$$
p\left(x_{n}\right) \propto \alpha_{n-1}\left(x_{n}\right) \beta_{n+1}\left(x_{n}\right)
$$

Forward-Backward Algorithm

Extends to HMM-style graphs with node observations...

Forward message:

$$
\alpha_{n-1}\left(x_{n}\right)=\psi\left(x_{n}, y_{n}\right) \sum_{x_{n-1}} \alpha_{n-2}\left(x_{n-1}\right) \psi\left(x_{n-1}, x_{n}\right)
$$

Backward message:

$$
\beta_{n+1}\left(x_{n}\right)=\sum_{x_{n+1}} \beta_{n+2}\left(x_{n+1}\right) \psi\left(x_{n}, x_{n+1}\right) \psi\left(x_{n+1}, y_{n+1}\right)
$$

Forward-Backward Algorithm

$$
\begin{aligned}
\alpha_{n-1}\left(x_{n}\right) & \propto p\left(y_{1}, \ldots, y_{n}, x_{n}\right) \\
& =p\left(y_{1}, \ldots, y_{n} \mid x_{n}\right) p\left(x_{n}\right) \\
& =p\left(y_{n} \mid x_{n}\right) p\left(y_{1}, \ldots, y_{n-1} \mid x_{n}\right) p\left(x_{n}\right) \quad \text { (Conditional Independence) } \\
& =p\left(y_{n} \mid x_{n}\right) p\left(y_{1}, \ldots, y_{n-1}, x_{n}\right) \\
& =p\left(y_{n} \mid x_{n}\right) \sum_{x_{n-1}} p\left(y_{1}, \ldots, y_{n-1}, x_{n-1}, x_{n}\right) \quad \text { (Law of Total Probability) } \\
& =p\left(y_{n} \mid x_{n}\right) \sum_{x_{n-1}} p\left(y_{1}, \ldots, y_{n-1}, x_{n-1}\right) p\left(x_{n} \mid x_{n-1}\right) \\
& \propto \psi\left(y_{n}, x_{n}\right) \sum_{x_{n-1}} \alpha_{n-2}\left(x_{n-1}\right) \psi\left(x_{n}, x_{n-1}\right)
\end{aligned}
$$

Forward-Backward Algorithm

$$
\begin{aligned}
\beta_{n+1}\left(x_{n}\right) & \propto p\left(y_{n+1}, \ldots, y_{N} \mid x_{n}\right) \\
& =\sum_{x_{n+1}} p\left(y_{n+1}, \ldots, y_{N}, x_{n+1} \mid x_{n}\right) \quad \text { (Law of Total Probability) } \\
& =\sum_{x_{n+1}} p\left(y_{n+1}, \ldots, y_{N} \mid x_{n}, x_{n+1}\right) p\left(x_{n+1} \mid x_{n}\right) \quad \text { (Chain rule) } \\
& =\sum_{x_{n+1}} p\left(y_{n+1}, \ldots, y_{N} \mid x_{n+1}\right) p\left(x_{n+1} \mid x_{n}\right) \quad \text { (Conditional Independence) } \\
& =\sum_{x_{n+1}} p\left(y_{n+2}, \ldots, y_{N} \mid x_{n+1}\right) p\left(y_{n+1} \mid x_{n+1}\right) p\left(x_{n+1} \mid x_{n}\right) \\
& \propto \sum_{x_{n+1}} \beta_{n+2}\left(x_{n+1}\right) \psi\left(x_{n+1}, y_{n+1}\right) \psi\left(x_{n}, x_{n+1}\right)
\end{aligned}
$$

Forward-Backward Algorithm

Forward message gives the filtered posterior:

$$
\alpha_{n-1}\left(x_{n}\right) \propto p\left(y_{1}, \ldots, y_{n}, x_{n}\right) \propto p\left(x_{n} \mid y_{1}, \ldots, y_{n}\right)
$$

Smoothed posterior incorporates all observations:

$$
\begin{aligned}
p\left(x_{n} \mid y_{1}, \ldots, y_{N}\right) & \propto p\left(x_{n} \mid y_{1}, \ldots, y_{n}\right) p\left(y_{n+1}, \ldots, y_{N} \mid x_{n}\right) \\
& \propto \alpha_{n-1}\left(x_{n}\right) \beta_{n+1}\left(x_{n}\right)
\end{aligned}
$$

Sum-Product Belief Propagation

Pass messages from leaves-to-root, then root-to-leaves

Forward-Backward extends to any tree-structured pairwise MRF

Marginal given by incoming messages (e.g. node C):

$$
p(C) \propto \psi(C) m_{A}(C) m_{F}(C) m_{G}(C)
$$

Sum-Product Belief Propagation

Message updates depend only on Markov blanket...

Message $m_{t s}\left(x_{s}\right)=\sum_{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \psi_{t}\left(x_{t} \prod_{k} \Gamma_{\Gamma(t) \backslash s} m_{k t}\left(x_{t}\right)\right.$
Marginal $p\left(x_{t}\right) \propto \psi_{t}\left(x_{t}\right) \prod_{k \in \Gamma(t)} m_{k t}\left(x_{t}\right)$

Messages involve a sum over products, hence the name "sumproduct algorithm"

Computational Complexity

$$
m_{t s}\left(x_{s}\right)=\sum_{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \psi_{t}\left(x_{t}\right) \prod_{k \in \Gamma(t) \backslash s} m_{k t}\left(x_{t}\right)
$$

$$
\phi\left(x_{s}, x_{t}\right)
$$

For K -valued random variables X_{s} and X_{t} intermediate factor $\psi\left(x_{s}, x_{t}\right)$ is K-by-K matrix

Each message requires computation:

$$
\mathcal{O}\left(K^{2}\right)
$$

There are $|E|$ edges so total computation is:

$$
\mathcal{O}\left(2|E| K^{2}\right)
$$

Convert to tree-structured factor graph and redefine sumproduct messages

Notation Change

We will use slightly different notation for this section...

Previous Notation

$\psi(x)$: Factors
$m(x)$: Messages

New Notation

$f(x)$: Factors
$\mu(x)$: Messages

Sum-Product Belief Propagation

Sum-product extends to treestructured factor graphs

Key Observation

Any variable node X with N factors splits graph into N subgraphs with no shared variables

Approach

Recursively decompose into

subtrees and marginalize them

Sum-Product Belief Propagation

Two kinds of computations marginalize different subtrees

Marginalize a sub-graph with a variable node at its root using the marginals of the sub-graphs attached to it.

Marginalize a sub-graph with a factor node at its root using the marginals of the sub-graphs attached to it.

Each root node (variable or factor) "waits" for all messages from its children before being marginalized out

Sum-Product Belief Propagation

To the root (x)

Factor-to-variable

$$
\mu_{f \rightarrow x}
$$

From the root (x)

Variable-to-factor

$$
\mu_{x \rightarrow f}
$$

Factor-to-variable message

Let X_{s} be the variables of the sub-graph attached to a factor, f_{s} (as root).

Denote the distribution of the sub-graph by $F_{s}\left(x, X_{s}\right)$

Define the factor-to-variable message from f_{s} to x by:

$$
\mu_{f_{s} \rightarrow x}(x)=\sum_{X_{s}} F_{s}\left(x, X_{s}\right)
$$

The message is the marginal of the subgraph with respect to all variables except x.

Variable-to-factor message

Let X_{s} be the variables in the sub-graph attached to a variable, x (as root).

Denote the distribution of the sub-graph by $\mathrm{G}_{s}\left(x, X_{s}\right)$

Define the variable-to-factor message from x to f_{s} by:

The message is the marginal of the subgraph with respect to all variables except x.

What a variable node computes

The outgoing message to the factor, f_{o}, from x, is exactly the same marginal as the previous, except we exclude f_{o}.

$$
\mu_{x \rightarrow f_{o}}(x)=\sum_{\mathbf{x} / x} \prod_{s \in n e(x) / f_{o}} F\left(x, X_{s}\right)
$$

*This is what it computes, but not how it does it efficiently (i.e., as in the sum-product algorithm).

General variable node computation

The outgoing message to the factor, f_{o}, from x, is exactly the same marginal as the previous, except we exclude f_{o}.

$$
\mu_{x \rightarrow f_{o}}(x)=\sum_{\mathbf{x} / x} \prod_{s \in n e(x) / f_{o}} F\left(x, X_{s}\right)
$$

In the following, we will consider the first case, $\tilde{p}(x)$, but everything works the same for $\mu_{x \rightarrow f_{o}}(x)$.

What the root variable node computes

$$
p(x) \propto \sum_{\mathbf{X} \backslash x} \underbrace{\prod_{s \in n e(x)} F_{s}\left(x, X_{s}\right)}
$$

Product contains all factors in the graph with root x.

$$
\text { (} n e(\bullet) \text { denotes neighbours) }
$$

Sum-product on a slide

Variable node x_{m} gathers messages, $\mu_{f_{i} \rightarrow x_{m}}$, and sends

$$
\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)=\prod_{l \exists f_{l} \in n\left(x_{m}\right) \backslash f_{s}} \mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right)
$$

Factor f_{s} gathers messages $\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)$, and sends
$\mu_{f_{s} \rightarrow x}(x)=\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{M}} f_{s}\left(x, x_{1}, x_{2}, \ldots, x_{M}\right) \prod_{m \in n(f)\left(f_{s}\right) x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)$

Marginal is product of incoming factor-to-variable messages:

$$
p\left(x_{m}\right) \propto \prod_{f_{l} \in n e\left(x_{m}\right)} \mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right)
$$

One point of confusion

The two products over messages look similar, but the first:

Variable node x_{m} gathers messages, $\mu_{f \rightarrow x_{m}}$, and sends

$$
\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)=\prod_{\operatorname{Hff}_{f \in f}\left(x_{m}\right) f_{s}} \mu_{f \rightarrow x_{m}}\left(x_{m}\right)
$$

is a product of vectors, each over the same variable, but the second has the variable as the index in the product:

Factor f_{s} gathers messages $\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)$, and sends

$$
\mu_{f_{s} \rightarrow x}(x)=\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{M}} f_{s}\left(x, x_{1}, x_{2}, \ldots, x_{M}\right) \prod_{m \in n=\left(f_{s}\right) x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)
$$

One point of confusion (continued)

There are several ways to interpret the message product:

N-dimensional analogue of the outer product creates a tensor:

E.g. For two messages each element of the sum corresponding to

$$
\begin{gathered}
\left(x, x_{1}, x_{2}\right) \text { is } \\
f\left(x, x_{1}, x_{2}\right) \cdot \mu_{1}\left(x_{1}\right) \cdot \mu_{2}\left(x_{2}\right)
\end{gathered}
$$

Computational Complexity

Factor f_{s} gathers messages $\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)$, and sends

Intermediate factor

$$
\phi\left(x, x_{1}, x_{2}, \ldots, x_{M}\right)
$$

Assuming all variables are K-valued, intermediate factor with $\mathrm{M}+1$ variables has $\mathcal{O}\left(K^{M+1}\right)$ entries

Sum-product algorithm example

$$
\text { Let } \quad \tilde{\mathrm{p}}(\mathbf{x})=f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{2}, x_{3}\right) f_{c}\left(x_{2}, x_{4}\right)
$$

Sum-product algorithm example

$$
\text { Let } \tilde{\mathrm{p}}(\mathbf{x})=f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{2}, x_{3}\right) f_{c}\left(x_{2}, x_{4}\right)
$$

The sum-product algorithm

First, pass messages from leaves to your chosen root node. If you want more than one marginal or plan to do other computation, store the results as you go.

Initialization: If leaf node is a variable node, then start with a unity message. If leaf node is factor, then start with the factor.

$$
\begin{aligned}
& \mu_{x_{1} \rightarrow f_{a}}\left(x_{1}\right)=1 \\
& \mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{x_{1} \rightarrow f_{a}}\left(x_{1}\right)=1 \\
& \mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Recall the general case (don't confuse general variables with this example)

Factor f_{s} gathers messages $\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)$, and sends

$$
\mu_{f_{s} \rightarrow x}(x)=\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{M}} f_{s}\left(x, x_{1}, x_{2}, \ldots, x_{M}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)
$$

$$
\boldsymbol{u}_{x_{4} \rightarrow f_{c}}\left(\mathcal{X}_{4}\right)=x_{2}\left(\boldsymbol{x}_{2}\right)=x_{c}=x_{c}
$$

$$
\begin{aligned}
& \mu_{x_{2} \rightarrow f_{b}}\left(x_{2}\right)=\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right) \\
& \mu_{f_{b} \rightarrow x_{3}}\left(x_{3}\right)=\sum_{x_{2}} f_{b}\left(x_{2}, x_{3}\right) \mu_{x_{2} \rightarrow f_{b}}\left(x_{2}\right)
\end{aligned}
$$

We now have the marginal at X_{3} :

$$
p\left(x_{3}\right) \propto \mu_{f_{b} \rightarrow x_{3}}\left(x_{3}\right)
$$

Summary of messages
from leaves to root

$$
\begin{aligned}
& \mu_{x_{1} \rightarrow f_{a}}\left(x_{1}\right)=1 \\
& \mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

$$
\mu_{x_{4} \rightarrow f_{c}}\left(x_{4}\right)=1
$$

$$
\mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right)
$$

$$
\mu_{x_{2} \rightarrow f_{b}}\left(x_{2}\right)=\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right)
$$

$$
\mu_{f_{b} \rightarrow x_{3}}\left(x_{3}\right)=\sum_{x_{2}} f_{b}\left(x_{2}, x_{3}\right) \mu_{x_{2} \rightarrow f_{b}}\left(x_{2}\right)
$$

Next we want to set up for additional computations, we pass messages from root to leaves.

Candidate for the first and second ones?

Passing messages from root to leaves.

$$
\begin{aligned}
& \mu_{x_{3} \rightarrow f_{b}}\left(x_{3}\right)=1 \\
& \mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right)
\end{aligned}
$$

Candidate for third and fourth?

Lets go towards x_{1} first.

$$
\begin{aligned}
& \mu_{x_{2} \rightarrow f_{a}}\left(x_{2}\right)=\mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right) \\
& \mu_{f_{a} \rightarrow x_{1}}\left(x_{1}\right)=\sum_{x_{2}} f_{a}\left(x_{1}, x_{2}\right) \mu_{x_{2} \rightarrow f_{a}}\left(x_{2}\right)
\end{aligned}
$$

Note use of saved message from going the other way.

$$
\begin{aligned}
& \mu_{x_{2} \rightarrow f_{c}}\left(x_{2}\right)=\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right) \\
& \mu_{f_{c} \rightarrow x_{4}}\left(x_{4}\right)=\sum_{x_{2}} f_{c}\left(x_{2}, x_{4}\right) \mu_{x_{2} \rightarrow f_{c}}\left(x_{2}\right)
\end{aligned}
$$

(similar to previous one)

Summary of messages from root to leaves.
$\mu_{x_{3} \rightarrow f_{b}}\left(x_{3}\right)=1$
$\mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right)$

$\mu_{x_{2} \rightarrow f_{a}}\left(x_{2}\right)=\mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right)$
$\mu_{f_{a} \rightarrow x_{1}}\left(x_{1}\right)=\sum_{x_{2}} f_{a}\left(x_{1}, x_{2}\right) \mu_{x_{2} \rightarrow f_{a}}\left(x_{2}\right)$
$\mu_{x_{2} \rightarrow f_{c}}\left(x_{2}\right)=\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right)$
$\mu_{f_{c} \rightarrow x_{4}}\left(x_{4}\right)=\sum_{x_{2}} f_{c}\left(x_{2}, x_{4}\right) \mu_{x_{2} \rightarrow f_{c}}\left(x_{2}\right)$

We can now compute marginals at any variable, e.g. X_{2} :

$$
\tilde{p}\left(x_{2}\right)=\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right)
$$

We can now compute marginals at any variable, e.g. X_{2} :

$$
\begin{aligned}
\tilde{p}\left(x_{2}\right) & =\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right) \\
& =\left(\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right) \mu_{x_{1} \rightarrow f_{a}}\left(x_{1}\right)\right)\left(\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right) \mu_{x_{3} \rightarrow f_{b}}\left(x_{1}\right)\right)\left(\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right) \mu_{x_{4} \rightarrow f_{c}}\left(x_{1}\right)\right)
\end{aligned}
$$

We can now compute marginals at any variable, e.g. X_{2} :

$$
\begin{aligned}
\tilde{p}\left(x_{2}\right) & =\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right) \\
& =\left(\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right) \mu_{x_{1} \rightarrow f_{a}}\left(x_{1}\right)\right)\left(\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right) \mu_{x_{3} \rightarrow f_{b}}\left(x_{1}\right)\right)\left(\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right) \mu_{x_{4} \rightarrow f_{c}}\left(x_{1}\right)\right) \\
& =\left(\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right)\right)\left(\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right)\left(\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right)\right)\right.
\end{aligned}
$$

We can now compute marginals at any variable, e.g. X_{2} :

$$
\begin{aligned}
\tilde{p}\left(x_{2}\right) & =\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right) \\
& =\left(\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right) \mu_{x_{1} \rightarrow f_{a}}\left(x_{1}\right)\right)\left(\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right) \mu_{x_{3} \rightarrow f_{b}}\left(x_{1}\right)\right)\left(\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right) \mu_{x_{4} \rightarrow f_{c}}\left(x_{1}\right)\right) \\
& =\left(\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right)\right)\left(\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right)\left(\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right)\right)\right. \\
& =\sum_{x_{1}} \sum_{x_{3}} \sum_{x_{4}} f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{2}, x_{3}\right) f_{c}\left(x_{2}, x_{4}\right)
\end{aligned}
$$

We can now compute marginals at any variable, e.g. X_{2} :

$$
\begin{aligned}
\tilde{p}\left(x_{2}\right) & =\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{b} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right) \\
& =\left(\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right) \mu_{x_{1} \rightarrow f_{a}}\left(x_{1}\right)\right)\left(\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right) \mu_{x_{3} \rightarrow f_{b}}\left(x_{1}\right)\right)\left(\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right) \mu_{x_{4} \rightarrow f_{c}}\left(x_{1}\right)\right) \\
& =\left(\sum _ { x _ { 1 } } f _ { a } (x _ { 1 } , x _ { 2 }) \left(\sum_{x_{3}} f_{b}\left(x_{2}, x_{3}\right)\left(\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right)\right)\right.\right. \\
& =\sum_{x_{1}} \sum_{x_{3}} \sum_{x_{4}} f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{2}, x_{3}\right) f_{c}\left(x_{2}, x_{4}\right) \\
& =\sum_{x_{1}} \sum_{x_{3}} \sum_{x_{4}} \tilde{p}(\mathbf{x})
\end{aligned}
$$

Outline

> Sum-Product Belief Propagation

> Loopy Belief Propagation
> Variable Elimination
> Junction Tree Algorithm
> Max-Product Belief Propagation

Example: Low Density Parity Check (LDPC) Codes

Factor Graph Representation

Problem Setup

- A code t is transmitted over a noisy
- Received code r is corrupted by noise
- Estimate the most probable code that was sent t^{*} (maximum a posteriori)

Transmitted Code
$t \sim p(t)$

Received Code

Example: Low Density Parity Check (LDPC) Codes

Factor Graph Representation
Sparse Parity Check Matrix

- Valid codes have zero parity: $p(t) \propto \mathbb{I}(H t=0 \bmod 2)$
- Chanel noise model arbitrary, e.g. flip bits w/ ϵ probability:

$$
p(r \mid t)=\prod p\left(r_{n} \mid t_{n}\right)=\prod(1-\epsilon)^{\mathbb{I}\left(r_{n}=t_{n}\right)} \epsilon^{\mathbb{I}\left(r_{n} \neq t_{n}\right)}
$$

Example: Low Density Parity Check (LDPC) Codes

Parity Check Factors

Evidence (observation) Factors

> Each variable node is binary, so $x_{s} \in\{0,1\}$

Parity check factors equal 1 if the sum of the connected bits is even, 0 if the sum is odd (invalid codewords are excluded)

Unary evidence factors equal probability that each bit is a 0 or 1 , given data. Assumes independent "noise" on each bit.

BP for Loopy Graphs

Suppose we have a graph with cycles...

Sum-product BP for tree-structured graphs relies on a leaf-to-root/root-to-leaf sequential update schedule

Graphs with cycles are "loopy" and have no obvious message ordering

Where do we even start? Every node requires initial messages...

BP for Loopy Graphs

Observe BP message update only depends on Markov Blanket:

$$
m_{52}\left(x_{2}\right)=\sum_{x_{5}} \psi\left(x_{2}, x_{5}\right) \prod_{k \in \Gamma(5) \backslash 2} m_{k 5}\left(x_{5}\right)
$$

Where Γ is the set of neighbors:

$$
\Gamma(s)=\{t:(s, t) \in \mathcal{E}\}
$$

Idea Initialize all messages (somehow) then iteratively update each message until "convergence".

What is convergence? Will this converge? If so, then to what?

Loopy Belief Propagation (sum-product)

Initialize Messages

Constant: $m_{s t}^{0}\left(x_{t}\right)=$ const.
Random: $m_{s t}^{0}\left(x_{t}\right) \sim U([0,1])$

Parallel (Synchronous) Updates

At iteration i update all messages in parallel using current messages $\mathrm{m}^{\mathrm{i}-1}$ from previous iteration:

$$
m_{s t}^{i}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{k \in \Gamma(s) \backslash t} m_{k s}^{i-1}\left(x_{s}\right)
$$

- Store, both, the previous messages (from iteration $i-1$) and current messages (from iteration i)
- Many convergence results assume parallel updates

Loopy Belief Propagation (sum-product)

Initialize Messages

Constant: $m_{s t}^{0}\left(x_{t}\right)=$ const.
Random: $m_{s t}^{0}\left(x_{t}\right) \sim U([0,1])$

Asynchronous (Sequential) Updates

Choose an ordering of nodes and update using the latest available messages:

$$
m_{s t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{k \in \Gamma(s) \backslash t} m_{k s}\left(x_{s}\right)
$$

- Simplifies updates since only need to keep track of one copy of messages
- Makes parallel processing trickier

Loopy Belief Propagation (sum-product)

Initialize Messages

Constant: $m_{s t}^{0}\left(x_{t}\right)=$ const.
Random: $m_{s t}^{0}\left(x_{t}\right) \sim U([0,1])$

Asynchronous (Sequential) Updates

Choose an ordering of nodes and update using the latest available messages:

$$
m_{s t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{k \in \Gamma(s) \backslash t} m_{k s}\left(x_{s}\right)
$$

- Simplifies updates since only need to keep track of one copy of messages
- Makes parallel processing trickier

Loopy Belief Propagation (sum-product)

Initialize Messages

Constant: $m_{s t}^{0}\left(x_{t}\right)=$ const.
Random: $m_{s t}^{0}\left(x_{t}\right) \sim U([0,1])$

Asynchronous (Sequential) Updates

Choose an ordering of nodes and update using the latest available messages:

$$
m_{s t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{k \in \Gamma(s) \backslash t} m_{k s}\left(x_{s}\right)
$$

- Simplifies updates since only need to keep track of one copy of messages
- Makes parallel processing trickier

Loopy Belief Propagation (sum-product)

Initialize Messages

Constant: $m_{s t}^{0}\left(x_{t}\right)=$ const.
Random: $m_{s t}^{0}\left(x_{t}\right) \sim U([0,1])$

Asynchronous (Sequential) Updates

Choose an ordering of nodes and update using the latest available messages:

$$
m_{s t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{k \in \Gamma(s) \backslash t} m_{k s}\left(x_{s}\right)
$$

- Simplifies updates since only need to keep track of one copy of messages
- Makes parallel processing trickier

Loopy Belief Propagation (sum-product)

Initialize Messages

Constant: $m_{s t}^{0}\left(x_{t}\right)=$ const.
Random: $m_{s t}^{0}\left(x_{t}\right) \sim U([0,1])$

Asynchronous (Sequential) Updates

Choose an ordering of nodes and update using the latest available messages:

$$
m_{s t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{k \in \Gamma(s) \backslash t} m_{k s}\left(x_{s}\right)
$$

- Simplifies updates since only need to keep track of one copy of messages
- Makes parallel processing trickier

Notice that each row can be computed in parallel

Loopy Belief Propagation (sum-product)

Initialize Messages

Constant: $m_{s t}^{0}\left(x_{t}\right)=$ const.
Random: $m_{s t}^{0}\left(x_{t}\right) \sim U([0,1])$

Asynchronous (Sequential) Updates

Choose an ordering of nodes and update using the latest available messages:

$$
m_{s t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{k \in \Gamma(s) \backslash t} m_{k s}\left(x_{s}\right)
$$

- Simplifies updates since only need to keep track of one copy of messages
- Makes parallel processing trickier

Both directions are independent just like in forward-backward algorithm

Loopy Belief Propagation (sum-product)

Initialize Messages

Constant: $m_{s t}^{0}\left(x_{t}\right)=$ const.
Random: $m_{s t}^{0}\left(x_{t}\right) \sim U([0,1])$

Asynchronous (Sequential) Updates

Choose an ordering of nodes and update using the latest available messages:

$$
m_{s t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{k \in \Gamma(s) \backslash t} m_{k s}\left(x_{s}\right)
$$

- Simplifies updates since only need to keep track of one copy of messages
- Makes parallel processing trickier

Loopy Belief Propagation (sum-product)

Initialize Messages

Constant: $m_{s t}^{0}\left(x_{t}\right)=$ const.
Random: $m_{s t}^{0}\left(x_{t}\right) \sim U([0,1])$

Asynchronous (Sequential) Updates

Choose an ordering of nodes and update using the latest available messages:

$$
m_{s t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{k \in \Gamma(s) \backslash t} m_{k s}\left(x_{s}\right)
$$

- Simplifies updates since only need to keep track of one copy of messages
- Makes parallel processing trickier

Upwards / downwards directions can also be done in parallel (holding rows fixed)

Pseudocode from Murphy's Textbook

Algorithm 22.1: Loopy belief propagation for a pairwise MRF
1 Input: node potentials $\psi_{s}\left(x_{s}\right)$, edge potentials $\psi_{s t}\left(x_{s}, x_{t}\right)$;
2 Initialize messages $m_{s \rightarrow t}\left(x_{t}\right)=1$ for all edges $s-t$;
3 Initialize beliefs $\operatorname{bel}_{s}\left(x_{s}\right)=1$ for all nodes s;
4 repeat
5 Send message on each edge
$m_{s \rightarrow t}\left(x_{t}\right)=\sum_{x_{s}}\left(\psi_{s}\left(x_{s}\right) \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{u \in \operatorname{nbr}_{s} \backslash t} m_{u \rightarrow s}\left(x_{s}\right)\right)$;
$6 \quad$ Update belief of each node $\operatorname{bel}_{s}\left(x_{s}\right) \propto \psi_{s}\left(x_{s}\right) \prod_{t \in \text { nbr }_{s}} m_{t \rightarrow s}\left(x_{s}\right)$;
7 until beliefs don't change significantly;
8 Return marginal beliefs bel $_{s}\left(x_{s}\right)$;

Loopy BP on Factor Graphs

Set of neighbors of node $s: \Gamma(s)=\{f \in \mathcal{F} \mid s \in f\}$

Loopy BP:
Message updates can be iteratively computed on graphs with cycles. But marginals not
x_{w} guaranteed correct!

$$
\bar{m}_{s f}\left(x_{s}\right)=\prod_{g \in \Gamma(s) \backslash f} m_{g s}\left(x_{s}\right) \propto \frac{p_{s}\left(x_{s}\right)}{m_{f_{s}}\left(x_{s}\right)} \quad m_{f_{s}}\left(x_{s}\right)=\sum_{x_{f \backslash s}} \psi_{f}\left(x_{f}\right) \prod_{t \in f \backslash s} \bar{m}_{t f}\left(x_{t}\right)
$$

Marginal Distribution of Each Variable:

$$
p_{s}\left(x_{s}\right) \propto \prod_{f \in \Gamma(s)} m_{f s}\left(x_{s}\right)
$$

Marginal Distribution of Each Factor: Clique of variables linked by factor.

$$
p_{f}\left(x_{f}\right) \propto \psi_{f}\left(x_{f}\right) \prod_{s \in f} \bar{m}_{s f}\left(x_{s}\right)
$$

Numerical Stability

Product over messages is numerically unstable...

$$
\begin{aligned}
& \bar{m}_{s f}\left(x_{s}\right)=\prod_{g \in \Gamma(s) \backslash f} m_{g s}\left(x_{s}\right) \propto \frac{p_{s}\left(x_{s}\right)}{m_{f s}\left(x_{s}\right)} \\
& \\
& \text { vall values }
\end{aligned}
$$

1. Do the product as a summation in log-domain:

$$
\log \bar{m}_{s f}\left(x_{s}\right)=\sum_{g} \log m_{g s}\left(x_{s}\right)
$$

2. Subtract the maximum value (this makes new maximum zero):

$$
\alpha=\max _{x_{s}} \log \bar{m}_{s f}\left(x_{s}\right) \quad \log \bar{m}_{s f}\left(x_{s}\right)=\log \bar{m}_{s f}\left(x_{s}\right)-\alpha
$$

3. Exponentiate (optionally normalize):

$$
\bar{m}_{s f}\left(x_{s}\right)=\exp \left(\log \bar{m}_{s f}\left(x_{s}\right)\right) \div\left(\sum_{x_{s}} \exp \left(\log \bar{m}_{s f}\left(x_{s}\right)\right)\right)
$$

Loopy BP Convergence

Loopy BP works well empirically, but there are no guarantees:

- Not guaranteed to converge in general graphs
- BP marginal beliefs are approximations
- Empirically, when LBP converges it does so quickly and with good approximations

Convergence based on change in messages / marginal approximations:

$$
\rho\left(m^{\text {old }}, m^{\text {current }}\right)<\epsilon \quad \text { or } \quad \rho\left(\text { bel }^{\text {old }}, \text { bel }^{\text {current }}\right)<\epsilon
$$

Typical convergence measures are:
Max change: $\quad \rho\left(m^{\text {old }}, m^{\text {current }}\right)=\max \left\{\left|m^{\text {old }}-m^{\text {current }}\right|\right\}$
Total change: $\quad \rho\left(m^{\text {old }}, m^{\text {current }}\right)=\sum\left|m^{\text {old }}-m^{\text {current }}\right|$

Loopy BP Convergence

Computation tree visualizes sequence of messages as BP proceeds...

Key Insight T iterations of BP equivalent to exact calculation in computation tree of height $T+1$. If edge strength sufficiently weak, then leaves will have minimal impact on root and BP converges.

Loopy BP Convergence

What can we do to improve convergence in a given model?
Message damping takes a partial update of messages each iteration,

$$
m^{\text {new }}=(1-\alpha) m^{\text {old }}+\alpha m^{\mathrm{tmp}}
$$

for damping factor $\alpha \in(0,1]$, e.g. $\alpha=1$ is standard update

Message scheduling

$>$ Asynchronous updates tend to converge faster than synchronous
$>$ Well-known Gauss-Seidel method does this in round-robin fashion (Bertsekas 97)
$>$ Message update ordering also impacts convergence (e.g. disproportionate impact of nodes $2 \& 3$ in previous example)

Example: Loopy BP

Convergence depends largely on the existence of many small cycles
Example Ising model of ferromagnetism via atomic spins:

Binary spin variables: $x_{i} \in\{0,1\}$
Interaction strength:

$$
\psi_{i j}=\left(\begin{array}{ll}
\exp \left(J_{i j}\right) & \exp \left(-J_{i j}\right) \\
\exp \left(-J_{i j}\right) & \exp \left(J_{i j}\right)
\end{array}\right)
$$

Field strength:

$$
\psi_{i}=\left(\exp \left(h_{i}\right) ; \exp \left(-h_{i}\right)\right)
$$

Example: Loopy BP

11x11 Ising model with random parameters

\square

Example: Loopy BP

Convergence of beliefs in 3 selected nodes

\square

Example: Loopy BP

Oscillation in limit cycles is a typical failure mode of BP convergence

\cdots Synchronous \quad - Asynchronous	-- No Damping	- True

Loopy BP Summary

- BP updates only depend on tree-structured Markov blanket
- Approximate BP inference in loopy graphs by iterating standard message updates until convergence (fixed point)
- No guarantees, but works well empirically in many instances
- Some techniques to improve convergence
- Message damping
- Asynchronous message update schedules

Outline

$>$ Sum-Product Belief Propagation
> Loopy Belief Propagation
> Variable Elimination
> Junction Tree Algorithm
> Max-Product Belief Propagation

Bayes Net \rightarrow MRF

Variable Elimination Algorithm

What is the probability of getting a job?

$$
P(J)=\sum_{d} \sum_{e} \sum_{h} \sum_{g} \sum_{s} \sum_{l} P(d, e, h, g, s, l, J)
$$

Iteratively eliminate nuisance variables...

$$
\begin{gathered}
P(D, E, H, G, S, L, J) \propto \psi(D) \psi(E) \psi(G, D, E) \\
\psi(S, E) \psi(L, G) \psi(J, S, L) \psi(H, J, G)
\end{gathered}
$$

Variable Elimination Algorithm

Choose elimination ordering: D, E, H, G, S, L

$$
\begin{gathered}
P(D, E, H, G, S, L, J) \propto \psi(D) \psi(E) \psi(G, D, E) \\
\psi(S, E) \psi(L, G) \psi(J, S, L) \psi(H, J, G)
\end{gathered}
$$

Variable Elimination Algorithm

Choose elimination ordering: D, E, H, G, S, L Eliminate \mathbf{D} (compute message $\mathrm{D} \rightarrow(\mathrm{G}, \mathrm{E})$):

$$
m_{D}(G, E)=\sum_{d} \psi(d) \psi(d, G, E)
$$

$$
\begin{gathered}
P(D, E, H, G, S, L, J) \propto \psi(D) \psi(E) \psi(G, D, E) \\
\psi(S, E) \psi(L, G) \psi(J, S, L) \psi(H, J, G)
\end{gathered}
$$

Variable Elimination Algorithm

Choose elimination ordering: D, E, H, G, S, L Eliminate D (compute message D $\rightarrow(\mathrm{G}, \mathrm{E})$):

$$
m_{D}(G, E)=\sum_{d} \psi(d) \psi(d, G, E)
$$

Variable Elimination Algorithm

Choose elimination ordering: D, E, H, G, S, L Eliminate D (compute message D $\rightarrow(\mathrm{G}, \mathrm{E})$):

$$
m_{D}(G, E)=\sum_{d} \psi(d) \psi(d, G, E)
$$

Eliminate E (compute message $\mathrm{E} \rightarrow(\mathrm{G}, \mathrm{S})$):

$$
m_{E}(G, S)=\sum_{e} m_{D}(G, e) \psi(e) \psi(S, e)
$$

Variable Elimination Algorithm

Choose elimination ordering: D, E, H, G, S, L
Eliminate D (compute message $\mathbf{D} \rightarrow(\mathrm{G}, \mathrm{E})$):

$$
m_{D}(G, E)=\sum_{d} \psi(d) \psi(d, G, E)
$$

Eliminate E (compute message $\mathrm{E} \rightarrow(\mathrm{G}, \mathrm{S})$):

$$
m_{E}(G, S)=\sum_{e} m_{D}(G, e) \psi(e) \psi(S, e)
$$

Eliminate \mathbf{H} (compute message $\mathbf{H} \boldsymbol{\rightarrow}(\mathrm{G}, \mathrm{J})$):

Variable Elimination Algorithm

Choose elimination ordering: D, E, H, G, S, L
Eliminate D (compute message D $\rightarrow(\mathrm{G}, \mathrm{E})$):

$$
m_{D}(G, E)=\sum_{d} \psi(d) \psi(d, G, E)
$$

Eliminate E (compute message $\mathrm{E} \rightarrow(\mathrm{G}, \mathrm{S})$):

$$
m_{E}(G, S)=\sum_{e} m_{D}(G, e) \psi(e) \psi(S, e)
$$

Eliminate \mathbf{H} (compute message $\mathrm{H} \boldsymbol{\rightarrow}(\mathrm{G}, \mathrm{J})$):

Variable Elimination Algorithm

Choose elimination ordering: D, E, H, G, S, L
Eliminate D (compute message D $\rightarrow(\mathrm{G}, \mathrm{E})$):

$$
m_{D}(G, E)=\sum_{d} \psi(d) \psi(d, G, E)
$$

Eliminate E (compute message $\mathrm{E} \rightarrow(\mathrm{G}, \mathrm{S})$):

$$
m_{E}(G, S)=\sum_{e} m_{D}(G, e) \psi(e) \psi(S, e)
$$

Eliminate \mathbf{H} (compute message $\mathrm{H} \rightarrow(\mathrm{G}, \mathrm{J})$):

$$
\begin{aligned}
& P(G, S, L, J) \propto m_{H}(G, J) m_{E}(G, S) \psi(L, G) \\
& \quad \psi(J, S, L)
\end{aligned}
$$

Variable Elimination Algorithm

Choose elimination ordering: D, E, H, G, S, L
Eliminate D (compute message $\mathbf{D} \rightarrow(\mathrm{G}, \mathrm{E})$):

$$
m_{D}(G, E)=\sum_{d} \psi(d) \psi(d, G, E)
$$

Eliminate E (compute message $\mathrm{E} \rightarrow(\mathrm{G}, \mathrm{S})$):

$$
m_{E}(G, S)=\sum_{e} m_{D}(G, e) \psi(e) \psi(S, e)
$$

Eliminate \mathbf{H} (compute message $\mathrm{H} \rightarrow(\mathrm{G}, \mathrm{J})$):

$$
\begin{aligned}
& P(G, S, L, J) \propto m_{H}(G, J) m_{E}(G, S) \psi(L, G) \\
& \quad \psi(J, S, L)
\end{aligned}
$$

$$
m_{H}(G, J)=\sum_{h} \psi(h, J, G)
$$

Eliminate G: $m_{G}(J, S, L)=\sum_{g} m_{H}(g, J) m_{E}(g, S) \psi(L, g)$

Variable Elimination Algorithm

Choose elimination ordering: D, E, H, G, S, L
Eliminate D (compute message D $\rightarrow(\mathrm{G}, \mathrm{E})$):

$$
m_{D}(G, E)=\sum_{d} \psi(d) \psi(d, G, E)
$$

Eliminate E (compute message $\mathrm{E} \rightarrow(\mathrm{G}, \mathrm{S})$):

$$
m_{E}(G, S)=\sum_{e} m_{D}(G, e) \psi(e) \psi(S, e)
$$

Eliminate \mathbf{H} (compute message $\mathrm{H} \rightarrow(\mathrm{G}, \mathrm{J})$):

$P(S, L, J) \propto m_{G}(J, S, L) \psi(J, S, L)$

$$
m_{H}(G, J)=\sum_{h} \psi(h, J, G)
$$

Eliminate $\mathbf{G}: m_{G}(J, S, L)=\sum_{g} m_{H}(g, J) m_{E}(g, S) \psi(L, g)$

Variable Elimination Algorithm

Choose elimination ordering: D, E, H, G, S, L
Eliminate D (compute message D $\rightarrow(\mathrm{G}, \mathrm{E})$):

$$
m_{D}(G, E)=\sum_{d} \psi(d) \psi(d, G, E)
$$

Eliminate E (compute message $\mathrm{E} \rightarrow(\mathrm{G}, \mathrm{S})$):

$$
m_{E}(G, S)=\sum_{e} m_{D}(G, e) \psi(e) \psi(S, e)
$$

Eliminate \mathbf{H} (compute message $\mathrm{H} \rightarrow(\mathrm{G}, \mathrm{J})$):

$P(S, L, J) \propto m_{G}(J, S, L) \psi(J, S, L)$

$$
m_{H}(G, J)=\sum_{h} \psi(h, J, G)
$$

Eliminate G: $m_{G}(J, S, L)=\sum_{g} m_{H}(g, J) m_{E}(g, S) \psi(L, g)$ Eliminate S: $m_{S}(J, L)=\sum_{s} m_{G}(J, s, L) \psi(J, s, L)$

Variable Elimination Algorithm

Choose elimination ordering: D, E, H, G, S, L
Eliminate D (compute message D $\rightarrow(\mathrm{G}, \mathrm{E})$):

$$
m_{D}(G, E)=\sum_{d} \psi(d) \psi(d, G, E)
$$

Eliminate E (compute message $\mathrm{E} \rightarrow(\mathrm{G}, \mathrm{S})$):

$$
m_{E}(G, S)=\sum_{e} m_{D}(G, e) \psi(e) \psi(S, e)
$$

Eliminate \mathbf{H} (compute message $\mathrm{H} \rightarrow(\mathrm{G}, \mathrm{J})$):

$$
m_{H}(G, J)=\sum_{h} \psi(h, J, G)
$$

Eliminate G: $m_{G}(J, S, L)=\sum_{g} m_{H}(g, J) m_{E}(g, S) \psi(L, g)$ Eliminate S: $m_{S}(J, L)=\sum_{s} m_{G}(J, s, L) \psi(J, s, L)$
Eliminate L: $\quad m_{L}(J)=\sum_{l} m_{S}(J, l)$

Variable Elimination Algorithm

Choose elimination ordering: D, E, H, G, S, L
Eliminate D (compute message D $\rightarrow(\mathrm{G}, \mathrm{E})$):

$$
m_{D}(G, E)=\sum_{d} \psi(d) \psi(d, G, E)
$$

Eliminate E (compute message $\mathrm{E} \rightarrow(\mathrm{G}, \mathrm{S})$):

$$
m_{E}(G, S)=\sum_{e} m_{D}(G, e) \psi(e) \psi(S, e)
$$

Eliminate \mathbf{H} (compute message $\mathrm{H} \rightarrow(\mathrm{G}, \mathrm{J})$):

$$
m_{H}(G, J)=\sum_{h} \psi(h, J, G)
$$

Eliminate $\mathbf{G}: m_{G}(J, S, L)=\sum_{g} m_{H}(g, J) m_{E}(g, S) \psi(L, g)$
Eliminate S: $m_{S}(J, L)=\sum_{s} m_{G}(J, s, L) \psi(J, s, L)$
Eliminate L: $\quad m_{L}(J)=\sum_{l} m_{S}(J, l) \propto P(J)$

Accounting for Evidence

What if we observe a node (e.g. Letter=I)?

$$
P(J \mid L=l)=\frac{P(J, L=l)}{P(L=l)}
$$

Step 1: Clamp $L=l$ in any factor with L :

$$
\begin{gathered}
P(D, E, H, G, S, L=l, J) \propto \psi(D) \psi(E) \psi(G, D, E) \\
\psi(S, E) \psi(L=l, G) \psi(J, S, L=l) \psi(H, J, G)
\end{gathered}
$$

Just treat these as new factors, since we don't care about normalizer:

$$
\psi^{\prime}(G)=\psi(L=l, G) \quad \text { and } \quad \psi^{\prime}(J, S)=\psi(J, S, L=l)
$$

Step 2: Remove L from elimination ordering

Computational Complexity

Main Points:

$>$ Worst-case complexity of variable elimination is exponential in the number of latent variables
$>$ Complexity is dependent on chosen elimination order

Computational Complexity

Consider eliminating \mathbf{E} in the example...

$$
m_{E}(G, S)=\sum_{e} m_{D}(G, e) \psi(e) \psi(S, e)
$$

Multiplication creates intermediate factor:

$$
\phi(S, G, E)=m_{D}(G, E) \psi(E) \psi(S, E)
$$

Assuming all variables are K-valued, new factor $\phi(S, G, E)$ has K^{3} entries requiring

$P(E, H, G, S, L, J) \propto m_{D}(G, E) \psi(E)$ $\psi(S, E) \psi(L, G) \psi(J, S, L) \psi(H, J, G)$

Complexity determined by size of the largest intermediate factor

Computational Complexity

Elimination order D, E, H, G, S, L

Worst-case Complexity: $\mathcal{O}\left(K^{3}\right)$

Computational Complexity

Elimination order D, E, H, G, S, L

Worst-case Complexity: $\mathcal{O}\left(K^{3}\right)$

$$
\phi(E, G, S)=\mathcal{O}\left(K^{3}\right)
$$

Computational Complexity

Elimination order D, E, H, G, S, L

Fill-in Edge

$$
\phi(E, G, S)=\mathcal{O}\left(K^{3}\right)
$$

Computational Complexity

Elimination order D, E, H, G, S, L

Worst-case Complexity: $\mathcal{O}\left(K^{3}\right)$

$$
\phi(H, G, J)=\mathcal{O}\left(K^{3}\right)
$$

Computational Complexity

Elimination order D, E, H, G, S, L

Worst-case Complexity: $\mathcal{O}\left(K^{4}\right)$

$$
\phi(G, S, L, J)=\mathcal{O}\left(K^{4}\right)
$$

Computational Complexity

Elimination order D, E, H, G, S, L

Worst-case Complexity: $\mathcal{O}\left(K^{4}\right)$

$$
\phi(S, L, J)=\mathcal{O}\left(K^{3}\right)
$$

Computational Complexity

Elimination order D, E, H, G, S, L

Worst-case Complexity:
 $\mathcal{O}\left(K^{4}\right)$

$$
\phi(L, J)=\mathcal{O}\left(K^{2}\right)
$$

Computational Complexity

Elimination order D, E, H, G, S, L

Worst-case

 Complexity:$\mathcal{O}\left(K^{4}\right)$

$$
\phi(L, J)=\mathcal{O}\left(K^{2}\right)
$$

Computational Complexity

Worst-case Complexity:
 $\mathcal{O}\left(K^{6}\right)$

Eliminate G first...

Complexity
depends on
elimination order...

For N variables

 worst case is:$\mathcal{O}\left(K^{N}\right)$

$$
\phi(G, D, E, L, H, J)=\mathcal{O}\left(K^{6}\right)
$$

Optimal Ordering

The induced graph is the union of all graphs generated running variable elimination:

> e.g. ordering D, E, H, G, S, L

Theorem (Informally) Given some elimination ordering:

1. Scope of every factor generated during variable
 elimination is a clique in the induced graph
2. Every maximal clique in the induced graph is a scope of some intermediate factor (of var. elim.)

Induced graph cliques \longrightarrow Intermediate factors

Induced graph (and complexity) depend strongly on elimination order

Optimal Ordering

Clique Tree

$$
\mathrm{D}, \mathrm{E}, \mathrm{G}
$$

Optimal Ordering

Clique Tree

Elimination order \prec induces graph with maximal cliques $\mathcal{C}(\prec)$ and width:

$$
w(\prec)=\max _{c \in \mathcal{C}(\prec)}|c|-1
$$

$>$ Complexity of variable elimination is $\mathcal{O}\left(K^{w(\prec)+1}\right)$
$>$ Lowest complexity given by the treewidth:

$$
w^{*}=\min _{\prec} \max _{c \in \mathcal{C}(\prec)}|c|-1
$$

It is NP-hard to compute treewidth, and therefore an optimal elimination order (of course...)

Variable Elimination Summary

$>$ Variable elimination allows computation of marginals / conditionals
$>$ Algorithm is valid for any graphical model
$>$ Suffices to show variable elimination for MRFs, since Bayes nets \rightarrow MRFs by moralization
$>$ Worst-case complexity is dependent on elimination order, and is exponential in number of variables
$>$ Optimal ordering $=$ treewidth, is NP-hard to compute

Outline

$>$ Sum-Product Belief Propagation
> Loopy Belief Propagation
> Variable Elimination
$>$ Junction Tree Algorithm
> Max-Product Belief Propagation

Variable Elimination

Recall variable elimination sequentially marginalizes out variables...

Variable Elimination

Two major limitations of variable elimination:

1. Computation exponential in size of the largest intermediate factor (equivalently, largest clique in clique tree)
2. Computation is not reused for computing a series of marginals
E.g. Suppose we use variable elimination to compute a marginal on an HMM with T nodes, each being K-valued

- It takes $\mathcal{O}\left(T K^{2}\right)$ time to compute a single marginal
- It takes $\mathcal{O}\left(T^{2} K^{2}\right)$ time to compute all marginals
- We know forward-backward computes all marginals in $\mathcal{O}\left(T K^{2}\right)$

Marginal Inference Algorithms

One Marginal

All Marginals

Marginal Inference Algorithms

One Marginal

All Marginals

Clique Tree

Elimination order: 6, 5,4,3,2,1

Clique Tree

Clique Tree

Elimination order: 6, 5,4,3,2,1

Clique Tree

Clique Tree

Elimination order: 6, 5, 4,3,2,1

Clique Tree

Clique Tree
Elimination order: 6,5,4,3,2,1

Clique Tree

Elimination order: 6,5,4,3,2,1

Clique Tree

Elimination order: 6,5,4,3,2,1

Clique Tree

Elimination order: 6,5,4,3,2,1

Clique Tree

Junction Tree

Definition (Running intersection) For any pair of clique nodes V, W all cliques on the unique path between V and W contain shared variables

Junction Tree

Not A Junction Tree
$\left\{X_{2}, X_{3}, X_{5}\right\} \cap\left\{X_{2}, X_{5}, X_{6}\right\}=\left\{X_{2}, X_{5}\right\}$

A junction tree is a clique tree with the running intersection property

Junction Tree

Clique tree edges are separator sets in original MRF...so clique tree encodes conditional independencies

$$
X_{1} \perp X_{5} \mid\left\{X_{2}, X_{3}\right\}
$$

Theorem A clique tree resulting from variable elimination satisfies the running intersection property and is thus a junction tree

Junction Trees and Triangulation

- A chord is an edge connecting two non-adjacent nodes in some cycle
- A cycle is chordless if it contains no chords
- A graph is triangulated (chordal) if it contains no chordless cycles of length 4 or more

Theorem: The maximal cliques of a graph have a corresponding junction tree if and only if that undirected graph is triangulated

Lemma: For a non-complete triangulated graph with at least 3 nodes, there is a decomposition of the nodes into disjoint sets A, B, S such that S separates A from B, and S is complete.
$>$ Key induction argument in constructing junction tree from triangulation
> Implies existence of elimination ordering which introduces no new edges

Induced Graph

Recall the induced graph is the union over intermediate graphs from running variable elimination
The induced graph is chordal thus:

- Maximal cliques of the induced graph form a junction tree
- It admits an elimination ordering that introduces no new edges

Logic of junction tree algorithm:

1. Triangulate the graph
a. Implies a junction tree
b. Induces an elimination order

2. Run sum-product BP on junction tree to compute all clique marginals

Reminder: Pairwise Sum-Product BP

Set of neighbors of node $t: \quad \Gamma(t)=\{s \in \mathcal{V} \mid(s, t) \in \mathcal{F}\}$

$$
p_{t}\left(x_{t}\right) \propto \prod_{s \in \Gamma(t)} m_{s t}\left(x_{t}\right)
$$

$$
m_{t s}\left(x_{s}\right)=\sum_{x_{t}} \psi_{s t}\left(x_{s}, x_{t}\right) \prod_{u \in \Gamma(t) \backslash s} m_{u t}\left(x_{t}\right)
$$

$K_{t} \longrightarrow \quad$ number of discrete states for random variable x_{t} $p_{t}\left(x_{t}\right) \longrightarrow$ marginal distribution of the K_{t} discrete states of random variable x_{t} $m_{s t}\left(x_{t}\right) \longrightarrow$ message from node s to node t, a vector of K_{t} non-negative numbers $m_{t s}\left(x_{s}\right) \longrightarrow$ message from node t to node s, a vector of K_{s} non-negative numbers

Sum-Product for Junction Trees (Shafer-Shenoy)

- Express algorithm via original variables x_{s}
- Messages depend on clique intersection (separators)
- Efficient schedules compute each message once

Sum-Product for Junction Trees (Shafer-Shenoy)

- Let $x_{C_{j}}$ be variables in clique node C_{j}
- Let $x_{S_{i j}}$ be variables in separator such that:

$$
x_{S_{i j}}=x_{C_{i}} \cap x_{C_{j}}
$$

- Let residual variables be:

$$
x_{R_{i j}}=x_{C_{i}} \backslash x_{S_{i j}}
$$

Sum-Product for Junction Trees (Shafer-Shenoy)

- Let $x_{C_{j}}$ be variables in clique node C_{j}
- Let $x_{S_{i j}}$ be variables in separator such that:

$$
x_{S_{i j}}=x_{C_{i}} \cap x_{C_{j}}
$$

- Let residual variables be:

$$
x_{R_{i j}}=x_{C_{i}} \backslash x_{S_{i j}}
$$

- Pass sum-product messages between clique nodes

Message: $\quad m_{j i}\left(x_{S_{j i}}\right) \propto \sum_{x_{R_{j i}}} \psi_{C_{j}}\left(x_{C_{j}}\right) \prod_{k \in \Gamma(j) \backslash i} m_{k j}\left(x_{S_{k j}}\right)$
Marginal: $\quad p_{j}\left(x_{C_{j}}\right) \propto \psi_{C_{j}}\left(x_{C_{j}}\right) \prod_{i \in \Gamma(j)} m_{i j}\left(x_{S_{i j}}\right)$

Sum-Product for Junction Trees (Shafer-Shenoy)

- Express algorithm via original variables x_{s}
- Messages depend on clique intersection (separators)
- Efficient schedules compute each message once

Storage \& Computational Cost

$\mathcal{O}\left(\sum_{j} \prod_{s \in C_{j}} K_{s}\right)$, where $x_{s} \in\left\{1, \ldots, K_{s}\right\}$
Exponential in sizes of maximal cliques.

Message: $\quad m_{j i}\left(x_{S_{j i}}\right) \propto \sum_{x_{R_{j i}}} \psi_{C_{j}}\left(x_{C_{j}}\right) \prod_{k \in \Gamma(j) \backslash i} m_{k j}\left(x_{S_{k j}}\right)$
Marginal: $\quad p_{j}\left(x_{C_{j}}\right) \propto \psi_{C_{j}}\left(x_{C_{j}}\right) \prod_{i \in \Gamma(j)} m_{i j}\left(x_{S_{i j}}\right)$

Summary: Junction Tree Algorithm

$$
p_{j}\left(x_{C_{j}}\right) \propto \psi_{C_{j}}\left(x_{C_{j}}\right) \prod_{i \in \Gamma(j)} m_{i j}\left(x_{S_{i j}}\right)
$$

Distribute messages

$$
S_{i j}=S_{j i}=C_{i} \cap C_{j}
$$

Junction Tree Algorithms for General-Purpose Inference

1. If necessary, convert graphical model to undirected form (linear in graph size)
2. Triangulate the target undirected graph
$>$ Any elimination ordering generates a valid triangulation (linear in graph size)
$>$ Finding an optimal triangulation, with minimal cliques, is NP-hard
3. Arrange triangulated cliques into a junction tree (at worst quadratic in graph size)
4. Execute sum-product algorithm on junction tree (exponential in clique size)

Outline

$>$ Sum-Product Belief Propagation
> Loopy Belief Propagation
> Variable Elimination
> Junction Tree Algorithm
$>$ Max-Product Belief Propagation

Maximum A Posteriori (MAP) Inference

Rather than marginalize sometimes we want to maximize, e.g.

$$
\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{N}^{*}\right)=\arg \max _{\mathbf{x}} p(\mathbf{x} \mid \mathbf{y})
$$

Maximizing the log-joint is equivalent and numerically more stable:

$$
\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{N}^{*}\right)=\arg \max _{\mathbf{x}} \log p(\mathbf{x}, \mathbf{y})+\text { const. }
$$

Forward-Backward Algorithm

Recall the Forward-Backward algorithm messages...

Forward message:

$$
\alpha_{n-1}\left(x_{n}\right)=\underbrace{\sum_{x_{n-1}} \alpha_{n-2}\left(x_{n-1}\right) \psi\left(x_{n-1}, x_{n}\right) \psi\left(x_{n}, y_{n}\right)}
$$

Sum over state $\mathrm{x}_{\mathrm{n}-1}$

Viterbi Algorithm

Maximize instead of marginalize...

Forward message:

$$
\alpha_{n-1}\left(x_{n}\right)=\underbrace{\max _{x_{n-1}} \log \psi\left(x_{n}, y_{n}\right)+\alpha_{n-2}\left(x_{n-1}\right)+\log \psi\left(x_{n-1}, x_{n}\right)}
$$

Maximize over state $\mathrm{x}_{\mathrm{n}-1}$ (in log-domain)

Viterbi Algorithm

Maximize instead of marginalize...

Forward message:

$$
\alpha_{n-1}\left(x_{n}\right)=\max _{x_{n-1}} \log \psi\left(x_{n}, y_{n}\right)+\alpha_{n-2}\left(x_{n-1}\right)+\log \psi\left(x_{n-1}, x_{n}\right)
$$

We also store the argmax values:

$$
x_{n-1}^{*}\left(x_{n}\right)=\arg \max _{x_{n-1}} \log \psi\left(x_{n}, y_{n}\right)+\alpha_{n-2}\left(x_{n-1}\right)+\log \psi\left(x_{n-1}, x_{n}\right)
$$

Viterbi Algorithm

Maximize instead of marginalize...

Final node gives maximum (up to const.) and maximizer of posterior:

$$
\begin{aligned}
\alpha_{N-1}\left(x_{N}\right) & =\max _{x_{1}, \ldots, x_{N-1}} \log p\left(x_{1}, \ldots, x_{N} \mid \mathbf{y}\right)+\text { const. } \\
x_{N-1}^{*}\left(x_{N}\right) & =\underset{x_{1}, \ldots, x_{N-1}}{\arg \max } \log p\left(x_{1}, \ldots, x_{N} \mid \mathbf{y}\right)+\text { const. }
\end{aligned}
$$

Viterbi Algorithm

Backwards pass reads off joint maximizer...

Backward Pass: $x_{n}^{*}=x_{n}^{*}\left(x_{n+1}^{*}\right)$
Joint maximizing sequence obtained at the end of backwards pass:

$$
\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{N}^{*}\right)=\arg \max _{\mathbf{x}} p(\mathbf{x} \mid \mathbf{y})
$$

Max-Product (Max-Sum) Algorithm

Recall our decomposition of factor graph sub-trees...

Max-product on a slide

Variable x_{m} gathers incoming messages and sends:

$$
\mu_{x_{m} \rightarrow f_{s}\left(x_{m}\right)}=\prod_{f_{l} \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} \mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right)
$$

Factor f_{s} gathers incoming messages and sends:
$\mu_{f_{s} \rightarrow x}(x)=\max _{\mathbf{x} \backslash x} f_{s}\left(x, x_{1}, x_{2}, \ldots, x_{M}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)$

Max-sum on a slide

Variable x_{m} gathers incoming messages and sends:

$$
\log \mu_{x_{m} \rightarrow f_{s}\left(x_{m}\right)}=\sum_{f_{l} \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} \log \mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right)
$$

Factor f_{s} gathers incoming messages and sends:

$$
\begin{aligned}
& \log \mu_{f_{s} \rightarrow x}(x)= \\
& \quad \max _{\mathbf{x} \backslash x} \log f_{s}\left(x, x_{1}, x_{2}, \ldots, x_{M}\right)+\sum_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \log \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)
\end{aligned}
$$

More numerically stable to work in log-domain (max-sum)...

Max-sum Example

Max-sum Example

- At the root we can record the argmax for its variable, but we do not know which variable choices produced it
- Ties have the potential to make this particularly complicated
- We can "backtrack" to find this out provided that we stored what we need in the forward pass.
- If there are ties, they need to be handled consistently
- In our example, we need to choose either $x_{5}=0$ or $x_{5}=1$ for both backtracking branches.

WRONG

The configuration that we get backtracking pretending $x_{5}=0$, even though $x_{5}=1$ cannot compute to more than 0.1 , and could be less, as the settings for the other variables are making the value as big as possible when $x_{5}=0$.

For $x_{5}=1$

This factor must provide x_{3} and x_{4} for $\mathrm{X}_{5}=1$ contribution 0.1

> Store
> $\underset{x_{3}, x_{4}}{\arg \max }\left\{\left(f_{B} \rightarrow x_{5}\right)_{i}\right\}$

Message Passing Inference Summary

- Brute-force enumeration exponential regardless of graph
- Sum-Product BP
- Exact inference in tree-structure graphs in $\mathrm{O}\left(\mathrm{TK}^{2}\right)$ time for T nodes, each taking K states
- Reduces to Forward-Backward in HMMs
- Same for Max-Product BP (reduces to Viterbi in HMMs)
- Variable elimination
- Exact marginals in general graphs
- Worst-case complexity exponential in size of largest clique
- Need to rerun from scratch for each marginal
- Complexity dependent on elimination order (NP-hard to optimize)

Message Passing Inference Summary

- Junction Tree Algorithm
- Exact marginals in general graphs
- Caches messages to compute all marginals
- Worst-case complexity exponential in size of largest clique
- Optimizing Jtree is NP-hard (corresponds to finding treewidth)
- Loopy BP: Just did this, did you forget already?

Message Passing Inference Summary

Forward-backward algorithm yields efficient marginal inference on HMM graph

Max-product / max-sum yields maximum a posteriori (MAP) inference in any treestructured model

And factor graphs

