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Why Graphical Models?

Structure simplifies both representation and computation

Representation
Complex global phenomena arise by
simpler-to-specify local interactions

Computation
Inference / estimation depends only on
subgraphs (e.g. dynamic programming,
belief propagation, Gibbs sampling)




Why Graphical Models?

Structure simplifies both representation and computation

Representation
Complex global phenomena arise by
simpler-to-specify local interactions

We will discuss inference later, but let’'s focus on representation...
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* Motivating examples of representation



Protein Side Chain Prediction

Problem: Given 3D protein backbone structure, estimate
orientation of every side chain molecule.

Backbone + Side Chains Side Chain Rotation

—

Solution: Just physics of atomic interaction. Easy, right!?



Protein Side Chain Prediction
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Protein Side Chain Prediction

By exploiting graphical model
structure we can scale computation
to large_ macromolecules
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Ground Truth

[ Pacheco and Sudderth, ICML 2015 ]



Pose Estimation

Graphical Model Image (Data / Model encodes likelihood of

Observation) shape / pose / image
consistency (e.g. skin color)

PCA Shape “Spring”

Problem: Estimate orientation / shape /
pose of human figure from an image

st
[ Pacheco, et al., NeurlPs 2014 ]



Framet

Pose Tracking

Motion Prior
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By composing single-frame model with
temporal dynamics and motion prior
we can do video tracking...



Kinematic Hand Tracking
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Sudderth et al., 2004



Hidden Markov Models

Sequential models of discrete quantities of interest
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Example: Speech Recognition

y:

10000
M

"w

-
. k ——
I~ em— L

b e

8000

6000

4000

Frequency (Hz)

2000

2L = b-ey-z-th-ih-er-em - Bayes’ Theorem

[ Source: Bishop, PRML ]
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Example: Part-of-speech Tagging:
Y =l shot an elephant in my pajamas.”
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Dynamical Models

Sequential models of continuous quantities of interest

@ o @ T Example: Multitarget Tracking
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Goal
reconsideration
counter

Goal position

Aim adjustment
counter

Angle of aim

Observation

Cursor position

State-Space Models

Intracortical Brain-Computer Interface

Block 12: "Multiscale Semi-Markov Model"

[ Milstein, Pacheco, et al., NeurlPs 2017 ]
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 Efficient computation on graphical models



Why Graphical Models?

Structure simplifies both representation and computation

Computation
Inference / estimation depends only on
subgraphs (e.g. dynamic programming,
belief propagation, Gibbs sampling)




Computation in Graphical Models

This style of computation generalizes to all graphical models...

Example algorithms

/ » Belief propagation
g (T5) malle) » Gibbs sampling
@ — (1 pe— O > Particle filtering
) 4
» Viterbi decoder for HMMs
\ F(t)\s » Kalman filter (marginal inference)

Key ldea: Local computations only depend on the statistics of
the current node and neighboring interactions




Viterbi Decoder

Summary of
B b P F ﬁ

" = argmax p(z | y)

I

Efficiently computes MAP estimate for
state-space model by passing messages
forward and backward along chain.



Viterbi Decoder
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" = argmax p(z | y)

I

Efficiently computes MAP estimate for
state-space model by passing messages
forward and backward along chain.



Viterbi Decoder
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" = argmax p(z | y)

I

Efficiently computes MAP estimate for
state-space model by passing messages
forward and backward along chain.



Viterbi Decoder
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" = argmax p(z | y)

I

Efficiently computes MAP estimate for
state-space model by passing messages
forward and backward along chain.



Viterbi Decoder

r, = argmax...

hh

r* = argmax p(z | y)

I

Efficiently computes MAP estimate for
state-space model by passing messages
forward and backward along chain.



Viterbi Decoder
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r* = argmax p(z | y)

I

Efficiently computes MAP estimate for
state-space model by passing messages
forward and backward along chain.



Viterbi Decoder

" = argmax p(z | y)

I

Efficiently computes MAP estimate for
state-space model by passing messages
forward and backward along chain.
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» Overview of course topics



Course Overview

We will cover five primary topics...

Variational Advanced Bayesian Bayesian Bayesian Deep

Inference Markov chain Nonparametrics Optimization Learning
Monte Carlo

Techniques for A class of
Efficient methods obtalnl_ng probability models Probabilistic Probabilistic
: asymptotically where model methods for global :
for approximate ; o . uncertainty models
osterior inference exa_ct mfer_e_nce : selT iy Is optlmlzatlon_ o for deep learning
P while avoiding inferred from the ~ smooth functions

local optima data



Variational Inference

Uses Jensen’s inequality to bound quantities of inference

, . Variational Lower Bound
Jensen’s Inequality -

(for concave functions) 5 P(ﬂ% y) ]
,, , logp(y) = E, |log
f(E[z]) > E[f(x)] e LT alr)
2  Partition Function *
* Marginal likelihood Variational Approximation
p(z) q(z)
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Advanced Markov Chain Monte Carlo

Advanced MCMC technigues reduce sample complexity and
avoid getting stuck in local energy minima

[Source: Syed et al, 2019]
| EOEOEOEOEOEOEQEO posterior

K A A AR distribution

....................................................................................... SN prior
distribution

Example: Parallel tempering exchange replicates across
multiple MCMC chains running in (embarrassingly) parallel



Bayesian Nonparametrics

Amount and nature of data drive model complexity

¢ '..:
Component 5 %
assignment 3 dii
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Example: Dirichlet process mixture models a distribution over
an infinite number of mixture components




Bayesian Optimization

Global optimization of random functions: min f(z)

[ ]pred var == pred mean = == w= truth ® evaluations ’

[Source: Ryan Adams]



Bayesian Optimization

lteratively updates distribution over function value (regression)

(x)

[Source: Ryan Adams]



Bayesian Optimization

The function is well-approximated around the minimizer

f(x)

[Source: Ryan Adams]



Bayesian Deep Learning

Neural networks are graphical models too...

input layer hidden layer 1 hidden layer 2 hidden layer 3
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...but they are typically not probabilistic




Bayesian Deep Learning

Combines deep learning with uncertainty models
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[Source: Johnson et al., NIPS 2016]
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» Course detalls (attendance, grading, etc.)

Now for the bulleted lists of stuff...



