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(Bayesian) Principal Component Analysis

[ Source: M. I. Jordan ]
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Latent: Data:

Data are exchangeable linear Gaussian 

projections of latent quantities

Typically p<q for dimension reduction



Gaussian Linear Dynamical System (LDS)
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2D Tracking

State X

Observation Y

Temporal extension of probabilistic PCA…

Data are time-dependent and non-exchangeable



Linear State-Space Model

 Consider the state vector:

 Differential equations for constant velocity dynamics:

 Linear Gaussian state-space model

: Position : Velocitywhere 

where and 



Simple Linear Gaussian Dynamics

Random Walk

(Brownian Motion)

Constant Velocity

(a.k.a. zero acceleration)

Acceleration can be included in higher-order models as well



Dynamical System Inference

Compute              at each time t

Filtering Smoothing

Define shorthand notation: 

Compute full posterior marginal
at each time t



Linear Gaussian Inference

Marginal likelihood is Gaussian:

Posterior also Gaussian (surprise):

where,
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Generative Linear

Regression

Building block for inference on linear Gaussian dynamical system



Gaussian LDS Filtering

 Suppose we have a Gaussian posterior at time t-1:

 Forward prediction at time t:

where

Integrates to 1

Same form as marginal likelihood on previous slide



Gaussian LDS Filtering

 Forward prediction at time t:

where                         and 

 Posterior at time t is also Gaussian:

State Prediction Predicted Covariance

Filter Covariance:

Filter Mean:

Gain Matrix:

Can be derived from

Gaussian conditional formulas 

and Woodbury matrix identity



Kalman Filter
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Measurement Update Step:

Filter Covariance:

Filter Mean:

Gain Matrix:

Prediction Step:

State Prediction:

Covariance Prediction: 



Canonical Parameterization (Information Parameters):

Recall general exponential family form:

Gaussian Canonical Parameters

Mean Parameterization:

where



Gaussian Belief Propagation

Computing marginal mean and covariance from messages:



Gaussian Belief Propagation

Computing marginal mean and covariance from messages:

 Compute message mean & covar as algebraic function of 

incoming message mean & covar (generalizes Kalman)

 For tree of N nodes of dimension d, cost is O(Nd3)



Nonlinear Dynamical System

State dynamics and/or measurement 
may be nonlinear:

Filter equations lack a closed-form:

Prediction:

Measurement Update: 



Extended Kalman Filter

Linearize f(.) and h(.) about a point m:

where

Assume approximately Gaussian marginals:

Filter equations:
 Remain (approximately) Gaussian

 Nearly identical to standard Kalman

is Jacobian matrix of partials



Nonlinear Dynamical System

Pendulum with mass m=1,pole length L=1:

Noisy observation of X-position:

Jacobian terms for linearization:



EKF Update Equations

xt-1 xt…
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Measurement Update Step:

Filter Covariance:

Filter Mean:

Gain:

Prediction Step:

State Prediction:

Covariance Prediction: 



Extended Kalman Filter

 PROS:
Easy to implement – updates analogous to standard Kalman

Computationally efficient

Known theoretical stability results

 CONS:
 Linearity assumption poor for highly nonlinear models

Requires differentiability

 Jacobian matrices can be hard to calculate & implement

Unscented Kalman filter (UKF) typically more accurate in practice



Dynamic Bayesian Networks

 Multivariate latent state (e.g.            )

 Dynamics for each component within and across time

 Sometimes used as catch-all term for dynamical systems

…

t=1 t=2 t=3 t=…

3D latent 
state x

Caution: DBN terminology 

is somewhat vague and 

overloaded (e.g. Deep 

Belief Net)  



Switching Dynamical System

…

…

Discrete switching state:
With stochastic 
transition matrix

Switching state selects dynamics:
[ Video: Isard & Blake, ICCV 1998. ]

(e.g. Linear Gaussian )

Colors indicate 3 writing modes



Semi-Markov Process
Intracortical Brain-Computer Interface

 Counter decrements deterministically:

 Resample when exhausted:

 Controls dynamics:

if

if



Summary

 Definition of state-space model / dynamical system

 Analytic inference for Gaussian LDS possible via Kalman

 Gaussian nonlinear DS requires approximations (EKF / UKF)

 More complex dynamical structure:
Switching state-space model

Dynamic Bayesian Networks

Semi-Markov Processes


