Variational Autoencoders

Marina Kisley

Reading Overview

- Covering:
 - Tutorial on Variational Autoencoders by Carl Doersch, Sections 1 and 2
- Original papers:
 - Auto-encoding Variational Bayes Kingma, D. P. and Welling, M. ICLR, 2014
 - Stochastic Backpropagation and Approximate Inference in Deep Generative Models
 <u>Rezende, et al. ICML, 2014</u>

Auto-encoders

Infer latent state & reconstruct data from it

Variational autoencoders (VAEs)

Generate new data like training data, X

Generative models

- generate output as similar as possible to P(X)
- examples:
 - generate images
 - generate a mass of similar looking objects (trees in video games)
 - generating text
 - • • •

Other generative models vs VAEs

Existing approaches

- computationally expensive
- impose structure on data

- fast training via backpropagation
- weak assumptions about structure of data

VAE Objective

Generate output as similar as possible to P(X) by maximizing *Equation* 1:

$P(X) = \int P(X|z;\theta)P(z)dz$

- X : is training/observed data
- z : vector of latent variables
- $P(X|z;\theta)$: likelihood of producing training samples; often Gaussian, $P(X|z,\theta) = \mathcal{N}(X|f(z;\theta),\sigma^2 * I)$
 - $f(z; \theta)$: (mean of normal) family of deterministic functions that generate data X using z and parameters θ
 - $\sigma^2 * I$: (variance of normal) identity matrix * scalar

1. Train network

- 1. Define latent variables z
- 2. Find computable formula for P(X)
- 3. Optimize computable formula for P(X) using stochastic gradient descent (and back-propagation)
- 2. Generate new samples
 - 1. Generate new samples from P(z)

1. Define latent variables

Example

MNIST handwritten digits latent variables

- slant
- size
- stroke thickness
- ...
- so many!

Avoid defining the latent structure

1. Define latent variables

"any distribution in d dimensions can be generated by taking a set of d variables that are normally distributed and mapping them through a sufficiently complicated function"

1. Define latent variables

- $P(z) = \mathcal{N}(0, I)$
- $f(z; \theta)$: neural net; mean of likelihood
- $P(X|z;\theta)$: likelihood

VAE Steps

1. Train network

- 1. Define latent variables z
- 2. Find computable formula for P(X
- 3. Optimize computable formula for P(X) using stochastic gradient descent (and back-propagation)
- 2. Generate new samples
 - 1. Generate new samples from P(z)

VAE Objective

Generate output as similar as possible to P(X) by maximizing *Equation* 1:

$P(X) = \int P(X|z;\theta)P(z)dz$

- X : is training/observed data
- z : vector of latent variables
- $P(X|z;\theta)$: likelihood of producing training samples; often Gaussian, $P(X|z,\theta) = \mathcal{N}(X|f(z;\theta),\sigma^2 * I)$
- $P(z) = \mathcal{N}(z|0, I)$

VAE Objective: Sampling

- Why not sample?
 - sampling in high-dimensional space requires many samples

VAE solution to sampling

- Make space of Z sampling 'smaller' by using new function
- new function Q(z|X) gives distribution over z values that are likely to produce X
 - ideally, Q(z|X) space will be **smaller** than P(z)
- usually normal
- $Q(z|X) = \mathcal{N}(z|\mu(X;\theta), \Sigma(X;\theta))$
 - μ , Σ deterministic functions with parameters θ that can be learned from data; usually implemented via neural networks

How does P(X) relate to $\mathbb{E}_{z \sim Q} P(X|z)$?

KL-divergence definition

$$\mathcal{D}(q(x) \parallel p(x)) = \mathbb{E}_{q(x)} \left[\log\left(\frac{q(x)}{p(x)}\right) \right]$$

KL-divergence between $P(z|X)$ and $Q(z)$
 $\mathcal{D}(Q(Z) \parallel P(z|X)) = \mathbb{E}_{z \sim Q(z)} \left[\log\left(\frac{Q(z)}{P(z|X)}\right) \right]$

 $\mathcal{D}\left(Q(Z) \parallel P(z|X)\right) = \mathbb{E}_{z \sim Q(z)}\left[\log(Q(z)) - \log(P(z|X))\right]$ Equation 2

How does P(X) relate to $\mathbb{E}_{z \sim Q} P(X|z)$?

 $\mathcal{D}\left(Q(Z) \parallel P(z|X)\right) = \mathbb{E}_{z \sim Q(z)}\left[\log(Q(z)) - \log(P(z|X))\right]$ Equation 2

Apply Bayes rule: $P(z|X) = \frac{P(X|z)p(z)}{P(X)}$

 $\log(P(X)) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q} \left[\log(P(X|z))\right] - \mathcal{D}(Q(z)||P(z))$ Equation 4

Q(z) does not depend on X though? Replace Q(z) with Q(z|X)

How does P(X) relate to $\mathbb{E}_{z \sim Q} P(X|z)$?

Equation 5

$$\log(P(X)) - \mathcal{D}[Q(z|X)||P(z|X)] = E_{z \sim Q}\left[\log(P(X|z))\right] - \mathcal{D}(Q(z|X)||P(z))$$

Perform stochastic gradient descent on right hand side (RHS)

(Q(z|X) is tractable)

minimize divergence (but P(z|X) cannot be computed analytically)

maximize probability of data

can optimize with stochastic gradient descent

cannot compute

VAE Steps

1. Train network

- 1. Define latent variables z
- 2. Find computable formula for P(X)
- Optimize computable formula for P(X) using stochastic gradient descent (and back-propagation)
- 2. Generate new samples
 - 1. Generate new samples from P(z)

$\mathcal{D}[Q(z|\mathbf{X})||P(z)]$

- $Q(z|X) = \mathcal{N}(z|\mu(X;\theta), \Sigma(X;\theta))$
 - μ , Σ deterministic functions with parameters θ that can be learned from data; usually implemented via neural networks
- $P(z) = \mathcal{N}(z|0, I)$
- KL-divergence between 2 multivariate Gaussian distributions -> closed form:

$\mathcal{D}[Q(z|\mathbf{X})||P(z)] = \mathcal{D}[\mathcal{N}(\mu(\mathbf{X}), \Sigma(\mathbf{X}))||\mathcal{N}(0, \mathcal{I})]$

$E_{z\sim Q}\left[\log(P(X|z))\right]$

take 1 sample of z, z~Q and use it to approximate
P(X|z)

Optimize

 $E_{X \sim D}[E_{z \sim Q(z|X)}[\log(P(X|z))] - \mathcal{D}[Q(z|X)||P(z)]]$ Equation 8

For each sample of X (from training data D), use single sample of Z from Q(z|X) to compute gradient of

 $\left[\log(P(X|z))\right] - \mathcal{D}[Q(z|X)||P(z)]$

Average gradient over many samples of X and z to converge on gradient of *Equation 8*

Performing stochastic gradient descent using reparameterization trick

- Redefine sampled latent vector $z \sim Q(z|X)$ as:
 - $\mu + \sigma * \epsilon$
 - $\mu + \sigma$ we are learning
 - $\epsilon \sim \mathcal{N}(0,1)$
- Now, μ and σ have gradients but ε will never change it is a fixed stochastic node, and we do not need to run backprop on it.

Performing stochastic gradient descent using reparameterization trick

- 1. Get mean and covariance of Q(z|X): $\mu(X)$ and $\sigma(X)$
- 2. "Sample" from $\mathcal{N}(\mu(X), \sigma(X))$ by:
 - 1. sampling $\epsilon \sim \mathcal{N}(0,1)$
 - 2. computing $z = \mu(X) + \Sigma^{\frac{1}{2}}(X) * \epsilon$

Gradient Equation:

$$E_{X\sim D}\left[E_{\epsilon\sim\mathcal{N}(0,I)}[\log P(X|z=\mu(X)+\Sigma^{1/2}(X)*\epsilon)]-\mathcal{D}\left[Q(z|X)\|P(z)\right]\right]$$

Equation 10

Performing stochastic gradient descent using reparameterization trick

4 normal distributions in VAE

- 1. $P(X|z,\theta) = \mathcal{N}(X|f(z;\theta),\sigma^2 * I)$
 - Probability of each training example when sampled from an area of the latent space
- 2. $P(z) = \mathcal{N}(z|0, I)$
 - Generating the latent space distribution, P(z) of dimension d, using d normal distributions
- 3. $Q(z|X) = \mathcal{N}(z|\mu(X;\theta), \Sigma(X;\theta))$
 - Enforcing P(z) towards Q(z) by setting Q(z) to the normal distribution
- 4. $\epsilon \sim \mathcal{N}(0,1)$
 - Generating points for our decoder P, so Q is differentiable and we can use back propagation (*reparameterization trick*)

VAE Steps

1. Train network

- 1. Define latent variables z
- 2. Find computable formula for P(X)
- 3. Optimize computable formula for P(X) using stochastic gradient descent (and back-propagation)
- 2. Generate new samples
 - Generate new samples from P(z)

Generating new samples

- 1. Sample $z \sim \mathcal{N}(0, I)$
- 2. Input sample into decoder

VAE MNIST Training

YouTube: Variational Autoencoder 2D latent space evolution on MNIST

