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Reading Overview

• Covering:
• Tutorial on Variational Autoencoders by Carl Doersch, 

Sections 1 and 2

• Original papers:
• Auto-encoding Variational Bayes Kingma, D. P. and 

Welling, M. ICLR, 2014

• Stochastic Backpropagation and Approximate Inference in 

Deep Generative Models

Rezende, et al. ICML, 2014

http://www.pachecoj.com/courses/csc665-1/papers/kingma_vae_14.pdf
http://www.pachecoj.com/courses/csc665-1/papers/rezende_vae14.pdf


Auto-encoders

Infer latent state & reconstruct data from it

https://towardsdatascience.com/generating-images-with-autoencoders-77fd3a8dd368

https://towardsdatascience.com/generating-images-with-autoencoders-77fd3a8dd368


Variational autoencoders (VAEs)

• Generate new data like training data, X

sample



Generative models

• generate output as similar as possible to P(X)

• examples:
• generate images 

• generate a mass of similar looking objects (trees in video 

games)

• generating text

• …



Other generative models vs VAEs

Existing approaches

• computationally expensive 

• impose structure on data

VAEs

• fast training via 

backpropagation 

• weak assumptions 

about structure of data



VAE Objective

Generate output as similar as possible to P(X) by 

maximizing Equation 1:

𝑃 𝑋 = ∫ 𝑃 𝑋 𝑧; 𝜃 𝑃 𝑧 𝑑𝑧

• X : is training/observed data

• 𝑧 : vector of latent variables 

• 𝑃 𝑋 𝑧; 𝜃 : likelihood of producing training samples; often 

Gaussian, 𝑃 𝑋 𝑧, 𝜃 = 𝒩 𝑋 𝑓 𝑧; 𝜃 , 𝜎2 ∗ 𝐼
• 𝑓 𝑧; 𝜃 : (mean of normal) family of deterministic functions that 

generate data X using z and parameters 𝜃
• 𝜎2 ∗ 𝐼 : (variance of normal) identity matrix * scalar



VAE Steps

1. Train network
1. Define latent variables z

2. Find computable formula for P(X)

3. Optimize computable formula for P(X) using stochastic 

gradient descent (and back-propagation) 

2. Generate new samples
1. Generate new samples from P(z)



1. Define latent variables

Example

MNIST handwritten digits latent variables

• slant

• size

• stroke thickness 

• … 

• so many!

Avoid defining the latent structure 



1. Define latent variables

“any distribution in d dimensions can be 

generated by taking a set of d variables that are 

normally distributed and mapping them through a 

sufficiently complicated function”

d

z0
z1

zd

https://en.wikipedia.org/wiki/Artificial_neural_network

d dimensions of Z neural net 𝑓 𝑧; 𝜃

https://en.wikipedia.org/wiki/Artificial_neural_network


1. Define latent variables

d

z0
z1

zd

https://en.wikipedia.org/wiki/Artificial_neural_network

d dimensions of Z, 

z~𝒩(0, 𝐼)
neural net 𝑓 𝑧; 𝜃

𝑋′

• P z = 𝒩 0, 𝐼
• 𝑓 𝑧; 𝜃 : neural net; mean of likelihood  
• 𝑃 𝑋 𝑧; 𝜃 : likelihood

d-dimensional normal 

𝑃 𝑋 𝑧; 𝜃 =
𝒩 𝑋 𝑓 𝑧; 𝜃 , 𝜎2 ∗ 𝐼

https://en.wikipedia.org/wiki/Artificial_neural_network


VAE Steps

1. Train network
1. Define latent variables z

2. Find computable formula for P(X)

3. Optimize computable formula for P(X) using stochastic 

gradient descent (and back-propagation) 

2. Generate new samples
1. Generate new samples from P(z)



VAE Objective

Generate output as similar as possible to P(X) by 

maximizing Equation 1:

𝑃 𝑋 = ∫ 𝑃 𝑋 𝑧; 𝜃 𝑃 𝑧 𝑑𝑧

• X : is training/observed data

• 𝑧 : vector of latent variables 

• 𝑃 𝑋 𝑧; 𝜃 : likelihood of producing training samples; often 

Gaussian, 𝑃 𝑋 𝑧, 𝜃 = 𝒩 𝑋 𝑓 𝑧; 𝜃 , 𝜎2 ∗ 𝐼

• 𝑃 𝑧 = 𝒩(z|0, I)



VAE Objective: Sampling

• Why not sample?
• sampling in high-dimensional space requires many samples

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2

0.2693
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2

0.0387

target bad model good model

<



VAE solution to sampling

• Make space of Z sampling ‘smaller’ by using new 

function 

• new function 𝑄 𝑧|𝑋 gives distribution over z values 

that are likely to produce X
• ideally, Q 𝑧|𝑋 space will be smaller than 𝑃(𝑧)

• usually normal

• 𝑄 𝑧 𝑋 = 𝒩 𝑧 𝜇 𝑋; 𝜃 , Σ 𝑋; 𝜃
• 𝜇, Σ deterministic functions with parameters 𝜃 that can be 

learned from data; usually implemented via neural networks 



How does 𝑃(𝑋) relate to 𝔼𝑧~𝑄𝑃 𝑋|𝑧 ?

KL-divergence definition  

𝒟 𝑞 𝑥 ∥ 𝑝 𝑥 = 𝔼𝑞 𝑥 log
𝑞 𝑥

𝑝 𝑥

KL-divergence between 𝑃(𝑧|𝑋) and Q(𝑧)

𝒟 𝑄 𝑍 ∥ 𝑃(𝑧|𝑋) = 𝔼z~𝑄 𝑧 log
𝑄 𝑧

𝑃(𝑧|𝑋)

𝒟 𝑄 𝑍 ∥ 𝑃(𝑧|𝑋) = 𝔼z~𝑄 𝑧 log 𝑄 𝑧 − log 𝑃 𝑧 𝑋

Equation 2



How does 𝑃(𝑋) relate to 𝔼𝑧~𝑄𝑃 𝑋|𝑧 ?

𝒟 𝑄 𝑍 ∥ 𝑃(𝑧|𝑋) = 𝔼z~𝑄 𝑧 log 𝑄 𝑧 − log 𝑃 𝑧 𝑋

Equation 2

Apply Bayes rule:  𝑃 𝑧 𝑋 =
𝑃 𝑋 𝑧 𝑝 𝑧

𝑃 𝑋

log 𝑃 𝑋 −𝒟[𝑄 𝑧 | 𝑃 𝑧 𝑋 = 𝐸𝑧~𝑄 log 𝑃 𝑋 𝑧 −𝒟 𝑄 𝑧 ||𝑃(𝑧)

Equation 4

𝑄 𝑧 does not depend on X though? Replace 𝑄 𝑧 with 

𝑄 𝑧|𝑋



How does 𝑃(𝑋) relate to 𝔼𝑧~𝑄𝑃 𝑋|𝑧 ?

log 𝑃 𝑋 −𝒟[𝑄 𝑧|X | 𝑃 𝑧 𝑋 = 𝐸𝑧~𝑄 log 𝑃 𝑋 𝑧 −𝒟 𝑄 𝑧|X ||𝑃(𝑧)

Equation 5

maximize

probability 

of data

minimize

divergence (but 

𝑃 𝑧 𝑋 cannot be 

computed 

analytically)

minimize

divergence 

(𝑄 𝑧|X is 

tractable)

maximize

likelihood

can optimize with stochastic 

gradient descent

cannot compute

Perform stochastic gradient 

descent on right hand side (RHS)



VAE Steps

1. Train network
1. Define latent variables z

2. Find computable formula for P(X)

3. Optimize computable formula for P(X) using stochastic 

gradient descent (and back-propagation) 

2. Generate new samples
1. Generate new samples from P(z)



Performing stochastic gradient descent on 

𝐸𝑧~𝑄 log 𝑃 𝑋 𝑧 − 𝒟[𝑄 𝑧|X ||𝑃 𝑧 ]

𝒟[𝑄 𝑧|X ||𝑃 𝑧 ]

• 𝑄 𝑧 𝑋 = 𝒩 𝑧 𝜇 𝑋; 𝜃 , Σ 𝑋; 𝜃
• 𝜇, Σ deterministic functions with parameters 𝜃 that can be 

learned from data; usually implemented via neural networks 

• 𝑃 𝑧 = 𝒩(z|0, I)
• KL-divergence between 2 multivariate Gaussian 

distributions -> closed form:

𝒟[𝑄 𝑧|X ||𝑃 𝑧 ] = 𝒟[𝒩 𝜇 X ,𝛴 X | 𝒩 0, ℐ



Performing stochastic gradient descent on 

𝐸𝑧~𝑄 log 𝑃 𝑋 𝑧 − 𝒟[𝑄 𝑧|X ||𝑃 𝑧 ]

𝐸𝑧~𝑄 log 𝑃 𝑋 𝑧
• take 1 sample of 𝑧, 𝑧~Q and use it to approximate 

𝑃 𝑋 𝑧



Performing stochastic gradient descent on 

𝐸𝑧~𝑄 log 𝑃 𝑋 𝑧 − 𝒟[𝑄 𝑧|X ||𝑃 𝑧 ]

Optimize

𝐸𝑋~𝐷[𝐸𝑧~𝑄(z|𝑋) log 𝑃 𝑋 𝑧 − 𝒟[𝑄 𝑧|X ||𝑃 𝑧 ]]

Equation 8

For each sample of X (from training data D), use single 

sample of Z from 𝑄(z|𝑋) to compute gradient of 

log 𝑃 𝑋 𝑧 − 𝒟[𝑄 𝑧|X ||𝑃 𝑧 ]

Average gradient over many samples of X and z to 

converge on gradient of Equation 8



Performing stochastic gradient descent on 

𝐸𝑧~𝑄 log 𝑃 𝑋 𝑧 − 𝒟[𝑄 𝑧|X ||𝑃 𝑧 ]

𝒟[𝑄 𝑧|X ||𝑃 𝑧 ]

𝐸𝑧~𝑄 log 𝑃 𝑋 𝑧

𝑃 𝑋 𝑧, 𝜃 = 𝒩 𝑋 𝑓 𝑧; 𝜃 , 𝜎2 ∗ 𝐼

𝑄 𝑧 𝑋 = 𝒩 𝑧 𝜇 𝑋; 𝜃 , Σ 𝑋; 𝜃
Cannot push gradients 

(run backprop) through 

sampling node



Performing stochastic gradient descent using 

reparameterization trick

• Redefine sampled latent vector 𝑧~𝑄(z|𝑋) as:

• 𝜇 + 𝜎 ∗ 𝜖
• 𝜇 + 𝜎 we are learning

• 𝜖~𝒩 0,1

• Now, 𝜇 and 𝜎 have gradients but 𝜖 will never change - it 

is a fixed stochastic node, and we do not need to run 

backprop on it. 



Performing stochastic gradient descent using 

reparameterization trick

1. Get mean and covariance of Q(z|X):  𝜇(X) and 𝜎(X)
2. “Sample” from 𝒩(𝜇 X ,𝜎(X)) by:

1. sampling 𝜖~𝒩 0,1

2. computing 𝑧 = 𝜇 𝑋 + Σ
1

2 𝑋 ∗ 𝜖

Gradient Equation:

Equation 10



Performing stochastic gradient descent using 

reparameterization trick

𝒟[𝑄 𝑧|X ||𝑃 𝑧 ]

𝑄 𝑧 𝑋 = 𝒩 𝑧 𝜇 𝑋; 𝜃 , Σ 𝑋; 𝜃

𝑃(𝑋|𝑧 = 𝜇 𝑋 +Σ
1
2 𝑋 ∗ 𝜖,

𝜃) 



4 normal distributions in VAE

1. 𝑃 𝑋 𝑧, 𝜃 = 𝒩 𝑋 𝑓 𝑧; 𝜃 , 𝜎2 ∗ 𝐼
o Probability of each training example when sampled from an 

area of the latent space

2. 𝑃 𝑧 = 𝒩(z|0, I)
o Generating the latent space distribution, P(z) of 

dimension d, using d normal distributions

3. 𝑄 𝑧 𝑋 = 𝒩 𝑧 𝜇 𝑋; 𝜃 , Σ 𝑋; 𝜃
o Enforcing P(z) towards Q(z) by setting Q(z) to the normal 

distribution

4. 𝜖~𝒩 0,1
o Generating points for our decoder P, so Q is differentiable 

and we can use back propagation (reparameterization

trick)

https://medium.com/datadriveninvestor/variational-autoencoder-vae-d1cf436e1e8f

https://medium.com/datadriveninvestor/variational-autoencoder-vae-d1cf436e1e8f


VAE Steps

1. Train network
1. Define latent variables z

2. Find computable formula for P(X)

3. Optimize computable formula for P(X) using stochastic 

gradient descent (and back-propagation) 

2. Generate new samples
1. Generate new samples from P(z)



Generating new samples

1. Sample 𝑧~𝒩(0, 𝐼)
2. Input sample  into decoder



VAE MNIST Training

YouTube: Variational Autoencoder 2D latent space evolution on MNIST



Questions?


