Variational Autoencoders

Marina Kisley
Reading Overview

• Covering:
 • Tutorial on Variational Autoencoders by Carl Doersch, Sections 1 and 2

• Original papers:
 • Auto-encoding Variational Bayes Kingma, D. P. and Welling, M. ICLR, 2014
 • Stochastic Backpropagation and Approximate Inference in Deep Generative Models Rezende, et al. ICML, 2014
Auto-encoders

Infer latent state & reconstruct data from it

https://towardsdatascience.com/generating-images-with-autoencoders-77fd3a8dd368
Variational autoencoders (VAEs)

- Generate new data like training data, X
Generative models

- generate output as similar as possible to $P(X)$
- examples:
 - generate images
 - generate a mass of similar looking objects (trees in video games)
 - generating text
 - ...
Other generative models vs VAEs

<table>
<thead>
<tr>
<th>Existing approaches</th>
<th>VAEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• computationally expensive</td>
<td>• fast training via backpropagation</td>
</tr>
<tr>
<td>• impose structure on data</td>
<td>• weak assumptions about structure of data</td>
</tr>
</tbody>
</table>
VAE Objective

Generate output as similar as possible to $P(X)$ by maximizing **Equation 1:**

$$P(X) = \int P(X|z; \theta)P(z)dz$$

- X : is training/observed data
- z : vector of latent variables
- $P(X|z; \theta)$: likelihood of producing training samples; often Gaussian, $P(X|z, \theta) = \mathcal{N}(X|f(z; \theta), \sigma^2 * I)$
 - $f(z; \theta)$: (mean of normal) family of deterministic functions that generate data X using z and parameters θ
 - $\sigma^2 * I$: (variance of normal) identity matrix * scalar
VAE Steps

1. **Train network**
 1. Define latent variables z
 2. Find computable formula for $P(X)$
 3. Optimize computable formula for $P(X)$ using stochastic gradient descent (and back-propagation)

2. **Generate new samples**
 1. Generate new samples from $P(z)$
1. Define latent variables

Example
MNIST handwritten digits latent variables
• slant
• size
• stroke thickness
• ...
• so many!

Avoid defining the latent structure
1. Define latent variables

“any distribution in d dimensions can be generated by taking a set of d variables that are normally distributed and mapping them through a sufficiently complicated function”

https://en.wikipedia.org/wiki/Artificial_neural_network
1. Define latent variables

- \(P(z) = \mathcal{N}(0, I) \)
- \(f(z; \theta) \): neural net; mean of likelihood
- \(P(X|z; \theta) \): likelihood

\[d \text{ dimensions of } Z, \quad z \sim \mathcal{N}(0, I) \]

\[d \text{-dimensional normal} \quad P(X|z; \theta) = \mathcal{N}(X|f(z; \theta), \sigma^2 * I) \]
VAE Steps

1. **Train network**
 1. Define latent variables z
 2. **Find computable formula for $P(X)$**
 3. Optimize computable formula for $P(X)$ using stochastic gradient descent (and back-propagation)

2. **Generate new samples**
 1. Generate new samples from $P(z)$
VAE Objective

Generate output as similar as possible to $P(X)$ by maximizing **Equation 1:**

$$P(X) = \int P(X|z; \theta)P(z)dz$$

- X : is training/observed data
- z : vector of latent variables
- $P(X|z; \theta)$: likelihood of producing training samples; often Gaussian, $P(X|z, \theta) = \mathcal{N}(X|f(z; \theta), \sigma^2 * I)$
- $P(z) = \mathcal{N}(z|0, I)$
VAE Objective: Sampling

- Why not sample?
 - sampling in high-dimensional space requires *many* samples

\[
distance^2 \approx 0.0387 < 0.2693
\]
VAE solution to sampling

• Make space of Z sampling ‘smaller’ by using *new function*

 new function $Q(z|X)$ gives distribution over z values that are likely to produce X

 • ideally, $Q(z|X)$ space will be **smaller** than $P(z)$

• usually normal

• $Q(z|X) = \mathcal{N}(z|\mu(X; \theta), \Sigma(X; \theta))$

 • μ, Σ deterministic functions with parameters θ that can be learned from data; usually implemented via neural networks
How does $P(X)$ relate to $\mathbb{E}_{Z \sim Q} P(X|z)$?

KL-divergence definition

$$D(q(x) \parallel p(x)) = \mathbb{E}_{q(x)} \left[\log \left(\frac{q(x)}{p(x)} \right) \right]$$

KL-divergence between $P(z|X)$ and $Q(z)$

$$D \left(Q(Z) \parallel P(z|X) \right) = \mathbb{E}_{Z \sim Q(z)} \left[\log \left(\frac{Q(z)}{P(z|X)} \right) \right]$$

$$D \left(Q(Z) \parallel P(z|X) \right) = \mathbb{E}_{Z \sim Q(z)} \left[\log(Q(z)) - \log(P(z|X)) \right]$$

Eualtion 2
How does $P(X)$ relate to $\mathbb{E}_{z \sim Q} P(X|z)$?

$$\mathcal{D}(Q(Z) \| P(z|X)) = \mathbb{E}_{z \sim Q(z)} \left[\log(Q(z)) - \log(P(z|X)) \right]$$

Equation 2

Apply Bayes rule: $P(z|X) = \frac{P(X|Z)p(z)}{P(X)}$

$$\log(P(X)) - \mathcal{D}[Q(z)||P(z|X)] = \mathbb{E}_{z \sim Q} \left[\log(P(X|z)) \right] - \mathcal{D}(Q(z)||P(z))$$

Equation 4

$Q(z)$ does not depend on X though? Replace $Q(z)$ with $Q(z|X)$.
How does $P(X)$ relate to $\mathbb{E}_{z \sim Q} P(X|z)$?

$$\log(P(X)) - \mathcal{D}[Q(z|X) || P(z|X)] = \mathbb{E}_{z \sim Q} \left[\log(P(X|z)) \right] - \mathcal{D}(Q(z|X) || P(z))$$

Equation 5

- **maximize probability of data**
 - cannot compute

- **minimize divergence** (but $P(z|X)$ cannot be computed analytically)
 - can optimize with stochastic gradient descent

- **minimize divergence** ($Q(z|X)$ is tractable)
 - perform stochastic gradient descent on right hand side (RHS)
VAE Steps

1. **Train network**
 1. Define latent variables z
 2. Find computable formula for $P(X)$
 3. **Optimize computable formula for $P(X)$ using stochastic gradient descent (and back-propagation)**

2. **Generate new samples**
 1. Generate new samples from $P(z)$
Performing stochastic gradient descent on
\[E_{z \sim Q}[\log(P(X|z))] - \mathcal{D}[Q(z|X)||P(z)] \]

\[\mathcal{D}[Q(z|X)||P(z)] \]

- \(Q(z|X) = \mathcal{N}(z|\mu(X; \theta), \Sigma(X; \theta)) \)
 - \(\mu, \Sigma \) deterministic functions with parameters \(\theta \) that can be learned from data; usually implemented via neural networks
- \(P(z) = \mathcal{N}(z|0, I) \)
- KL-divergence between 2 multivariate Gaussian distributions \(\rightarrow \) closed form:

\[\mathcal{D}[Q(z|X)||P(z)] = \mathcal{D}[\mathcal{N}(\mu(X), \Sigma(X))||\mathcal{N}(0, I)] \]
Performing stochastic gradient descent on

\[\mathbb{E}_{z \sim Q} \left[\log(P(X|z)) \right] - \mathcal{D}[Q(z|X)||P(z)] \]

- \[\mathbb{E}_{z \sim Q} \left[\log(P(X|z)) \right] \]
- take 1 sample of \(z \), \(z \sim Q \) and use it to approximate \(P(X|z) \)
Performing stochastic gradient descent on

\[E_{z \sim Q}[\log(P(X|z))] - \mathcal{D}[Q(z|X)\|P(z)] \]

Optimize

\[E_{x \sim D}[E_{z \sim Q(z|x)}[\log(P(X|z))] - \mathcal{D}[Q(z|x)\|P(z)]] \]

Equation 8

For each sample of X (from training data D), use single sample of Z from \(Q(z|x) \) to compute gradient of

\[[\log(P(X|z))] - \mathcal{D}[Q(z|x)\|P(z)] \]

Average gradient over many samples of X and z to converge on gradient of Equation 8
Performing stochastic gradient descent on

$$E_{z \sim Q} \left[\log(P(X|z)) \right] - \mathcal{D}[Q(z|X) \| P(z)]$$

$$\mathcal{D}[Q(z|X) \| P(z)]$$

$$\mathcal{KL}[\mathcal{N}(\mu(X), \Sigma(X)) \| \mathcal{N}(0, I)]$$

Sample z from $\mathcal{N}(\mu(X), \Sigma(X))$

$E_{z \sim Q} \left[\log(P(X|z)) \right]$}

Cannot push gradients (run backprop) through sampling node
Performing stochastic gradient descent using **reparameterization trick**

- Redefine sampled latent vector $z \sim Q(z|X)$ as:
 - $\mu + \sigma \ast \epsilon$
 - $\mu + \sigma$ we are learning
 - $\epsilon \sim \mathcal{N}(0,1)$
 - Now, μ and σ have gradients but ϵ will never change - it is a fixed stochastic node, and we do not need to run backprop on it.
Performing stochastic gradient descent using reparameterization trick

1. Get mean and covariance of $Q(z|X)$: $\mu(X)$ and $\sigma(X)$
2. “Sample” from $\mathcal{N}(\mu(X), \sigma(X))$ by:
 1. sampling $\epsilon \sim \mathcal{N}(0, 1)$
 2. computing $z = \mu(X) + \Sigma^{1/2}(X) \cdot \epsilon$

Gradient Equation:

$$E_{X \sim D} \left[E_{\epsilon \sim \mathcal{N}(0, 1)} \left[\log P(X | z = \mu(X) + \Sigma^{1/2}(X) \cdot \epsilon) \right] - D [Q(z|X) \| P(z)] \right]$$

Equation 10
Performing stochastic gradient descent using **reparameterization trick**

\[
\mathcal{D}[Q(z|X)||P(z)] = \mathcal{KL}[\mathcal{N}(\mu(X), \Sigma(X))||\mathcal{N}(0, I)]
\]

\[
Q(z|X) = \mathcal{N}(z|\mu(X; \theta), \Sigma(X; \theta))
\]

\[
P(X|z) = \mu(X) + \Sigma^2(X) * \epsilon
\]

\[
\|X - f(z)\|^2
\]
4 normal distributions in VAE

1. \(P(X|z, \theta) = \mathcal{N}(X|f(z; \theta), \sigma^2 * I) \)
 - Probability of each training example when sampled from an area of the latent space

2. \(P(z) = \mathcal{N}(z|0, I) \)
 - Generating the latent space distribution, \(P(z) \) of dimension \(d \), using \(d \) normal distributions

3. \(Q(z|X) = \mathcal{N}(z|\mu(X; \theta), \Sigma(X; \theta)) \)
 - Enforcing \(P(z) \) towards \(Q(z) \) by setting \(Q(z) \) to the normal distribution

4. \(\epsilon \sim \mathcal{N}(0,1) \)
 - Generating points for our decoder \(P \), so \(Q \) is differentiable and we can use back propagation (reparameterization trick)

https://medium.com/datadriveninvestor/variational-autoencoder-vae-d1cf436e1e8f
VAE Steps

1. **Train network**
 1. Define latent variables z
 2. Find computable formula for $P(X)$
 3. Optimize computable formula for $P(X)$ using stochastic gradient descent (and back-propagation)

2. **Generate new samples**
 1. Generate new samples from $P(z)$
Generating new samples

1. Sample \(z \sim \mathcal{N}(0, I) \)
2. Input sample into decoder
VAE MNIST Training

YouTube: Variational Autoencoder 2D latent space evolution on MNIST
Questions?