Integrating Topics and Syntax

Paper Presentation

CSC 665 – Advanced Topics in Probabilistic Graphical Models

Marium Yousuf

Outline

- Introduction
- Background
- Model
- Inference
- Results

Introduction

- Word dependencies
 - Short-range (syntax)
 - Long-range (context)
- Generative Model
 - Both kinds of dependencies
 - Syntactic classes and semantic topics
 - no representation beyond statistical dependency

Background

- Syntactic Class
 - Short-range
 - Syntax
 - Span words within the limit of a sentence
 - Function Words
 - Handled by Hidden Markov Model

- Semantic Topic
 - Long-range
 - Context
 - Span words throughout the document (similar words)
 - Content Words
 - Handled by topic model

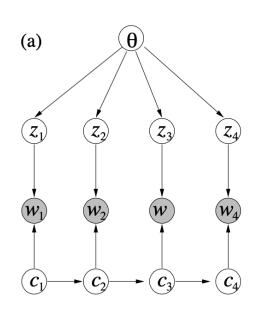
Model

- Captures the interaction between the two components
 - Modularity
- Identify the role that words play in a document
 - Organizes words into syntactic and semantic classes
- Combination of two models
 - Each sensitive to one kind of dependency
- Mixture: either short- or long-range dependencies
- Product: both short- and long-range dependencies
- Asymmetry captured in a composite model

Composite Model

- The syntactic model
 - HMM
 - when to emit a content word, and
- The semantic model to choose
 - Topic model
 - which word to emit.
- Three sets of variables:
 - A sequence of words $w = \{w_1, ..., w_n\}$
 - A sequence of topic assignments $z = \{z_1, ..., z_n\}$
 - A sequence of classes $c = \{c_1, \dots, c_n\}$
 - One class $c_i = 1$ is designated the "semantic" class.

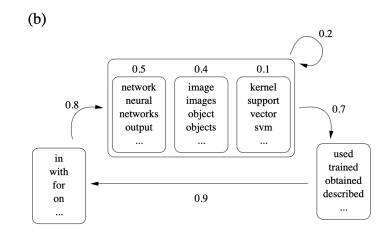
Composite Model



- a distribution over words $\phi^{(z)}$
- each class $c \neq 1$ is associated with a distribution over words $\phi^{(c)}$
- d has a distribution over topics $\theta^{(d)}$
- transitions between classes c_{i-1} and c_i follow a distribution $\pi^{(C_{i-1})}$
- Document generation:
 - 1) Sample $\theta^{(d)}$ from a Dirichlet (α) prior
 - 2) For each word w_i in document d
 - Draw z_i from $\theta^{(d)}$
 - Draw c_i from $\pi^{(c_{i-1})}$
 - If $c_i = 1$, then draw w_i from $\phi^{(z_i)}$ (semantic), else draw w_i from $\phi^{(c_i)}$ (syntactic)

Composite Model

- Phrase generation
- Three-class HMM
 - Multinomial distributions over words $(c_i \neq 1)$
 - Topic model containing three topics ($c_i = 1$)
- Probabilities in semantic class
 - to choose a topic when the HMM transitions to the semantic class
 - generate sentences with the same syntax but different content



Inference

- θ : Dirichlet(α) distribution
- $\phi^{(z)}$: Dirichlet(β) distribution
- rows of the transition matrix: HMM Dirichlet(γ) distribution
- $\phi^{(c)}$: Dirichlet(δ) distribution
- All Dirichlet distributions are symmetric (uniform vector of reals)
- Gibbs Sampling
 - Draw topic and class assignment
 - Collapsed Gibbs Sampling (HMM)

Results

- Syntactic classes and semantic topics
 - HMM allocates content words into semantic class
 - Assigned to topics
- Identifying function and content words
 - Factorization of words between the two components
- Marginal Probabilities
 - LDA outperforms on smaller corpora compared to HMM model
- Part-of-speech tagging
 - Focus on identifying the syntactic class of a word
- Document Classification
 - Grouping documents according to context