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B. EFRON*

Originally a talk delivered at a conference on Bayesian
statistics, this article attempts to answer the following ques-
tion: why is most scientific data analysis carried out in a
non-Bayesian framework? The argument consists mainly of
some practical examples of data analysis, in which the Bayes-
ian approach is difficult but Fisherian/frequentist solutions
are relatively easy. There is a brief discussion of objectivity
in statistical analyses and of the difficulties of achieving
objectivity within a Bayesian framework. The article ends
with a list of practical advantages of Fisherian/frequentist
methods, which so far seem to have outweighed the philo-
sophical superiority of Bayesianism.

KEY WORDS: Fisherian inference; Frequentist theory;
Neyman-Pearson—-Wald; Objectivity.

1. INTRODUCTION

The title is a reasonable question to ask on at least two
counts. First of all, everyone used to be a Bayesian. Laplace
wholeheartedly endorsed Bayes’s formulation of the infer-
ence problem, and most 19th-century scientists followed
suit. This included Gauss, whose statistical work is usually
presented in frequentist terms.

A second and more important point is the cogency of the
Bayesian argument. Modern statisticians, following the lead
of Savage and de Finetti, have advanced powerful theoret-
ical reasons for preferring Bayesian inference. A byproduct
of this work is a disturbing catalogue of inconsistencies in
the frequentist point of view.

Nevertheless, everyone is not a Bayesian. The current
era is the first century in which statistics has been widely
used for scientific reporting, and in fact, 20th-century sta-
tistics is mainly non-Bayesian. [Lindley (1975) predicts a
change for the 21st!] What has happened?

2. TWO POWERFUL COMPETITORS

The first and most obvious fact is the arrival on the scene
of two powerful competitors: Fisherian theory and what Jack
Kiefer called the Neyman—Pearson—Wald (NPW) school of
decision theory, whose constituents are also known as the
frequentists. Fisher’s theory was invented, and to a re-
markable degree completed, by Fisher in the period between
1920 and 1935. NPW began with the famous lemma of
1933, asymptoting in the 1950s, though there have contin-
ued to be significant advances such as Stein estimation,
empirical Bayes, and robustness theory.

Working together in rather uneasy alliance, Fisher and
NPW dominate current theory and practice, with Fisherian
ideas particularly prevalent in applied statistics. I am going
to try to explain why.

*B. Efron is Professor, Department of Statistics, Stanford University,
Stanford, CA 94305.
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3. FISHERIAN STATISTICS

In its inferential aspects Fisherian statistics lies closer to
Bayes than to NPW in one crucial way: the assumption that
there is a correct inference in any given situation. For ex-
ample, if x;, x5, . . . , x50 is arandom sample from a Cauchy
distribution with unknown center 6,

1
al + O — 0

fobx) =

then in the absence of prior knowledge about 6 the correct
95% central confidence interval for 6 is, to a good approx-

imation,
b+ 1.96/\/—[;,,

where 6 is the maximum likelihood estimator (MLE) and
Iy is the second derivative of the log-likelihood function

evaluated at § = 6. The (mathematically) equally good ap
proximation

6 + 1.96/\/10

(10 being the expected Fisher information), is not correct
(Efron and Hinkley 1978).

Fisher’s theory is a theory of archetypes. For any given
problem the correct inference is divined by reduction to an
archetypal form for which the correct inference is obvious.
The first and simplest archetype is that of making inferences
about 6 from one observation x in the normal model

x~ N, 1). eY)

Fisher was incredibly clever at producing such reductions:
sufficiency, ancillarity, permutation distributions, and
asymptotic optimality theory are among his inventions, all
intended to reduce complicated problems to something like
(1). (It is worth noting that Fisher’s work superseded an
earlier archetypical inference system, Karl Pearson’s method
of moments and families of frequency curves.)

Why is so much of applied statistics carried out in a
Fisherian mode? One big reason is the automatic nature of
Fisher’s theory. Maximum likelihood estimation is the orig-
inal jackknife, in Tukey’s sense of a widely applicable and
dependable tool. Faced with a new situation, the working
statistician can apply maximum likelihood in an automatic
fashion, with little chance (in experienced hands) of going
far wrong and considerable chance of providing a nearly
optimal inference. In short, he does not have to think a lot
about the specific situation in order to get on toward its
solution.

Bayesian theory requires a great deal of thought about
the given situation to apply sensibly. This is seen clearly in
the efforts of Novick (1973), Kadane, Dickey, Winkler,
Smith, and Peters (1980), and many others to at least par-
tially automate Bayesian inference. All of this thinking is
admirable in principle, but not necessarily in day-to-day
practice. The same objection applies to some aspects of
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Figure 1. Four Basic Statistical Operations and How They Re-
late to Estimation. Source: Efron (1982b, fig. 2).

NPW theory, for instance, minimax estimation procedures,
and with the same result: they are not used very much.

Not all of statistics is inference. The little diagram of all
of statistics in Figure 1 (reprinted from Efron 1982b) starts
at the bottom with “enumeration,” the collecting and listing
of individual datum. The diagram proceeds upward to the
reduction of the raw data to more understandable form through
the adversarial processes of summary and comparison. This
is the part of the analysis where, usually, the statistician
decides on a reasonable probabilistic model for the situation.
At the top of the diagram is inference. This is the step that
takes us from the data actually seen to data that might be
expected in the future.

Bayesian theory concentrates on inference, which is the
most glamorous part of the statistical world, but not nec-
essarily the most important part. Fisher paid a lot of attention
to the earlier steps of the data analysis. Randomization for
instance, and experimental design in general, is a statement
about how data should be collected, or “enumerated,” for
best use later in the analysis. Maximum likelihood is a
provably efficient way to summarize data, no matter what
particular estimation problems are going to be involved in
the final inference (Efron 1982b). The NPW school has also
contributed to the theory of enumeration, notably in the
areas of survey sampling and efficient experimental design.

Fisher’s theory culminated in fiducial inference, which
to me and most current observers looks like a form of ob-
jective (as opposed to subjective) Bayesianism. I will dis-
cuss the problems and promise of objective Bayesianism
later, but it is interesting to notice that fiducial inference is
alone among Fisher’s major efforts in its failure to enter
common statistical application. In its place, the NPW theory
of confidence intervals dominates practice, despite some
serious logical problems in its foundations.

4. THE NPW SCHOOL

Unlike Bayes and Fisher, the NPW school does not insist
that there is a correct solution for a given inferential situ-
ation. Instead, a part of the situation deemed most relevant
to the investigator is split off, stated in narrow mathematical
fashion, and it is hoped, solved. For example, the correct
Bayesian or Fisherian inference for 6 in situation (1) leads
directly to the correct inference for y = 1/(1 + 6), but this
is not necessarily the case in the NPW formulation. (What
is the uniform minimum variance unbiased estimate of y?)

The NPW piecewise approach to statistical inference has
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been justly criticized by Bayesians as self-contradictory,
inconsistent, and incoherent. The work of Savage, de Fi-
netti, and their successors shows that no logically consistent
inference maker can behave in such a non-Bayesian way.
The reply of the NPW school is that there is no reason to
believe that statistical inference should be logically consis-
tent in the sense of the Bayesians, and that there are good
practical reasons for approaching specific inference prob-
lems on an individual basis.

As an example consider the following problem: we ob-
serve a random sample x,, x,, . . . , X;5 from a continuous
distribution F on the real line and desire an interval estimate
for 6, the median of F. The experiment producing the x; is
a new one, so very little is known about F.

A genuine Bayesian solution seems difficult here, since
it requires a prior distribution on the space of all distributions
on the real line. Frequentist theory produces a simple so-
lution in terms of a confidence interval based on the order
statistics of the sample,

0 € [x3), x12)]

with probability .963, no matter what F may be. The fact
that this solution, unlike a Bayesian one, does not also solve
the corresponding problem for say ¢ = 50% trimmed mean
of F does not dismay the frequentist, particularly if a sat-
isfactory Bayesian solution is not available.

The Bayesian accusation of incoherency of the frequentist
cuts both ways: in order to be coherent Bayesians have to
solve all problems at once, an often impossible mental ex-
ercise.

As another example consider “rejecting at the .05 level.”
The inconsistencies of this practice are well documented in
the Bayesian literature (see Lindley 1982). On the other
hand it is one of the most widely used statistical ideas. Its
popularity is founded on a crucial practical observation: it
is often easier to compare quantities than to assign them
absolute values. In this case the comparison is between the
amount of evidence against the null hypothesis provided by
different possible outcomes of the data. For testing Hy: x ~
N, 1) versus H,: x ~ N(2, 1), we know that a larger
observed x provides greater evidential value against H, and
in favor of H,, even if we cannot absolutely quantify “ev-
idence.”

A Bayes solution to this problem, “the aposteriori odds
ratio is 7 to 1 in favor of H,,” is more satisfactory than
“the data are significant at the .05 level,” but it also requires
more input. In fact, it tacitly implies that we have assigned
an absolute measure of evidence to every possible outcome.
Absolute here means that the meaning of 7 to 1 is the same
no matter what experiment it came from. [Good’s (1965)
Bayes—non-Bayes compromise suggests using Bayesian ideas
in a comparative mode, but this is the only example I know.]

The heart attack decision tree (Fig. 2) illustrates another
difficult situation for the honest Bayesian. The tree purports
to predict coronary patients with high risk of dying (pop-
ulation 2) on the basis of variables observed at hospital
admission. A series of dichotomous observations are made,
for example, high or low kinase level, which result in a
final prediction. The nodes marked “2” on the tree predict
death. Of the 389 patients classified by the tree, only 1 out
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Figure 2. A Decision Tree for Classifying Heart Attack Patients Into Low Risk of Dying (population 1) or High Risk of Dying (population
2). Smaller values of the decision variables go to the left. Circled numbers at terminal nodes indicate population prediction. For example, 6
of the 389 patients in the training set end up at T6, 4 from population 1, 2 from population 2; these patients would all be predicted to be in
population 2. Abbreviations: PKCK, peak creatinine kinase level; MNSBP, minimum systolic blood pressure; SBP, systolic blood pressure;
FF, respiration rate; HR, average heart rate; SV, superventricular arrhythmia; HB3, heart block 3rd degree; PEDEMA, peripheral edema; F,
Fisher linear discriminant function, differing from node to node. Source: Efron (1982a, fig. 7.1).

of 30 deaths was misclassified, that is, predicted to live.
Can we believe that the tree has 96.7% probability of suc-
cessfully predicting deaths?

Because the medical investigators had little prior knowl-
edge of the situation, the tree was constructed by an elab-
orate data-fitting procedure, which in fact was designed to
maximize the apparent success rate. At each stage the di-
chotomous variable to be used and the splitting point de-
fining “high” or “low” were chosen to give the maximum
apparent difference between populations 1 and 2. A boot-
strap analysis, much like a cross-validation, gave an un-
biased estimate of successful prediction of death of about
70%, rather than 96.7%, for this tree. (Details appear in
sec. 7.6 of Efron 1982a.)

The fact that the observed data were used to construct
the tree, and how they were used, makes no difference to
the Bayesian, since it has no effect on the likelihood func-
tion. This is similar in spirit to the fact that the stopping
rule used in a sequential procedure has no Bayesian con-
sequence. It makes a world of difference to the frequentist.
If exactly the same tree had been constructed by a less
flexible rule, the unbiased estimate would move closer to
the observed value 96.7%. This is incoherent behavior. The
Bayesian estimate, whatever it is, would not change.

“Ad hoc” is a pejorative adjective in Bayesian descrip-
tions of frequentist statistics. On the other hand, ad hoc
reasoning produces a reasonable answer here, in a problem
that seems far too complicated for a full Bayesian solution.
The right to split off the simple part of a complicated in-
ference problem should not be the exclusive property of the
frequentists, but I am not aware of much Bayesian activity

along these lines. The coherency approach of Savage and
de Finetti seems to have discouraged it. (For a counterex-
ample to this statement see Boos and Monahan, in press.)

The NPW school invented decision theory, but it is not
decision theory that separates them from the Bayesians. In
fact, Bayesians have made good use of decision theory. The
parting of the ways occurs on the crucial issue of 6 averages,
expectations taken with the state of nature 6 fixed. In other
words, frequentist calculations. Controlling, or at least com-
puting, 6 averages is central to the NPW approach and
irrelevant to the Bayesians. This brings us to the topic of
objectivity, in my opinion the linchpin of non-Bayesian
success with statistical practitioners.

5. OBJECTIVITY

So far I have been careful not to define the kind of Bayes-
ian theory under criticism. The dominant Bayesian school,
and the one with the legitimate claim to philosophic co-
herency, is the subjective Bayesianism of de Finetti and
Savage. Now by definition one cannot argue with a sub-
jectivist, so I will just state the obvious fact: though sub-
jectivism is undoubtedly useful in situations involving personal
decision making, for example, business and legal decisions,
it has failed to make much of a dent in scientific statistical
practice. The nature of scientific communication makes me
doubt that it ever will.

“Scientific objectivity” is more than a catch-phrase. Strict
objectivity is one of the crucial factors separating scientific
thinking from wishful thinking. Complete objectivity about
one’s own work is a little much to expect from a human
being, even a scientist, but it is not too much to expect from
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one’s colleagues. A prime requirement of any statistical
theory intended for scientific use is that it reassures oneself
and others that the data have been interpreted fairly.

With this in mind, it is not surprising that intuitively
“fair” statistical ideas, like unbiasedness, confidence in-
tervals, and .05 significance, are immensely popular with
the statistical public. Ideas that do not pass the test of ob-
jectivity are not much used. This includes NPW ideas as
well as Bayesian ones, for example, James—Stein estima-
tion. (An interesting borderline case, which could go either
way depending on how it develops, is robust estimation.)

Of course there is no scientific law that says that objec-
tivity must be interpreted in a frequentist sense, and in fact,
there is another line of Bayesian thought that attempts to
deal directly with the issue of fairness. I call this *“objective
Bayes theory” to differentiate it from the Savage—de Finetti
approach. Bayes and Laplace were objective Bayesians, and
in this century, Jeffreys (1961) wrote a famous book on the
subject. The goal of objective Bayesianism is to produce
prior distributions that capture the idea of objectivity.

Consider situation (1) again. The obvious prior here is
the improper one, spreading probability mass for 6 uni-
formly from — to +%, often denoted simply by “d6.”
A Bayesian using this prior obtains good frequentist results.
The central 90% aposteriori interval for 6, for example,
agrees exactly with the standard 90% confidence interval.

Next consider the situation where we observe

(2) B NZ((%) ’)’ @

which is just two independent copies of (1). In some recent
work it was necessary for me to make inferences about the
parameter A = 6, 6,. It seemed intuitively reasonable, and
objective, to use the improper prior d6;, d6,, which spreads
probability mass for (6,, 6,) uniformly over the entire plane.

As Table 1 shows, the aposteriori central 90% probability
interval for A derived from the prior d6, d6, does not have
good frequentist properties. For values of (6, 6,) in the
first quadrant, it gives overly low probabilities of missing
A on the left and overly high probabilities of missing A on
the right. From a frequentist viewpoint we have not been
very objective at all, having biased the interval estimates
toward the origin.

Recently Charles Stein has given a method of constructing
priors that have better frequentist properties (Stein 1982).

Table 1. Theoretical Versus Actual Probability of
Not Covering A = 6,6, Using the Central 90%
Aposteriori Interval Based on the
Improper Prior d6; d6,

Theoretical

(64, 62) .050 .050

(0,0) 002 (006) 002 (006)
2,2 023 (036) 087 (065)
(3,3) 029 (041) 074 (053)
(4, 4) 031 (046) 070 (047)
(5, 5) 036 (048) 064 (043)
(1, 10) 045 (053) 051 (053)

NOTE: Figures in parentheses are, essentially, the same probabilities using the improper
prior (62 + 62)1/2 d6y doa.
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For the parameter A, Stein’s theory suggests using the im-
proper prior (82 + 62)"? d6, d6,, and Table 1 shows that
this does indeed give better frequentist coverage probabil-
ities. [In fact, these figures were derived for the bias-cor-
rected percentile intervals, sec. 10.7 of Efron (1982a), and
it was then verified that these intervals were almost the same
as Stein’s.]

The point of the example is that the theory of Bayesian
objectivity cannot be a simple one. The correct objective
prior seems to depend on which parameter we want to es-
timate. In higher dimensions when we have several param-
eters rather than just two, these problems become acute
(Efron 1982b). This does not mean that the situation is
hopeless. Even a partial solution to the problem of Bayesian
objectivity would likely be a valuable contribution to sta-
tistical theory and practice. As a hopeful prototype, the
Bayesian explanation of the James—Stein estimator has
deepened our understanding of this potentially wonderful
tool. The whole subject of empirical Bayes can be thought
of as an exercise in Bayesian objectivity—trying not to put
more information than necessary into the prior—and more
progress in this area can be expected.

6. SUMMARY

A summary of the major reasons why Fisherian and NPW
ideas have shouldered Bayesian theory aside in statistical
practice is as follows:

1. Ease of use: Fisher’s theory in particular is well set
up to yield answers on an easy and almost automatic basis.

2. Model building: Both Fisherian and NPW theory pay
more attention to the preinferential aspects of statistics.

3. Division of labor: The NPW school in particular al-
lows interesting parts of a complicated problem to be broken
off and solved separately. These partial solutions often make
use of aspects of the situation, for example, the sampling
plan, which do not seem to help the Bayesian.

4. Objectivity: The high ground of scientific objectivity
has been seized by the frequentists.

None of these points is insurmountable, and in fact, there
have been some Bayesian efforts on all four. In my opinion
a lot more such effort will be needed to fulfill Lindley’s
prediction of a Bayesian 21st century.

[Received July 1985.]
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HERMAN CHERNOFF*

This discussion of Efron’s elegant paper reminds me of
the story of the reaction of a jealous mathematician to a
new theorem. “This theorem is irrelevant. Moreover, it is
wrong. Besides, I derived it long ago.” I wish (a) to add
some reasons why not everyone is a Bayesian, (b) to explain
why everyone is, should be, or will soon be a Bayesian,
and (c) to claim that (objective) Bayesianism is wrong.

1. WHY NOT EVERYONE IS A BAYESIAN

Teaching

Statistical practice changes slowly because teaching of
elementary statistics changes slowly. Most statistical prac-
tice is at a rather elementary level, although frequently ap-
plied to complex problems. It is dedicated to communicate
with people with meager statistical training and constrained
by conventions in elementary texts. Therefore, Bayes’s
theorem is relatively abstract and less intuitive than appli-
cations of proportions, means, and standard deviations.

Once sociologists and physicians have learned about sig-
nificance levels well enough to use them, a major reorga-
nization of the thought processes is required to adapt to
decision theoretic or Bayesian analysis. Guttman (1978) has
railed for years about the stargazing habits (associated with
significance levels .01 and .05) of his fellow sociologists,
which he attributes to poor teaching on the part of the sta-
tistical profession.

Practice Versus Theory

The popularity of Fisherian theory stems in part from the
byproducts of the analysis suggested by the theory. Analysis
of variance is one of the most important data analytic tools
in statistics. This tool stems from a hypothesis-testing for-
mulation that is difficult to take seriously and would be of
limited value for making final conclusions. Its importance
stems from the fact that most scientific and statistical prac-
tice is concerned, not with grand final conclusions, but with
many small steps gradually contributing clarity and order
in moderately confused situations. Theory serves as a guide
and enhances intuition, and it should not be used as a pre-
scription requiring optimal behavior. Fisherian theory pro-
vides relatively simple, effective tools, the robustness of

*Herman Chernoff is Professor, Department of Statistics, Harvard Uni-
versity, Cambridge, MA 02138.
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Comment

which seems apparent in circumstances in which the Bayes-
ian and decision theorist may find it difficult to operate.

By the time clarity is attained, there is little additional
need for sophisticated statistics or for statisticians. By then
the issues are clear, the appropriate experiments are evident,
the noise factors are reduced to minor significance, and the
conclusions are obvious to any intelligent observer. At this
point, it is usually forgotten that a statistician ever played
a useful role.

2. WHY EVERYONE IS, SHOULD BE,
OR WILL BE A BAYESIAN

How I Am a Bayesian

In doing applied statistics, I feel relatively uninhibited
and engage in many practices that might be frowned on by
careful dogmatists. With the help of theory, I have devel-
oped insights and intuitions that, I believe, prevent me from
giving undue weight to generalizations drawn from exces-
sive data dredging or other forms of statistical heresy. This
feeling of ease and freedom, however, does not exist until
I have formulated some decision theoretic and Bayesian
view of the problem. Until then, there is discomfort and the
feeling that the problem is not well stated or understood.
In this sense, I am a Bayesian and decision theorist in spite
of my use of Fisherian tools. Is this a unique position or
are most of us closet Bayesians and decision theorists in
this sense?

When Bayesianism Is the Only Way

Whereas most applications of statistics are to small sci-
ence and technology, there are cases in which great issues
are involved. Makers of public policy are sometimes forced
to make decisions on issues for which the scientific foun-
dations are unclear and fundamental data are lacking (e.g.,
acid rain, ozone depletion, the safety of nuclear power, and
carcinogenic effects of diesel fumes). Decisions made now
in considerable ignorance have important consequences.
Delaying such decisions is also potentially costly. Should
we rely on the vagaries of coin tossing, or uninformed public
discussions, or the possibly slightly better scientific anal-
ysis? But scientific analysis in nuclear safety may, for lack
of any real alternative, require a Bayesian fault tree analysis
with priors based more on imagination than on real data.
One hopes that numbers so derived will not have undue
influence on a public impressed by quantification.
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