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Abstract

Important inference problems in statistical physics, computer vision, error-correcting
coding theory, and artificial intelligence can all be reformulated as the computation of
marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an
efficient way to solve these problems that is exact when the factor graph is a tree, but
only approximate when the factor graph has cycles.

We show that BP fixed points correspond to the stationary points of the Bethe ap-
proximation of the free energy for a factor graph. We explain how to obtain region-
based free energy approximations that improve the Bethe approximation, and corre-
sponding generalized belief propagation (GBP) algorithms.

We emphasize the conditions a free energy approximation must satisfy in order to
be a “valid” or “maxent-normal” approximation. We describe the relationship between
four different methods that can be used to generate valid approximations: the “Bethe
method,” the “junction graph method,” the “cluster variation method,” and the “region
graph method.”

The region graph method is the most general of these methods, and it subsumes
all the other methods. Region graphs also provide the natural graphical setting for
GBP algorithms. We explain how to obtain three different versions of GBP algorithms
and show that their fixed points correspond to stationary points of the region graph
approximation to the free energy.

Finally, we explain how to tell whether a region-based approximation, and its corre-
sponding GBP algorithm, is likely to be accurate, and describe empirical results show-
ing that GBP can significantly outperform BP.
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Constructing Free Energy Approximations and
Generalized Belief Propagation Algorithms

Jonathan S. Yedidi@, William T. Freemani, and Yair Weiss;

Abstract—Important inference problems in statistical physics, In this list of “standard” belief propagation (BP) algorithms,
computer vision, error-correcting coding theory, and artificial in-  we have blurred a distinction between two different objectives
telligence can all be reformulated as the computation of marginal that one might have, and the slightly different algorithms that

probabilities on factor graphs. The belief propagation (BP) algo- . . . - L
rithm is an efficient way to solve these problems that is exact when result. Sometimes, one might be interested in obtaining the one

the factor graph is a tree, but only approximate when the factor global state of a system that is most probable or otherwise op-
graph has cycles. _ _ _ timal. In other cases, one is interested in obtaining marginal
We show that BP fixed points correspond to the stationary probabilities for some subset of the nodes of the system, given

points of the Bethe approximation of the free energy for a factor ¢, 4ence ahout other nodes in the system. In this paper, we will
graph. We explain how to obtain region-based free energy approx-

imations that improve the Bethe approximation, and correspond- [0CUS exclusively on this latter problem.

ing generalized belief propagation (GBP) algorithms. In all standard BP algorithms, messages are sent from one
We emphasize the conditions a free energy approximation must node in a graphical model to a neighboring node. The algo-

ﬁ?ﬁsw\,&g g;-i‘dse()rl’ig)ebtﬁear;gl[li?)ngfzipm;e)isvnet-eT]O;g:J?"ldfflfpepl)’;c;])f[”:]nae-th rithms are exact when the graphical model is free of cycles.

ods that can be used to generate valid approximations: the “Bethe Thus, a common approach for dealing with grap.hlcal models

method,” the “junction graph method,” the “cluster variation that do have cycles is to try to convert them to equivalent cycle-

method,” and the “region graph method.” free graphical models, and then to use the standard BP algo-
The region graph method is the most general of these methods, rithm [13]. In some cases, this is possible, but for many other

and it subsumes all the other methods. Region graphs also pro- c5seg of practical interest, such an approach is intractable, and
vide the natural graphical setting for GBP algorithms. We explain t settle f imat thod

how to obtain three different versions of GBP algorithms and show one must settle for approximale me . DaS: )

that their fixed points correspond to stationary points of the region ~ Fortunately, the standard BP algorithms are well-defined, and

graph approximation to the free energy. often give surprisingly good approximate results, for graphical

Finally, we explain how to tell whether a region-based approxi- models with cycles. Nevertheless, in such cases there are no
mation, and its corresponding GBP algorithm, is likely to be accu- g, 5 antees; and sometimes the results are quite poor, or the al-
rate, and describe empirical results showing that GBP can signifi- . o . . ’
cantly outperform BP. gorithm fails to give any result at all because it does not con-
verge [14]. Two major goals of this paper are to explain why the
| INTRODUCTION standard I_3P algorithm often works so well even_for graphical

' models with cycles, and to use that understanding to develop

Problems involving probabilistic inference using graphicgproved algorithms for cases when it does not work well.
models are important in a wide variety of disciplines, includ- The class of algorithms that we will describe, which we call
ing statistical physics, signal processing, artificial intelligencgenerahzed belief propagatiofGBP) algorithms, all have the
and digital communications [1], [2]. Message-passing alg@naracteristic that sets mgionsof nodes will send messages to
rithms are a practical and powerful way to solve such problemsiher regions of nodes. The regions of nodes that communicate
The centrality of such problems and the utility of messag@ith each other can be easily visualized in terms @égion
passing algorithms for solving them is an explanation for thgaph The standard BP algorithm is a special case of a GBP
fact that equivalent or very closely-related message-passinggorithm, with a particular choice of regions. Different choices
gorithms have now been independently invented many tim%‘f-region graphs will give different GBP algorithms, and the
They are well-known by names like the forward-backward ajiser can choose to trade off complexity for accuracy.
gorithm for Hidden Markov Models [3], the Viterbi algorithm | practice, GBP algorithms can often dramatically outper-
[4], [5], Gallager's sum-product algorithm for decoding lowform BP algorithms in terms of either their accuracy or their
density parity check codes [6], the “turbo-decoding” algorithrgonyergence properties, for minimal computational cost, if one
[7], [8], Pearl’s “belief propagation” algorithm for inference onmakes an intelligent choice of regions. However, how to opti-
Bayesian networks [9], the “Kalman filter” for signal processma|ly choose regions for a GBP algorithm remains at this point
ing [10], [11], and the “transfer matrix” approach in statisticayn open research problem. We hope that this paper contributes

mechanics [12]. to this problem by delineating what classes of constructions are
+ MERL Cambridge Research Lab, 201 Broadway, 8th Floor, Cambridd€ly to give QOOd reSU|ts-_ o _
MA 02139. yedidia@merl.com We shall give a theoretical justification of GBP algorithms
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ational principle. The first specialized examples of such frege actually a variety of ways to define GBP algorithms for any
energies were introduced long ago in the physics literature giwen region graph, all of which have identical fixed points. We
by Bethe [15] and Kikuchi [16]. For the important special casi®cus on one particular type of GBP algorithm, which we call
of the standard BP algorithm, we show that its fixed points atiee parent-to-childalgorithm. In section X, we give a detailed
the same as the stationary points of Bethe free energyhus example of the implementation of the parent-to-child GBP al-
establishing an important basic link between a classical alggerithm. Finally, in section XI, we give some empirical results
rithm and a classical approximation from physics. showing how GBP algorithms can improve upon the accuracy

One must be careful in constructing a region graph in oof standard BP.
der to ensure that the resulting approximations are accurate. IWe have chosen to put a large amount of material in the ap-
our original work introducing GBP algorithms [17], we focusegbendices of this paper. The appendices describe a variety of
on a sub-class of GBP algorithms that were equivalent to frether methods to generate region graphs and GBP algorithms
energy approximations based on Kikuch¢hister variation which could easily prove to be as important in practice as the
method[16], [18], [19], [20]. We shall show that this methodmethods described in the main text.
is only one of a variety of methods to generate region graphs
and their corresponding free energies and message-passing al-
gorithms.

In our original work, we also focused on graphical models Let {X;, X5,..., Xy} be a set ofN discrete-valued ran-
defined in terms of pair-wise or higher-order Markov randomlom variables and let; represent the possible realizations
fields (MRFs). In this paper, we shall instead focus on graphif random variableX;. We consider the joint probability
cal models defined in terms tctor graphs All our results can  mass functiorp(X; = z1, Xo = z3,..., Xy = zy), Which
be re-expressed for other graphical models without difficultywe shall write more succintly ag(x), where x stands for
Using factor graphs has certain practical advantages—in partig;, x, ...,z }. We suppose that(x) factors into a product
ular we can refer the neophyte reader to the excellent review dffunctions. That is, we suppose thdi) has the very general
Kschischang et.al. [21]. That review explains the equivalenfgrm
to factor graphs of other graphical models such as Bayesian net- 1
works, Tanner graphs for error-correcting codes, or pair-wise p(x) = Z 1;[ falxa)- @
MRFs, and explains the standard BP algorithm in its various _ _ ) )
guises as an algorithm that operates on factor graphs. Herea is an index labeling\/ functions fa, f5, fo; -, far,

There have been a number of other recent papers that h&gre the functiorf, (x,) has arguments, that are some sub-
tried to explain, reformulate, or generalize the standard bel®§t Of{z1, 22, ..,z }. We assume that the functiorfs(x.)
propagation algorithm in a variety of ways. We point the inte€ Non-negative and finite, so thakp(s a well-defined prob-
ested reader to [22], [23], [24], [25], [26], [27], [28]. ability distribution. Z is a norrnallz_atlon constant.

After our original work which introduced region-based free A factor graph[21] is a bipartite graph that expresses the
energies and GBP algorithms based on the cluster variatigtorization structure in equation (1). A factor graph has a
method, other works appeared which explored parallel ide4"iable nod&which we draw as a circle) for each variabig
[29], [30], [31], [32]. In fact, one of the goals of this IOaperafactor node(which we drawlasasquare) for each functfgn
is to unify our previous approach with the one that Aji and/ith an edge connecting variable noide® factor node: if and
McEliece presented based @mction graphs[29]. We also only if z; is an argument of,,. (We shall always index variable

recommend the elegant exposition of generalized belief propides with letters starting with and factor nodes with letters
gation presented by McEliece and Yildirim in [30]. starting witha.) As an example, the factor graph corresponding

We have also previously released a number of technical fe-
ports [33], [34], [35] that are largely superseded by this paper, 1
as well as a somewhat more popular introduction [36]. (@1, 22,23, 24) = — fal2r, 22) fp(22, 23, 24) fo(za) ()
The outline for the rest of the paper is as follows. In section
I, we review and introduce our notation for factor graphs arii shown in figure 1.
the standard BP algorithm. In sections Il and IV, we introduce
and explain the physical intuition behind variational free ener-
gies and region-based approximations to them. In section V, we
consider theBethe Methodvhich can be used to obtain partic- 1 2 3 4
ularly simple region-based free energy approximations. In sec-
tion VI we show that the standard BP algorithm has fixed points
corresponding to the stationary points of the Bethe approxima-
tion to the free energy. In section VII, we describe BRegion
Graph Method a very general method for generating “valid”
region graphs and their associated free energies. In section VIl
we explain how to determine whether a particular region-based
free energy approximation is likely to give accurate answers. fig. 1. A small factor graph representing the joint probability distribution
section IX, we introduce GBP algorithms, and show that thep&r1: 2 73, 74) = 7 fa(x1,22) f5 (22, 23, 24) fo (4).

Il. FACTOR GRAPHS AND BELIEF PROPAGATION
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We shall focus on the problem of computing marginal prob&e positive, which implies, because of the non-negativity of the
bility distributions. We call the possible values &f thestates factors in the message-update rules, that the messages remain
of variable node. We usey; to denote the number of possiblenon-negative at every iteration.
states of variable node If S is a set of variable nodes, we The message-update rules may initially appear quite myste-
usexg to denote the states of the corresponding variable nodgeus, and a major goal of this paper will be to explain, justify,
ps(xs) will denote the marginal probability function obtainedand ultimately improve upon them. First though, to complete

by marginalizingp(x) onto the set of variable nodés i.e., our preliminary description of the standard BP algorithm, we
introduce thebelief b;(x;) at a variable nodé, which is the
ps(xs) = Z p(x). (3) BP approximation to the exact marginal probability function
x\xs pi(x;). The beliefb;(x;) can be computed from the equation
Here the sum ovex\xg indicates that we sum over the states bi(w;) o H Ma—i(Ti), (6)
of all the variable nodesotin the setS. We shall writep; (z;) a€N (i)
for the marginal probability function when the setonsists of \where we have used the proportionality symboto indicate
the single node. that one must normalize the beliefs so that they sum to one.

Thebelief propagatior(BP) algorithm is a method for com- The BP message-update equations are iterated until they (hope-
puting marginal probability functions. One should note that thg|ly) converge, at which point the beliefs can be read off from
problem of computing marginal probability functions is in genequation (6).
eral hard because it can require summing an exponentially larg&Ve can also use the BP algorithm to compute joint beliefs
number of terms. We describe the BP algorithm in terms of OPs(xs) over sets of variable nodes that may contain more
erations on a factor graph. As we already mentioned in the ifiran one node. Consider the important case when thé set
troduction, the computed marginal probability functions will beonsists of all the variable nodes attached to dtiefunction
exact if the factor graph has no cycles, but the BP algorithm f§(x,). We denote the corresponding belief lpyx, ), which

still well-defined and empirically often gives good approximat@ill be given within the BP approximation by
answers even when the factor graph does have cycles.

To define the BP algorithm, we first introduneessagebe- ba(%a) o fa(xa) [] mivales)
tween variable nodes and their neighboring factor nodes and i€N(a)
vice versa. The message,_.;(z;) from the factor node to X fa(Xa) H H Mei(). (7)

the variable nodéis a vector over the possible statesaf This
message can be interpreted as a statement from factowurtode
variable nodé about the relative probabilities thais in its dif-
ferent states, based on the functifgn The message;_..(z;)
from the variable nodé to the factor node: may in turn be
interpreted as a statement about the relative probabilities _ =

i€N(a) ceN(i)\a

nodei is in its different states, based on all the information tl : I Ta
node: hasexcepffor that based on the functiafy.
The messages are updated according to the following rul hO [Im, (%) Sh(x) 0 Y f,(x.) m (%)
alN (i) Xa\% Xa\% i a) bON(i)\a
Ni—a(2i) = H Me—i(T4). (4)

cEN(i)\a I-—H I-—H I-—H I%l
and D—EI—D—E—D = D—El—ma—?—m
Mai(@i) == Y faxa) [ njoalz;) )

xa\ti JEN(@)\i m. )= Y LK) [ []m. %)

Xa\X JON(a)\i BON( J)\a
Here, N(i)\a denotes all the nodes that that are neighbors ui

nodei except for node, and}_, ., denotesasumoverallithe L ,
iablesx. that are ar umentg Qi exceptz.. This standard Fig. 2. This figure illustrates how the message update rules can be derived us-

varia > a H .g ptz;. ~ ing the belief equations and the marginalization conditions. The one-node be-

BP algorithm is sometimes called the “sum-product” algorithiiief over nodei (upper left) is equal to a multi-node belief over nodes including

because of the sum and pI’OdUCt that occurs on the right—hahM’hiCh in this case is a two-node belief (upper right), when it is marginalized
over all nodes except We denote marginalization by using a hatched pattern

side of equation (5) on the marginalized variable node. If we cancel out equivalent messages on the
The messages are usually initializedmai(gji) = 1 and two sides of the equation, we obtain the message-update rules (lower).

i—a(x;) = 1forall factor nodes, variable nodes, and states . .
Mima(T:) 5 IIWe can directlyderivethe message update rules (4) and (5)

x;. In fact, other initializations are also possible, and the over the belief i 5 4(7) al ith th inal
normalization of the messages can also be chosen arbitra_ﬁa.?on gon?jli?ioﬁqua ions (6) and (7), along wi € marginal-

The only important normalization condition is on the beliefé,
introduced below, which must sum to one in order to properly bi(x;) = Z ba(Xa) (8)
represent probabilities. The messages should be initialized to %o \&i



which holds whenz; is one of the arguments in the sef. factor graph it operates on has cycles, because minimizing the
Thus, the belief equations (6) and (7) can be considered to @®the free energy is a sensible approximation procedure that
fine the BP algorithm, a point of view that will prove usefuhas a long and successful history in physics. It also points to a
later. In figure 2, we explain this point in more detail, using divariety of ways to improve upon or generalize BP, especially by
agrams to show how the message update rules follow from fingroving upon the approximations used in the Bethe free en-
belief equations and the marginalization conditions. ergy. In the rest of the paper, we will discuss all of these issues,
The BP algorithm is normally justified as being an exact abut we first turn to an explanation of the notion dfee energy
gorithm when the factor graph has no cycles (i.e., it has theSuppose that one has a systenioparticles, each of which
topology of a tree.) We shall not prove that property here, baén be in one of a discrete number of states, where the states
instead simply give a small example: consider the joint probaf the ith particle are labeled by;. (As an example, one
bility distribution given by equation (2) as illustrated in figurenight make a variety of simplifications and characterize the
1. Suppose that we would like to compytgx;), the marginal states of the atoms in a magnetic crystal by whether a given
probability distribution at variable node Repeatedly using the electron in each atom has an “up” spin or a “down” spin.)

BP equations, we find The overall state of the system will be denoted by the vector
x = {1, 29,...,2n}. Each state of the system has a corre-
bi(z1) o< ma—_1(21) spondingenergyE(x). A fundamental result of statistical me-
- Z Falzr, T2)na—a(z2) chanics is that, in thermal equilibrium, the probability of a state
o will be given byBoltzmann’s Law
o fa(zr,xa)mp_a(z2) |
%: p(x) = 777 Ex)/T (10)
x> falwy,m) fa(we, 25, 74)n3 5 (13)n4— B (24)

Here,T is the temperature, ardd(T) is simply a normalization
constant, known as thgartition function

22,T3,T4

x> falwy, @) fp(@e, w5, ma)moa(za)

T9,T3,Ta Z(T) = Z eiE(x)/T (ll)
x> falwr,m) fa(we, 2, 74) fo(2a) 9) x€s

whereS is the space of all possible statesf the system.
which is exactly the desired marginal probability function. We A substantial part of statistical mechanics theory is devoted
could Simi|ar|y demonstrate that equation (7) would give efo the justification of Boltzmann’s Law. On the other hand, if
act multi-node marginal probabilities for graphs with no cycle§ne begins with a joint probability distributign(x) for some
We can already see from this example that for graphs with A@n-physical system, one can view Boltzmann's law as a pos-
cycles, the BP algorithm is essentially a dynamic programmiiiglate that serves to define an energy for the system, where the
algorithm that organizes the computations necessary to cdiginperature can be set arbitrarily, as it simply sets a scale for
pute marginal probability distributions in such a way that thefie units in which one measures energy. We shall take this
become tractable. point of view and sef” = 1 throughout the rest of this paper.
The BP algorithm was introduced into the coding literatureor the case of a factor graph probability distribution function
by Gallager as a sub-optimal probabilistic decoding algorithmx) = (1/Z) [TsL; fa(xa), we therefore define thenergy
for linear block error-correcting codes, and some readers mayx) of a statex to be
be most familiar with the BP algorithm in that context [6].
Pearl [9] introduced and popularized a version of the algorithm,
along with the widely adopted terminology of “belief propaga-
tion,” in the context of the problem of probabilistic inference in
Bayesian networks. Readers who are more familiar with the BiPorder to be consistent with Boltzmann’s Law.
algorithm written in one of these forms may want to consult the Note that if one or more of the factors (x,) are equal to
review by Kschischang et.al. [21], which explains the equivaero for particular configurations &f,, then the over-all prob-
lence between these forms of the BP algorithm and the one alsility of statesx which contain these forbidden configurations
have chosen to use here. is zero. The corresponding energy of states containing forbid-
den configurations is infinite. A particularly important class
of factors that have forbidden configurations are deterministic

] . ] . functions such as exclusive-or functions, which are used for ex-
In this section, we turn from simply describing the BP algoymple in defining error-correcting codes.

rithm to explaining its success. In section Il, we saw that the The Helmholtz free energyy of a system is

BP algorithm can be defined in terms of the belief equations (6)

and (7). We shall eventually show that these belief equations Fy=-InZ. (13)
correspond to the stationarity conditions for a functional of the

beliefs called theBethe free energyFi.tne(bi, ba). This fact This free energy is a fundamentally important quantity in sta-
serves in some sense to justify the BP algorithm even when tigtical mechanics, because if one can calculate the functional

M
E(x) ==Y In fo(xa) (12)
a=1

Ill. FREEENERGIES
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dependence of'y on quantities like a macroscopic magnetid’y;r = Upyr — H )y fOr an arbitrary factor graph:
field H or temperaturd’, then it is easy to compute experimen-
tally measurable quantities like the response of the system to a M
change inf or T. Physicists have therefore devoted consider- Unp({br, - by}) = = Zzln fa(xa) H bi(z:),
able energy to developing techniques which give good approx- (20)
imations toFy. N

One important technique is based on a variational approach. — _ (s (s
Suppose again thai(x) is the true probability distribution of Har({b;-.-. o) 22 bilw) i) (21)
the system, and obeys Boltzmann's Lawk) = e ™) /7. L
It may be that even if we know(x) exactly, it is of a form Minimizing FMF,(bl’ -+, bv) over thed; will give us S?If'
that makes the computation &t; difficult. We therefore in- consistent equations for tihg which can be solved numerically

troduce a “trial” probability distributiom(x), which should of t© 0Ptain a mean-field approximation for the belibfs:; ).
course be normalized and obey< b(x) < 1 for all x, and Instead of a factorized form, one might consider other more

a correspondingariational free energy(this quantity is also f:omplicated fprms fOb(_X) WhiCh, still Iea? to tractable approx- .,
sometimes called th@ibbs free energydefined by imations. This is the '|dea behind the “structured mgan—fleld
approach [38]. We will not follow that path, and will instead
F(b) = U(b) — H(b). (14) describe a quite different approach to approximatin@) in
the next section; one which underlies the BP algorithm.

a=1 x, 1€EN(a)

=1 x;

whereU (b) is thevariational average energy
IV. REGION-BASED FREEENERGY APPROXIMATIONS

Ub) =Y b(x)E(x) (s " -
xes Kikuchi and the other physicists who further developed the
so-calledcluster variation method16], [18], [19], [20] intro-
andH (b) is thevariational entropy duced a class of approximations to the variational free energy
F(b). The idea behind these approximations is similar, but
H(b) =~ Z b(x) In b(x). (16) slightly different from the mean field approximation. Whereas
xes the factorized mean-field free enerdy, » is a function of

(Note that we measure entropy using the natural logarithm ifingle-node beliefs; (z;), in a Kikuchi approximation the ap-
stead of the base-2 logarithm in order to be consistent with tReoximate free energy will be a function of beliefs(xs)

physics literature.) over larger set$ of variable nodes.
It follows directly from our definitions that One drawback of the cluster variation method is that in con-
trast with the mean-field approach, one cannot normally explic-
F(b) = Fg + D(b||p) (17) itly construct an overall “trial” belief vectdt(x) that is consis-
tent with the multi-node beliefss (x5), and therefore one does
where b(x) not normally obtain any upper bound #h[39]. On the other
D(b|lp) = Z b(x)In —= (18) hand, one can make approximations that are much more accu-
x€S p(x) rate than the factorized mean-field approximation, and there is a

is the Kullback-Leibler divergence betweéfix) and p(x). 9reatdeal offlexibility in the exact choice of approximation. As
Since there exists a theorem (e.g. Theorem 2.6.3 in [3¥]¢ shall also see in further detail, these approximations can be
that D(b||p) is always non-negative and is zero if and only iexploited to yield message-passing algorithms, and a particu-
b(x) = p(x), we see thaf'(b) > Fy, with equality precisely larly simple version—the Bethe approximation—will give results
whenb(x) = p(x). that are equivalent to the standard BP algorithm.

Minimizing the variational free energi(b) with respect to We shall actually describe here a class of approximations that
trial probability functionsh(x) is therefore an exact proceduredeneralize those generated by the cluster variation method as it
for computingFy; and recovering(x). Of course, asV be- has been described in the physics literature, and will therefore
comes large, this procedure is also totally intractabléj(a refer to such approximations asgion-based approximations
will take exponentially large memory just to store. A mord&Ve refer to the sub-class of approximations specifically gener-
practical possibility is to upper-bourié; by minimizing F(b) gted using the cluster variation methodkakuchi approxima-
over a restricted class of probability distributions. This is théONns
basic idea underlying thmean fieldapproach.

One very popular mean-field form fo(x) is the factorized A. Region-based Approximations
form:

N Until this point, we have essentially reviewed notions and
bap(x) = H by (), (19) defini';ions that were devgloped by othgrs. We shall now begin
i to define concepts that did not appear in the previous literature;

to mark this break we now explicitly indicate important new

where eachb;(z;) is a normalized trial probability function definitions and theorems.

over the single variablé. Using thisb,/r(x), and an en-
ergy function E(x) of the factor graph form given in equa- Definition: We define aegion R of a factor graph to be a set
tion (12), we can easily compute the mean field free enerd¥; of variable nodes and a sét; of factor nodes, such that if a



Definitions: We define aregion-based approximate entropy

Hr by
Hr({br}) = Y crHnr(br) (26)
ReR
and theregion-based average energy; by
Ur({br}) = > crUr(br) (27)
RER

where the chosen set of regios and the associated set of

Fig. 3. Anillustration of the definition of eegion Regions are sets of variable counting numbersy, instantiate the approximation. We define
and factor nodes in a factor graph such that all variable nodes connecte X

to .
any included factor nodes are included. Thus, the sets of nptex} and ?hereglon—based free enerdy
{B,C,2,3, 4_1} could be regions, butB, 3} couldnotbe a region (since factor
nodeB was included, variable nodesand4 should also be included.) Fr({br}) = Ur({br}) — HrR({br}). (28)

factor node: belongs tad g, all the variable nodes neighboring Note, in passing, that we could generalize these approxima-
a are inVx. tions by allowing fordifferentcounting numbers for the average

) energy and entropy. In fact, constructing such approximations,
we give examp_les Of se_ts of nodes that would or would not lgiearting with the regions used in the Bethe approximation, but
considered regions in figure 3. Note.that the A%t may b.e modifying the entropic counting numbers to differ from those
em_pty, "%”d thﬁt a fac_tar need not be .|ncluded i even if given in the Bethe approximation, is one way of deriving the
allits nelghbormg variable node_s areli. _ “fractional belief propagation algorithm” [40] and the essen-

We define the stater, of a regionZ to be the collective set tially equivalent “convexified Bethe free energy” [41] approx-

of va_riable node St,ates’”i ‘z € Vr}. The marginal probapility imation. In this paper, we will always assume just one set of
function over a regiorR will be denoted by r(xg), by which counting numbers

we mean a margina_lization 9fx) ont_o the variable r_10de_s in In fact, not all region-based approximations to the variational
Vir. The corresponding beliéf; (x ) will be an approximation e energy are equally good. At this point, we introduce the

to the truepr(xr)- notion of avalid region-based approximation. Later, we shall
Definition: We define theegion energyFr(xr) to be narrow our focus even further to a sub-set of valid approxima-
tions that we calinaxent-normategion-based approximations.
Er(xp) == > Infa(xa). (22) " Definition: We say that a set of regiori and counting num-

acAn berscr give avalid region-based approximation when, for ev-

Note that because all the variable nodes neighboring a facéy factor node: and every variable noden the factor graph,
nodea € Ag are guaranteed to be in the regid) we can _
always determine any needed statefrom the statexz. > crlagla) = crly,(i) =1 (29)

e ) i . RER RER
Definitions: For any regionk, we define thaegion average

energyUr(br), theregion entropyH (b ), and theregion free  Wherels(z) is the set-membership indicator function indicator

energyFr(br), by function equal td if = € S and equal to O otherwise.
These conditions ensure that every factor and variable node
Ur(br) = Z br(xr)Er(xr) @3) win be counted exactly one time in the approximation to the
xR free energy. If a given factor or variable node is added into the
_ free energy in two different regions, then there must be another
Hp(br) = ; br(xr)mbr(xR) (24) region where it is subtracted back out.
f We now are in a position to prove two theorems that help
and explain our interest inalid region-based approximations.
Fr(br) = Ur(br) — Hr(br). (25)

Theorem 1: (Exactness of the average energy)

The intuitive idea behind a region-based free energy approx-f the beliefs{br(xz)} are equal to the corresponding exact
imation is that we will try to break up the factor graph into a séfarginal probabilitie{pr (x )}, then the average energy
of large regions that include every factor and variable node, and
say that the overall free energy is the sum of the free energies of Ur({br}) = Z crUR(bR) (30)
all the regions. Of course, if some of the large regions overlap, ReR
then we will have erred by cou_nting the free energy contributeg 5 valid region-based approximation will be exact.
by some nodes two or more times, so we then need to subtract proof: Compare the region-based average energy
out the free energies of these overlap regions in such a way that

each factor and variable node is counted exactly once. Let usy, ({bg}) = — Z CRZ br(xg) Z In f,(x,) (31)
make these notions more precise. RER  xr a€AR



with the exact average energy with respect to the region beliefs, subject to a set of constraints
u on those region beliefs.

U= Zp(x)E(X) - Z Zpa(xa) In fa(xa) ~ (32) Definition: We define econstrainedregion-based free energy,

x€s o=t xa entropy, or average energy to be an approximate region-based

and note that the overcounting numbegsguarantee that eachfree energy, entropy or average energy subject to the following
factor is counted exactly once in equation (31). The regionenstraints on the region beliefs. Each region bdliefxr)
based average energy is linear in the beliefs, so if al{thg  has the form of a probability function; that is, it must normalize
are exact in equation (31), they will properly marginalize intto one and obey < br(xr) < 1 for any statexz. Moreover,
the terms, (x,) in equation (32). W the marginal region beliefgxs) must be consistent for pairs of
regions if the set of variable nodéss included in both regions.
(As we shall see, the particular pairs of regions that we demand
consistency across can change according to the approximation.)

On the other hand, the region-based entropy

Hr({br}) = D crHr(br)

ReR Because the constrained region-based free energy must be
- _ Z CR Z br(xgr)Inbgr(xz) (33) minimized we are most interested in the accuracy of the con-
RER  xn strained region-based entropy neamnitaximum Of course, the

. . L ) .. maximum of the true entropy occurs when the joint probability
will typically only be an approximation even if the beliefSjquip tion is uniform. We would like for a similar property to

br(xr) are exactly equal to the true marginal probabilitie; ) tor constrained region-based entropies. This motivates the
Nevertheless, the condition that each variable node is countg owing definition

once lets us prove the following theorem, which says that the

entropy is at least counting the total number of degrees of fregyufinition: We say that a constrained region-based free energy
dom correctly. approximation ismaxent-normailf it is valid and the corre-

Theorem 2: (Correct counting of degrees of freedom) ~ SPonding constrained region-based entréfy({bx } achieves
If the true joint probability distribution is an equiprobabldts maximum when all the beliefs: (xz) are uniform.

distribution over all possible states, and if the beligfs (xz)} As we shall see, important classes of region-based approx-

are equal to the corresponding exact marginal probabilities . . ; .S
{pr(xr)}, then the entropy of a valid region-based approx|-mat'0ns’ including the Bethe apprOX|mat|on,. are.provgbly
n?aﬁiorfis xact maxent-normal. On the other hand not all possible Kikuchi ap-
i ' . . S proximations, for example, are maxent-normal. We emphasize
Proof: For a uniform joint probability distribution, the . L :

o . . .~ that a region-based approximation that is not maxent-normal
entropy is just the logarithm of the number of possible configu- . L
rations cannot be expected to give good results, because it will give

wrong answers even when there is no energy term.

N
H=1In H Q- (34) How does one go about selecting a set of regiRngount-
i=1 ing numbers:i, and consistency constraints for a given factor
On the other hand, using the fact that each marginal probabilisaph that give a valid, or better yet, maxent-normal approxi-
over a region, and therefore each belief over a region, will alsgation? There are in fact an infinite number of ways to do that.
be a uniform distribution, the region-based entropy will be  In the next section we will describe a very straightforward ap-
proach which we call thBethe methadwvhich is guaranteed to
Hrp = Z crln H qi- (35) give a maxent-normal region-based approximation. In section
RER i€VR VI, we then prove (in broad terms, to be made more precise
. . . . later) that the fixed points of the standard BP algorithm corre-
Because the counting numbers in a valid region-based approx

o . . $pond to stationary points of the constrained Bethe approxima-
imation guarantee that each variable node is counted eXa¢ly 1 the free energy

once, this entropy reduces to the exact entropy. |
In section VII, we introduce theegion graph methodwvhich

Although these theorems, particularly the theorem about tkea very general approach for constructing valid region-based
entropy, may not seem like very strong results, they still providgproximations, using eegion graph Region graphs play a
some justification for our focus oralid region-based approxi- central role in the description both of the region graph free en-
mations, in that choices of counting numbers that did not satisfygy, and in the construction of corresponding GBP algorithms,
our validity conditions would not even give exact results for thgnd provide the clear way of visualizing and understanding a
average energy or entropy under the restricted conditions of fiegion-based approximation.

theorems. The Bethe method is an important special case of the much

) ) ) more general region graph method. In appendices A and B, we
B. Constrained Region-based Free Energies discuss two other important methods that are also special cases
In the end, we want to find the minimum of the region-baseaf the region graph method: thenction graph methodnd the
free energy with respect to the set of region beliefs. More preluster variation methadIn appendix C, we discuss in detail
cisely, we will try to minimize the region-based free energthe relationship between the different methods.



will always be avalid approximation, as each factor and vari-
able node will clearly be counted once as required in equation
(29). We can use our expressions for the counting numbers

to obtain the Bethe approximation to the free energy, entropy,
and average energy.

Definition: The Bethe free energys Fpethe = UBethe —
Hpetne, Where theBethe average energy

M
UBethe - — Z Z bu (Xa) In fa (Xa) (37)

a=1 Xgq
and theBethe entropys
Fig. 4. Afactor graph which we use to illustrate a variety of region-based free
energy approximations. M
HBethe = - Z Z ba (Xa) In ba (Xa)
a=1 X4
V. THE BETHE METHOD N
The origins of the Bethe method date back to 1935 and + (di — 1) bixs) Inbi(x;). (38)

Bethe’s famous approximation method for magnets [15]. In i=1 z;

his 1951 paper that pioneered the cluster variation method [16]

Kikuchi recognized that Bethe’s approximation was the sim- The Bethe free energy 1s sometimes JgSt'ﬂEd in the phy_sms
literature by some version of the following theorem, which

plest example of an approximation that could be generated us- ; )
ing that method. From the modern point of view, these ear?)fates that it would be exact if the factor graph had no cycles.

papers focused on very special graphical models, and we warTheorem 3: The exact variational free energy is equal to the

the reader who wants to read the original papers that our @the free energy when the factor graph has no cycles.

scription of Bethe’s and Kikuchi’s methods will bear little re- Proof: The exact average energy reduces to the Bethe av-

semblance to their expositions. erage energy by the argument used in theorem 1. The Bethe
First, we make a small preliminary definition: i, andR,  entropy will also be exact if the factor graph has no cycles, be-

are two regions, we say thal; is asub-regionof R, andR> cause in that case we have the exact formula [13]

is asuper-regiorof R; if the set of variable and factor nodes in

R, are a subset of those . p(x) = [1aL, pa(xa) (39)

Definition: In the region-based approximation generated by Hil\il (pi(xi))dl !
theBethe methadve take the set of regions includedinito be
of two types. First, we have a setlafge regionsR ;, such that
the M regions inR ;, each contain exactly one factor node an
all the variable nodes neighboring that factor node. Second, weThe Bethe free energy, entropy, and average energy are all
have a set o§mallregionsR s, such that theV regions inRs  functions of the belief$;(x;) and b,(x,). The constrained
each contain a single variable node. The counting numbers Bethe free energy is defined by enforcing that the beliefs obey

which we can substitute into the formula for the variational en-
gopy to recovetHeihe- |

for each regiom? € R are given by the normalization constraints
cr=1- Y es (36) D bilzi) =) ba(xa) =1, (40)
SeS(R) T Xa

whereS(R) is the set of regions that are super-regionof "€ consistency constraints

We take as an example the factor graph shown in figure Z ba(x4) = bi(x;), (41)
4, which has six factor nodes which we lab&lthrough F
and nine variable nodes which we labelthrough9. For
this example, we would have the following large regiongnd the inequality constraints
in Rp: {A,1,2,4,5}, {B,2,3,5,6}, {C,4,5}, {D,5,6},

{E,4,5,7,8}, and{F,5,6,8,9}, and the following small re- 0 < bi(zi) <1 (42)
gions inRg: {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, and{9}.
The complete set of regior8p.ine iNCluded in the Bethe ap-
proximation iSRgetne = R, U Rs. 0 < ba(xa) < 1. (43)

Using our definition we see that for every regitne Ry, Definition: We refer to the Bethe free energy, subject to the
cr = 1, while for every regiomR € Rg,cg = 1 —d;, whered; above constraints on the beliefs, as tomstrained Bethe free
is the degree (number of neighboring factor nodes) of the vaginergy and similarly for theconstrained Bethe entro@and the
able node. It is easy to confirm that the Bethe approximatiogonstrained Bethe average energy

Xa \T;i

and



We now prove that the Bethe method givasxent-normal  Note that the factor connecting nodeand2, and the factor
region-based approximations. connecting nodes and3 prefer that the connected variables to
be in the same state, while the factor connecting n@desd 3

refers them to be in different states. Not all of these factors can
satisfied simultaneously; this is thus a very simple example
of what statistical physicists call a “frustrated” system [42].

The beliefsh, (x,) andb;(z;) that minimize the constrained

Bethe free energy for this model are

Theorem 4: (Bethe approximations are maxent-normal.)
The globa! maximura of the constrained Bethe entropy
achieved when the beliefs(z;) andb, (x,) are all uniform.
Proof: Rewrite the Bethe entropy as

N M
HBethe = Z H(bl) - Z I(ba> (44) 0.4 0.1
i=1 a=1 bA(.’IJl,QTQ) = bB(xlam?)) = ( 0.1 0.4 ) ) (50)
where 01 04
H(b;) = —Zbi(xi)lnbi(xi) (45) b (21, 22) = ( 04 01 > (51)
and and 0.5
bl(aﬁl) = b2<.’172) = bg(.’L'g) = ( 0.5 ) . (52)
1(b,) = — Z ba(x4) Inby(x4) — Z H(b;) (46) For this problem, these beliefs are also the ones that are ob-
Xq i€N(a) tained as stable fixed points of the BP update equations, with

messages equal to
The maximum off (b;), subject to the constraints on(z;), is

achieved whem; (x;) has a uniform distribution. The mutual Mami(2;) = ( 1 ) (53)
information I(b,) must be greater than or equal to zero, and G 1

it equals zero if all the beliefs involved have uniform distribu];Or all ¢ andi, as one would expect from the theorems that we
tions (see, e.g. theorem 2.6.4 in [37]). Sidééb;) achieves its f

: : . o . rove later. However, one can also prove that this set of beliefs
maximum and/ (b,,) achieves its minimum when the beliefs ar . . ;
: . cannot be obtained as the marginalsaofy three-node belief
uniform, the theorem is proved.

b((L’l, T, 1'3) [39]
It is a simple corollary of this theorem and Theorem 2 that Wainwright and Jordan have emphasized this problem and
the constrained Bethe entropy is exact at its maximum. proposed new variational inference techniques, closely related
At this point we wish to re-emphasize that free energies ol our region-based approximations, but differentiated by a re-
tained using a region based approach are only approximatiétsérement that the set of beliefs used must be marginals of some
to the true variational free energy, and that in particular the eglobal belief [43]. They call the set of beliefs realizable from a
tropy obtained is incorrect. This can give rise to some strang#obal belief the “marginal polytope.”
looking problems, which can already be illustrated with some
very simple factor graphs when the Bethe approximation B Negative Entropies

used. Because some of the terms in the Bethe entropy have a sign
that is flipped from the normal form of the entropy, for some
A. Unrealizability of Beliefs factor graphs it is actually possible to find sets of beliefs that

%atisfy all our constraints, but for which the Bethe entropy is
nXgative. Of course, the true entropy can never be negative for
any global probability distribution.

For example, consider a factor graph with four binary vari-

¢ At\very Slrr?pl_e:‘meﬁ?mpls_, first po”_“‘;‘lj OUt('jn [39],hcon5|stshof 8ple nodes, where all pairs of nodes are connected by a factor.
actor graph wi ree binary variablé nodes, where €ach pajle o 5re ix pairs of nodes, and four single nodes. Each large

of nodes is connected by a factor node. Let us take the fac}g&ion is assigned a counting numberlpand each small re-

connecting nodes andz to be gion containing a single variable node is assigned an overcount-
04 01 ing number of—2 in the Bethe approximation. If we consider
fa(zy,22) = < 01 04 ) ; (47) the set of beliefs (that satisfy all the constraints)

First, the constrained Bethe free energy may be minimized
a set of beliefé, (x,) andb; (z;) which are not be the marginals
of anyglobal probability functiorb(x).

the factor connecting nodésand3 to be b (i, ;) = < 1(/)2 1(/)2 ) , (54)
0.4 0.1 S
fo(ay,as) = ( 01 o4 ) , (48) forallpairsi, j, and
b _ (2 55
and the factor connecting nodgsind3 to be i(2i) = 1/2 (55)
_ (01 04 49 for all 4, we find that each pair of nodes contributeg to the
folz1,z3) = 04 0.1 /° (49) Bethe entropy, but that each single node contribut2& 2, so
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that the total Bethe entropy for this set of beliefdHg.;ne = Would increase the value of the function. Local interior maxima
(6—-8)In2=—-2In2. are similarly defined, although we will drop the modifier “local”
For this example, it does not seem to be possible to constraad presume all maxima and minima to be local unless explic-
a set of factors such that this set of beliefs is@al minimum itly specified otherwise. Ainterior stationary point is an in-
of the constrained Bethe free energy. More generally, we cderior point such that the gradient is zero in the direction of all
jecture that the Bethe entropy must in fact be non-negativeariations that satisfy the equality constraints. Of course, such
all local minima of the constrained Bethe free energy. stationary points may be minima, maxima, or saddle-points, de-
Notice for this example, that if all the factors had the form pending on the second derivatives of the function.
At an edge point, one or more inequality constraints must be
falms z)) = ( 10 ) (56) active. Anedge-maintaining variatiors a variation that keeps
! 0 1 all active inequality constraints active, while also satisfying all
then the beliefs given above would actually be equal to the cc.t)?:e equality con_stralnts A pons_ms "’?”ed € _statlone_xr _0|nt
. . o ; |% is an edge point whose gradient is zero in the direction of all
responding exact marginal probabilities, so the correct bellea 2 e i )
; . . -~ edge-maintaining variations. Note that an edge stationary point
would give a negative Bethe entropy. However, the minimum ; X O
may have gradients not equal to zero in the direction of allowed

of the Bethe free energy would occur for beliefs that had trQ/%lriations that are not edge-maintaining. Edge stationary points

form L : ;
10 may be minima, maxima, or saddle-points.
ba(wi, j) = ( 0 0 ) ) (57) The Lagrangian formalism can be used to recover all con-
) strained stationary points, whether they be interior or edge sta-
for all pairsi, j, and tionary points. Let us review how this works. Lagrange mul-
1 tipliers \; are constructed corresponding to each of the equal-
bi(z;) = < 0 > (58) ity constraintsh;(z1, ..., zn), and other Lagrange multipliers

7, are constructed corresponding to each of the inequality con-
or the set obtained by favoring the second state instead of 8{E&iNtSgx (z1, ..., zx). One defines a Lagrangian

first, and these beliefs give a non-negative (zero) Bethe entropy.
9 gaive (zero) PV L, D) = 160+ S Ay () + S megn(x). (59)
j k

VI. CORRESPONDENCEHBETWEEN THEBETHE ) - ] )
APPROXIMATION AND STANDARD BP One next obtain a set of conditions on the constrained station-

The logic behind region-based free enerav a roximatioﬁr points, which we will call thé.agrangian stationary point
9 9 gy app cpnditions by setting equal to zero the derivative bivith re-

s ot e e ot Dhect o, and all, and by mposing th so-cllepnple
9y entary slackness conditiondich enforce thatr gx (%) = 0.

nection between the minima, or more generally, the station Eﬁe complementary slackness conditions enforce that either an

points of the coqstralned Bethe f_ree energy, and t_h? fixed pOIPn«g_quality constraint must be active at a constrained stationary
of the BP algorithm. We exploit Lagrange multiplier theory

. . ; a X . 2point, or the corresponding Lagrange multiplier must be zero
which can be used to identify the stationary points of functlori) P g Lagrang P

et | it ana i - Br both).
subjectto finear equality and inequality constraints. All solutions of the Lagrangian stationary point conditions

will correspond to interior or edge stationary points, and all in-

A. Review of Lagrangian Formalism terior or edge stationary points will correspond to solutions of

We first briefly review some necessary background about the Lagrangian stationary point conditions.
Lagrangian formalism for constrained optimization. An excel- A small example should help illuminate these notions. Con-
lent textbook containing more information is [44]. sider the function

Consider a functionf(xy, zo, ...,zy) of N variablesz;,
where the variables may be subject to equality constraint(s)
(written ash;(xy,...,2x) = 0) and inequality constraint(s) subject to the equality constraint + z, +z3 = 1 and the
(written asgy(z1,...,zx) < 0). We will assume throughout inequality constraintss; > 0, 25 > 0, andzs > 0. This
that the equality and inequality constraints are linear imithe function has an interior minimum at = (&,,19,43) =
because the constraints that we will later deal with are always(af/3,1/3, 1/3), wheref(x) = 1/3. It has three edge saddle-
this form, and for such constraints, it is straightforward to provygoints atx = (1/2,1/2,0); x = (1/2,0,1/2); andx =
the existence of Lagrange multipliers (see proposition 3.3.7 @,1/2,1/2) wheref (x) = 1/2. Finally, it has three edge max-

f(l'l,xg,fﬂ:;) = x?—kx%—kx% (60)

[44]). ima at the points = (1,0, 0); X = (0,1,0); andx = (0,0, 1);
An inequality constraint is said to bective if it is satis- wheref(x) = 1.

fied with equality, and it iSnactive otherwise. A pointx = We define the equality function

(x1,...,2n) is said to be aredgepoint if one or more of the

inequality constraints is active; otherwise it isiaterior point. h(x) =21+ a2+ a3 -1 (61)

A poi_ntfc = (Z1,...,ZNn) IS a]oga_l interior mi.nimumif itis  and the inequality functions
an interior point, such that an infinitesmal variation away from
the point in any direction that satisfies the equality constraints 91(x) = —x1, (62)
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g2(x) = —x2, (63) We form Lagrange multipliers, and~; for the normalizia-
tion constraints, Lagrange multiplieks; (z;) for the marginal-
ization constraints, and Lagrange multiplietgx,) for the in-
95(x) = —x3. (64) equality constraints. These Lagrange multipliers will necessar-
We introduce the Lagrange multiplieksmy, 2, andrs, cor- ily exist because the equality and inequality constraints are all
responding to these constraints, and construct the Lagrangidimear in the beliefs (see Proposition 3.3.7 in [44].) In fact, be-
cause for this theorem we are assumingraarior stationary
L = af + a5+ ai+ Mz + a2+ a3 — 1) —mizs —mows — 1323, point, the inequality constraints will all be inactive, and all the
(65)  7,(x,) will equal zero, so we ignore them hereafter.
The Lagrangian Stationary pOint conditions are then We thus construct a Lagrangian of the form

and

281+ A —m =0, (66) L = Fpethe

285 + A —m2 =0, (67) + Z%Zb Xa) +Z%Zb
223+ X\ —m3 =0, (68) i Z Z Z)\m CCL L Z ba(Xa)}(73)

i'l + i'Q + 533 —-1= Oa (69) i a€N(i) Ti Xa\Ti

may =0, (70) " where the sum overextends over variable nodes with degree
oo =0, (71) di > 2.
Setting the derivatives of the Lagrangian with respect to the
. Lagrange multipliers equal to zero gives back the equality con-
m3d3 = 0. (72) straints. Setting the derivatives of the Lagrangian with respect
These equations have seven solutions, corresponding to théhe beliefs equal to zero gives the equations for the beliefs at
seven constrained stationary points already described prdbie stationary points:
ously. For example, the interior minimum is given by the so-
lution % = (1/3,1/3,1/3), A\ = —2/3, 71 = m = 73 = 0.

and

One of the edge saddle points is given by the soluftor= ba(%a) = fa(Xa)exp [Ya =1+ D Aaili) (74)
(1/2,1/2,0), A = —1, 7 = my = 0, 713 = —1. One of the iEN(a)
edge maxima is given by the solutisn= (1,0,0), A = —2,
and
T :0,’/T2:71'3:72.
A 1
B. Application to the Constrained Bethe Free Energy bi(w;) =exp | 7— | 1=+ > Nailwi) || (75)

We now apply the Lagrangian formalism to the constrained aeN ()

Bethe free energy. If we make the identification

Theorem 5: Interior stationary points of the constrained
=In H Mei(24),

Bethe free energy must be BP fixed points. ai(@i) = Innia(w;) (76)

ceN(i)#a
Proof: The idea of the proof is to show that the La-
grangian stationary point conditions which must hold at intében we find that we recover the standard BP fixed-point belief
rior stationary points of the constrained Bethe free energy &@uations
the same as the BP message update rules at BP fixed points.

Note that we will omit from consideration the small regions ba(xa) < fa(xa) [[ ] me—il)  (77)
consisting of a single variable node that is only connected to a i€N(a) cEN(i)\a
single factor node (i.e. it has degrdg = 1). These regions
have counting number of zero, which means that they do nab'? “
contribute to the Bethe free energy. The beligfs:;) at these bi(wi II mait (78)

variable nodes will not be arguments of our Lagrangian, nor a€N(D)

will they figure in the BP fixed point equations that we ultiwhich, together with the marginalization and normalization

mately derive. constraints already obtained, give us back the fixed point equa-
We will need to enforce the the normalization constraints thabns of the BP algorithm.

> x, ba(xa) = 1 for every factor node: and)_ b;(z;) = 1 Note that although we are missing the belief equations for

for every variable nodewith degreed; > 2, the marginaliza- those single variable nodes that are only connected to a sin-

tion constraintsy ", . b.(x.) = b;(z;) for every factor node gle factor node, these equations are not necessary in the BP

a and all its ne|ghbor|ng variable nodésvith degreed; > 2, algorithm in any case. Such variable nodes are “dead-ends” for

and the inequality constrainks(x,) > 0 for every factor node messages, and their beliefs can always be computed from the

a. These are a sufficient set of constraints; other constraints likeliefsb, (x,) at the factor node to which they are connected.

0 < b;(z;) < 1 can be derived from the ones we have enforced. |
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We can also prove a theorem in the other direction. Recall that we assumed that all messages are initialized to be

) . . . non-negative in the BP algorithm, and that this implies that they
Theorem 6: BP fixed points such that all the beliefs are PO%emain non-negative. We can therefore assume, without loss

itive are interior stationary points of the constrained Bethe fr%(? generality, that the messag@s._. () are all non-negative
] a\"jg
energy. and normalized to sum to one, so that at least one of them (as

Proof: The proof just runs in the reverse direction fron@ function of the possible states:of) is positive, and none are
the proof of the previous theorem. We start with the BP beligegative. Given that, and the assumption that all the factors are
update equations at the fixed point and the marginalization ap@sitive, the form of equation (82) implies that all the messages

normalization constraints. We invert equation (76) to obtain 7q—i(x;) are positive, so the theorem is proved. [ ]
This theorem, combined with Theorem 6, gives the following
2 —d; 1
Ma—i(xi) = exp ﬁ)\a,;(xi) + o ENZ(;)\)\m;(xi) . easy corollary.

Theorem 8: If all the factors f,(x,) are soft, then all BP

79) . : — - : i
Replacing the messages in the BP update equationsf wi)th fixed points are interior stationary points of the constrained
Bethe free energy.

grange multipliers, we reverse the derivation given in the proci
of the previous theorem to obtain the Lagrangian stationaryWe can also prove the following theorem:

point conditions for an interior stationary point of the con- Theorem 9: If all the factors/, (x, ) are soft, then all local

strained Bethe free energy. minima of the constrained Bethe free energy iaterior min-
ima.

C. Factor Graphs Containing only Soft Factors Proof: We wish to show that given that all the factors
Itis not necessarily the case that all the beliefs are positivegb soft, one can decrease the Bethe free energy of any con-
a BP fixed point. But there are large classes of factor graphs fgfuration of beliefs{b, (x4 ), bi(x;)} that contains zero beliefs
which this is indeed true, namely those factor graphs that oy replacing those zero beliefs with very small positive beliefs,
contain “soft factors.” while always satisfying the constraints on the beliefs. For sim-
Definition: We say that a factof,(x,) is a “soft factor” if ~plicity, we will give examples to clarify the proof that use binary
fa(x4) is strictly positive for allx,. If f,(x,) = 0 for some variable nodes and “large” regions that contain only two vari-
x,, we call it a “hard constraint.” able nodes, but the examples can easily be extended to the fully
eneral case.
®We first assume that all the one-node beligfs:;) are pos-
ive, so that the only zero beliefs are in thg(x,). These
3?0 beliefs can be replaced with infinitesmally small positive
beliefs in such a way that the one-node beliefs are unchanged.
Theorem 7: If all the factors f,(x,) in a factor graph are For example, if we have a set of beliefs such that
soft, then all the beliefs at the BP fixed points are positive. A B
ba(Ii7I’j) = < > , (83)

c 0

Because it helps us prove a variety of interesting results, \%
will assume for the time being that all factors in our fact
graphs are soft, before returning to consider factor graphs t
also contain hard constraints.

Proof: We denote the beliefs and messages that hold at

a BP fixed point byba (xa), bi(%:), fiimq(z;), €tc. We wil where A, B, andC are some positive constants ©f1), then

show th_at all the BP flxed-pomt_bel_lefgf(xa) are _posmve, we can keep all other beliefs unchanged and replace that belief
from which one can use the marginalization conditions to shqw

that all the belief$, (z;) are also positive. From the fixed-point A+e¢ B—e
belief-update equations ba(wi, x;) = ( C—ec ¢ ) - (84)
Ba(xa) X fa(Xa) H Ni—a(Ts) (80) Doing this could possibly gain us an average energy td),
i€N (a) but we will also gain an entropy @(eln €), so the overall free

ina th tion that all f 0) that energy must decrease for small enough(Note that if some
one sees (using the assumption that all facfp(s.) > 0) that ¢ 0 ¢actorsy, (x,) = 0, we could gain an infinite average

if all the messages; ., (z;) are positive, then so are the be"efsenergy, 50 the proof would break down at this point.)

ba(Xa)- Suppose instead that some of thér;) were zero. Let us

tio-rl;ze messages; .., (z;) obey the fixed-point message €AU35,ppose, without loss of generality, that nddeas a “culprit,”

. - with belief

ni*’a(xi) X H mc%z(xz) (81) 1
cEN(i)\a bi(r1) = R (85)

which tells us that they will all be positive if all the messageghen of course all the “larger” regions that contained node

Tha—i(x;) are positive. However, the messages._..(z;) obey myst also have beliefs that contain zeros as well; that is, they

the update rules must be of the form

Ma—i(x;) fa(xa) Nj—a(x;). (82) (A 1-A
Xaz\;i je]gz)\i / J ba(thj) - ( 0 0 ) ) (86)
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or, if nodej is also a “culprit,” the beliefs will be of the form The conditions for theiniquenessf BP fixed points are also
10 clarified by the equivalence with the Bethe approximation. In
bo(z1,5) = < 0 0 ) . (87) graphs with no more than a single cycle, it was known that if all
factors are soft, then there was a unique BP fixed point [45]. For
We can now increase the Bethe entropy by an amount géneral graphs, we can use the equivalence established above to

O(elne) if we adjust the belieb; (x;) to be show that the same factor graph may sometimes have a unique
1_e BP fixed point, and other times have more than one BP fixed
bi(z1) = ( . ) , (88) point, depending on the strength of the interactifiy(s, ).

To be more precise, we can imagine defining a sequence of

while adjusting the beliefs of the connected “large” regions terobability distributions where some or all of our original func-

be tions are all raised by a powey; (xq;T) = fa(x4)*/T. This
ba(z1,7;) = ( A—e€/2 1-A—¢/2 ) : (89) is equivalent to changing the temperatdién a physical sys-

€/2 €/2 tem. Many systems, for example Ising ferromagnets, will have
or different numbers of solutions above or beloveritical tem-
ba(z1,25) = < 1—e 8 ) . (90) peratureT;. within the Bethe approximation [46]. AboVE.,
€ the constrained Bethe free energy has a unique stationary point,

The point is that although this adjustment gives a negative caghile belowT, there are multiple stationary points. Using this
tribution to the Bethe entropy from the one-node terms, it willquivalence it is easy to define small factor graphs that show a
always give a larger positive contribution to the Bethe entrogymilar behavior. Although the topology does not change and
from the “large” region terms. This is guaranteed by the fadte factors are always soft, as we smoothly change the factors
that the sum of the counting number of the “culprit” one-nod&e go from a regime with a unique fixed point to one with mul-
region plus the sum of the counting numbers of the relevatiple fixed points.
larger regions must always be one.

Using these “adjustments,” we can systematically remove all
the zeros from the collections of the beliefs that we started with,
while always decreasing the constrained Bethe free encliy. O

Theorem 5 and Theorem 9 can be combined to give the fol-
lowing:

Theorem 10: If all the factorsf,(x,) are soft, then all lo-
cal minima of the constrained Bethe free energy are BP fixed
points.

Although we have shown, assuming soft factors, that all inte-
rior stationary points and local minima of the constrained Bethe
free energy are BP fixed points, one should note that it is easy
to construcedge maximaf the constrained Bethe free energy (/
that arenot BP fixed points. For example, consider a factor
graph that is a tree, with constant soft factors that weight all
local configurations equally, and a set of beliefs consistent Wigy 5. a factor graph with four variable nodes, each connected by a factor
a single configuration where every variable node is completelyde to all the other variable nodes.
biased to one of its states. This will be a local maximum of the
Bethe free energy, but it will certainly not be a BP fixed point. As an explicit example, consider the factor graph containing

We can now prove that at least one BP fixed point must exi#ur binary variable nodes, where every pair of variable nodes
for any factor graph with soft factors. are connected by a factor node, as shown in figure 5. We assume
that the factors connecting any two variable nodes are identical
and “ferromagnetic,” that is, they have the form

Theorem 11: If all the factorsf,(x,) are soft, then at least
one BP fixed point exists.

Proof: The constrained Bethe free energy is bounded  f, (2, z;) = < exp(1/T)  exp(—1/T) > )
below. This is true because all the factgfgx,) are non- exp(=1/T)  exp(1/T

negative, so the average energy must be bounded below, while : .
. A ereT is atemperature-like parameter. These factors have the
the entropy clearly cannot diverge to positive infinity. The fac

that the constrained Bethe free energy is bounded below megﬁgd of making neighboring variable nodes prefer to be in the

-~ . me binary state, and the effect is stronger at IGiver
that there must be a global minimum, and using Theorem 'Given th v of thi le. it mak ¢ h
we know that the global minimum will be a BP fixed poinll verthe symmetry ot this example, It makes sense to searc

for fixed points of the BP message update rules where all mes-

Of course, the existence of a BP fixed point does not impsages are identical. It is relatively straightforward to work out
that the BP algorithm will converge starting from arbitrary ini{see the analysis of the Bethe approximation in [46] for a similar
tial conditions. computation) that above the critical temperatiife= 2/(In 3),
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there is only one such solution, and that solution gives all vaffhere are also two stable BP fixed points; one with the mes-
able nodes equal beliefs to be in their two states. Abibve sages and beliefs

this fixed point is stable, but beld¥#., it becomes unstable, and

two new s_table fixed points appear. At _the new fixed points, Mai(2:) = bi(zi) = ( (1) ) 7 (95)

all the variable nodes have identical beliefs, but at one of the

fixed points, the beliefs are biased towards the first binary state,

while at the other fixed point, the beliefs are biased towards A8 10

second binary state. ba(ziy25) = < 0 0 > ; (96)

Tatikonda and Jordan [47] have explored the question of
uniqueness of BP fixed points in detail. They used the conn@fd one with the messages and beliefs
tion to the Bethe free energy to obtain a set of sufficient condi-
tions on the strength of the factofs(x,) to ensureuniqueBP Ma—i(z;) = bi(2;) = ( 0 ) , (97)
fixed points for arbitrary Markov random fields. More recently, 1
Heskes [48] has analyzed the same question using the conngc;
tion to the Bethe free energy, but his sufficient conditions for 0 0
uniqueness also take into consideration the topology of the fac- ba(wi, x;) = ( 0 1 ) : (98)
tor graph.

Vghilz we have shown that standard BP converges to station£ oM the point of view of the constrained Bethe free energy,
ary points of the constrained Bethe free energy, we emphasi?g only set of beliefs that satisfy the marginalization and nor-
thar BP does not perform constrained minimization of the Betff@lization constraints, and do not have an infinite Bethe aver-
free energy; that is, it does not decrease the constrained B&Ag8 energy, are beliefs of the form
free energy at every iteration. Indeed, the marginalization con- 0
straints are typically not satisfied at intermediate iterations of bo(zi, ) = < g 1—a ) (99)

BP; it is only at a BP fixed point that the beliefs necessarily
obey all the consistency constraints. Based on the correspgpy
dence between BP fixed points ane Bethe free energy stationary () = ( Q )

points, first noted in our earlier work [17], others have devised 1—a (100)

algorithms that directly minimize the free energy on the feasiblehere the constant is the same for all the beliefs

set of beliefs [49], [50], [51]. Such free energy minimization For the factor graph that we are considering, these sets of

are somewhat slower than the BP algorithm, but they are guar-. ) .
anteed to converge. Bellefs all give a Bethe average energy that is zero, and a Bethe

entropy which is maximized at = 0 or « = 1, and minimized
ata =1/2.
Based on this example, one might guess that there is a cor-
We now return to consider the more general situation of faFespondence between Bethe free energy edge minima, and BP
tor graphs that also contain hard constraints. Such hard c@Red points with zero beliefs. We believe and argue below that
straints are ubiquitious for example in factor graph representiych a correspondence indeed exists. Unfortunately, there are

tions of parity check codes. technical issues that make our arguments for this correspon-
In contrast to the situation when all the factors are soft, ffonce less than completely rigorous.

one has hard constraints, it is possible for the local minima of The first issue results from the fact that if one uses the La-
the cpnstramed Bethe free energy toduigemlnlma, and itis grangian formalism to identify edge stationary points of the
possible for some of the beliefs at BP fixed points to be zergynstrained Bethe free energy, some of the Lagrange multipliers
We now give a small example to illustrate these statements. || diverge logarithmically at edge points. One can already see
Consider again the factor graph with four binary variablga; such a phenomenon must exist from the form of equation
nodes, and factors which connect each pair of variable nodeg) \hich relates the marginalization Lagrange multipliers to
(see figure 5). Assume now that all the factors are hard parifys |ogarithm of the BP messages. If a BP message is zero, as it
checks over two variables of the form will be at an edge point, the corresponding Lagrange multiplier
1 0 diverges logarithmically.
fa(wi, ) = 0 1 /- (92) The following trivial example demonstrates how inescapable

_ _ _ ~ thisissue is, and also makes clear that the issue arises because
For this factor graph, there is an unstable BP fixed point withe derivative of the entropy function diverges logarithmically

D. Factor Graphs Containing Hard Constraints

all messages and one-node beliefs given by at its edges. Consider a single binary variable, with no factor at
1/2 all. We denote the belief that the variable is in its two states by
Ma—i(x;) = bi(z;) = < 1/2 ) , (93) b, andby, so that the free energy is just
and all two-node beliefs given by f(b1,b2) = byInby + byInby (101)
b( 2.) — 1/2 0 (94) with the equality constraink; + b, = 1, and the inequality
o2, 25) = 0o 1/2 )° constrainb; > 0, andb, > 0. The minimum of this free energy
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obviously occurs wheh; = by = 1/2,andf = —1In2, and and (for variable nodes with degrég > 2)
two maxima occur at the edge of the region of allowed beliefs,
whenb; = 0 andby = 1, or whenb; = 1 andby = 0. The free  ; 1
energy at the maxima is zero. bi(w:) = exp di—1 L=+ Z Aai(wi) || - (110)

To recover these results using the Lagrangian formalism, we aeN (@)
introduce a Lagrange multiplierto enforce the normalization ~ Starting with the BP fixed point conditions, and making the
equality constraint, and the Lagrange multipliegsandr, for  identification between messages and marginalization Lagrange
the inequality constraints. Our Lagrangian is then multipliers

L=0biInby +byInby — ’}/(bl + by — 1) —m1by — mobs. (102) )\ai(xi) =In ni—ﬂl(xi) =In H mC—>i<xi)v (111)
cEN(i)#a
Taking derivatives of the Lagrangian with respectio b,
and-y, and imposing the complementary slackness conditio
we find the five Lagrangian stationary point conditions:

e recover the Lagrangian stationary conditions witfix, ) =
0, ' which will be consistent with the complementary slackness
conditions. Note the the marginalization Lagrange multipliers

Inby +1— y—m =0 (103) corresponding to zero messages will be logarithmically diver-
R gent. Thus, assuming that such Lagrange multipliers are le-
Inby+1—-vy—-my=0 (104) gitimate, we have shown that BP fixed points, even with some
by 4+ by =1 (105) of the beliefs equal to zero, are always stationary points of the
. constrained Bethe free energy.
mb =0 (106) ) , . .
. We emphasize that the converse of this conjecture certainly
7T2b2 =0 (107)

does not hold; as we described previously, eageimaof the
These equations have one solution which is completely undtgnstrained Bethe free energy need not be BP fixed points.
jectionable, wheh; = by = 1/2, 1 =1, =0, andy = 1—In 2, On the other hand, we argue now that edgmima of
corresponding to the free energy interior minimum. They aldBe constrained Bethe free energy are indeed always BP fixed
have two solutions corresponding to the free energy edge magints. However, we again do not claim the following argument
ima, but only if one accepts Lagrange multipliers that are loéf @ proof, this time because the argument depends on continuity
arithmically divergent. Thus, we have the solutibpn = 0, arguments, that, while reasonable, could be questioned.

by = 1, m = In(0), 72 = 0, andy = 1, and the solution 4 piectyre 2: Edge minima of the constrained Bethe free
by =1,be =0, m = 0, 72 = In(0). Note that the comple- energy are BP fixed poins.

mentary slackness conditionsh; = 0 are always satisfied if

we assume thdtln 0 = 0. Argument: Recall from Theorem 9 that if all the factors
Following the lessons of this simple example, we would liké.(x.) are positive, then all local minima of the constrained

to assume the legitimacy of all logarithmically divergent LaBethe free energy must necessarily be interior minima. That

grange multipliers in identifying edge stationary points. Rea#heans that if we have edge minima, they necessarily result from

ers willing to accept such Lagrange multipliers should upgra@efactor graph that includes factofs(x,) that equal zero for

the status of the following “conjecture” to that of a “theorem.”some state of their arguments.
Let us consider a transformation of the factor graph that adds

Conjecture 1: BP fixed points with some beliefs equal toap infinitesmal positive term to each zero factor. We expect the
zero are edge stationary points of the constrained Bethe fegggyje minima to be mapped, under this transformation, to inte-
energy. rior minima that are infinitesmally far away. By Theorem 10,

Argument: We need to show that the BP fixed point condll these minima correspond to BP fixed points with all beliefs

ditions can be rewritten in a way that guarantees that all tR@Sitive. Making the inverse transformation back to a factor

Lagrangian stationary point conditions are satisfied, includidjaPh with hard constraints, we expect these BP fixed points to

those resulting from inequality constraints. We will use in?¢ Mapped to BP fixed points where some of the beliefs equal

equality Lagrange muItipIiersa(xa) to enforce the inequality zero. Thus, assuming our continuity expectations are indeed

constraints, (x,) > 0. The complementary slackness condimet the original edge minima of the constrained Bethe free en-

tions that will need to be satisfied will be ergy should be BP fixed points.
To complete the general picture of the relation between BP
fixed points and the stationary points of the constrained Bethe

The other Lagrangian stationary conditions that will need to &€ ENergy, we refer the reader to a paper by Heskes [52], which

satisfied will be the marginalization and normalization condf'9ues _thaSIabIeBP fixed points mu;t be locaninimaof the
tions on the beliefs, and the belief equations constrained Bethe free energy, but gives a counter-example that

shows that the converse is not true.

Ta(Xa)ba(Xa) = 0. (108)

ba(%Xa) = fa(Xa)exp | Ta(Xa) +va — 1+ Z Aai(25) VIl. THE REGION GRAPH METHOD
i€N(a) We now introduceregion graphs which are central to the
(109) region graph method for generating valid free energy approxi-
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mations, and also will provide a graphical framework for GBBraph such that the vertices correspond to regions, with labels
algorithms. We will first focus on generativglid free energy corresponding to the factor and variable nodes in a region, and
approximations, and then turn our attention in the next sectiame require that every factor and variable node be contained in
to question of when a region graph free energy approximatiahleast one region. We associate the counting numbgefer
will be maxent-normal regions directly with the counting numbets for the region

It is possible to construct valid, or even maxent-normal, fregraph, and the region graph free enefgys; will be given by
energy approximations that do not correspond to aregion graptkc = >, crF'r, WhereFy is the free energy of the region
The region graph method has the virtue, though, of generaliz-
ing other methods, including the Bethe method, jilmection Finally, to obtain aconstrainedegion graph free energy, we
graph methodand thecluster variation methadin appendices enforce the constraints that every region belief is normalized,
A and B, we discuss the junction graph method and the clusad that for each pair of regions connected by an arc in the
ter variation method in detail. In appendix C, we fully describeegion graph, the beliefs for the variable nodes in both regions
the relationship between all the different methods consideredsdre consistent.
this paper. We have now presented enough definitions, so that the fol-

Definitions: Let I be the set of indices for the factor and varil®Wing theorem is true by inspection:

able nodes in a f;f\ctor graph. m®gion graphis a labeled, di-  Thegrem 12: Region based free energy approximations cre-
rected grapy = (¥, £, L) in which each vertex € V (Corme-  ateq ysing the region graph method will be valid.
sponding to & region) is labeled with a subsef ¢iVe denote

the label of vertexw by I[(v) € L. A directed edge (oarc)
e € E may exist pointing from vertex, to vertexv, if I(v.) is

a subset of(v,). If such an arc exists, we say thatis achild = c=-1 c=t
of v,, thatv, is aparentof v.. If there exists a directed path AC1245 ——' ——|B.D.2356
from vertexv, to vertexv,, we say that,, is anancestorof v,
andv, is adescendantf v,,. l c=-1 oo /c=o \C:_l
Note that because of the transitivity of the subset relationship, a Ca45 _._ 56 EI
region graph must be a directed acyclic graph, in the sense that
the arrows cannot loop around. ‘ \ /

A region graph is closely related to thtasse diagranior a c=1 c=—1 c=1
partially ordered setor poset[53], if we consider our regions CE4578 ___ F56,89

to be organized into a poset, with the ordering relationship be-
tween the regions to be given by the ancestor-descendant rela-
tionship [30], [31]. There are, however, some differences beg 6. An example of a region graph. We have listed the counting number
tween region graphs and Hasse diagrams. First, region grapésto each region.

are labeled graphs, and we will insist on some “region graph

conditions,” described below, that the labels must satisfy. Sec-n figure 6, we give an example of a region graph for the fac-
ond, region graphs can include an arc between two regions tttgraph that we already introduced in figure 4. This region
are also connected by a path of length two or greater, whichggaph was constructed to demonstrate what is and is not per-
forbidden for Hasse diagrams. mitted in a legal region graph, rather than what would likely
give good results. Note that a region graph enforce any clear
delineation of “generations” (regiof8} is a child of both re-
gions{C, E,4,5,7,8} and regiong F, 5, 6, 8,9}, while region

Definitions: The counting numbeke, for every vertex in the
region graph is given by

o {5} is a grand-child of regiodC, F, 4,5,7,8} and a child of
Cy=1-— E Cus (112) . .
region{F,5,6,8,9}.) Note also that regions may have count-
ing number equal to zero (e.g. regi¢h, 6}), and that the fact

where A(u) is the set of vertices that are ancestors;ofFor ~that a region is a sub-set of another region need not imply that
a graphg to qualify as a region graph, we insist on tiegion t1S also a descendant of that region (e.g. regiphiss, 6, 8, 9}
graph condition which requires that for every € I (whether and{5,6}).

it is the index of a factor node or a variable node), the subgraphWhat is essential is that tiregion graph conditionshat we

G(i) = (V(i), E(i), L(i)) formed by just those vertices whosedescribed above are obeyed. We insist on these conditions for

labels include is a connected graph that satisfies the conditidhe following reasons. First, to reiterate the results of the the-
orems previously proved about valid region-based free energy

Z e, =1. (113) approximations, the condition that every factor node in the fac-
0 tor graph is counted once when we do the weighted sum over
all regions ensures that the region graph average energy is exact
Having defined region graphs, it is almost trivial to define éthe region beliefs are exact (recall Theorem 1); and the condi-
correspondingegion graph methotbr generating valid region- tion that every variable node is counted once ensures that the re-
based free energy approximations. We simply create a regmion graph entropy correctly counts degrees of freedom (recall
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Theorem 2). The condition that the regions containing a partigrobability distributions over regions that has precisely the form
ular variable node form a connected sub-graph will ensure threicessary to make the region graph free energy be exact.

the marginal probability at any nodedensistentrrespective of
which region’s beliefs one uses to compute it. Empirically, we
have found that if one attempts to run a GBP algorithm (as de-
scribed later) on graphs that do not satisfy all the region graph
conditions, the results are likely to be poor.

c=1 c=-1 c=1

AC1245 —— — |BD2356

Lo -

C45 D56
’ c=1 ‘ c=1
c=-1
CE4,5,78 D,F,5,6,8,9
. Fig. 8. A factor graph that has a tree region graph shown in figure 9.

Fig. 7. An example of a graph of regions thahist a region graph because the
sum of the counting numbers of regions containing variable node 5 is not one.

Al134 C346 B.2,4,5 D,4,5,7

An example of a “false region graph” or graph of regions that

doesnotsatisfy the region graph conditions is shown in figure 7.
The problem with this plausible-looking construction is that the
sum of the counting numbers of the regions containing variable

node 5 is zero, rather than one. We could modify this false
region graph in a variety of ways to obtain a real region graph.
For example, we could simply remove node 5 from the region

{2,5}. The resulting region graph would be an example of a
junction graph see appendix A. Alternatively, we could add a \ /
region {5} which just contained variable node and connect

the regions{2,5}, {C, 4,5}, {D, 5,6}, and {5, 8} to it (the 4
result of using the cluster variation method; see appendix B).
We can generalize theorem 3, which states that the Bethe free

energy is exact when the factor graph has no cycles, to the foI— o A it los that h i o
|g reglon grap with no cycles that has a corresponding reglon grap
Iowmg theorem about reQIO” graphs. free energy approximation which is exact.

34 45

Theorem 13: The exact variational free energy will equal

the region graph free energy if the region graph has no c,\rcIeFe.fNOte that for this region graph, the regi¢a} separates the

t part of the tree and the right part of the tree. That means
Proof: The exact average energy reduces to the regitimt we have

graph average energy by the arggment used in theorem 1. The o plwy, ws, 24, 36)p(a, w4, 5, T7)

exact entropy reduces to the region graph entropy after recur-p(1, ..., r7) =

sively applying the following junction graph formula for the p(z4)

probability distribution of a factor graph divided into large reThe marginal probability distributiong(z1, 23, z4,26) and

gionsRy, and small region§k s which separate the large re-p(z2, 24, 5, 27) can in turn be written in terms of marginal

(115)

gions (see Appendix A for more details): probabilities of smaller regions. For example, we see that the
region{3, 4} separates the regiofsl, 1, 3,4} and{C, 3, 4, 6},
. HRGRL Pr(XR) so that
9= Myero pabemy 9 (@10, 20)p(. 21,70
RER g 1,23, x3,Tq4,L
s p(wl,xg,x4,x6):p 1,23, 24)P\T3, T4, L6 . (116)
n p(x3,24)

Expandlng everything out, we obtain that the joint probability

We illustrate this theorem with an example, that has the fact 8
graph given in figure 8, and the region graph given in figure
9. We will recursively break down the full joint probability p(z1, s, z4)p(xs, x4, x6)p(X2, T4, x5)p(T4, x5, T7)
distribution and show that it is equal to a product of marginal p(23, 4)p(24, 25)p(24)

Istributionp(z1, ..., x7) equals

(117)
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Notice that equation (117) is the product of seven local kezach pair node region had the beliefs
nels, where each kernal has an exponent corresponding to the o N . N )
counting number of the associated region. Substituting this re- bai=0,2; =0) =blwi = Lz; =1) = 1/% (119)
sultinto the formula for the exact entropy, we recover the regig¥ith other pair beliefs equal to zero, and each triplet node re-
graph entropy. Since the region graph average energy is alwigh had the beliefs
exac_t wh_en t.he regiop be_liefs are, this demonstrates that the ARy z; =0, 2;=0,2,=0) = b(z;=1,2;=1, 25 =1) = 1/2
proximation is exact in this case. (120)
with all other triplet beliefs equal to zero. These beliefs are
the beliefs that one would obtain from marginalizing a global
probability distribution that only allowed two states with equal
probability: the all-zeros state and the all-ones state.

The region graph method is not very restrictive, and a naturalFor these beliefs, the entropy of every region, whether it be
question to ask is whether there are any criteria that one can gséiplet, pair, or single node region, will be 2. So the overall
to choose between different region graphs. In this section, w#tropy is just determined by the sum of the counting numbers
focus on the notion ofnaxent-normafree energy approxima- for all the regions, and is given by

VIII. M AXENT-NORMAL REGION GRAPH
APPROXIMATIONS

tions previously defined in sef:tlor} V. . H N(N-1)(N-2) N(N-1)(3-N)
Recall that the approximation in all region-based free ener- Lo = 6 + > +

gies originates from the entropy term. A natural requirement o N(N = 2)(N —3)

that one can make on the entropy approximation is that it should + (121)

at least give the correct answer when there are no interactions, 2

that is, that it should achieve its global maximum wher aySing this formula, it is easy to determine that these beliefs
the beliefsbr(x) are uniform. We defined free energy ap9ive an entr_opy gr_eater tha¥i In 2, which is the result of using
proximations that obey this criterion to beaxent-normgland & uUniform distribution, for allv > 6.

proved in theorem 4 that the Bethe approximation is alwaé%-rh“s we see that the approximation derived from the clus-

maxent-normal. On the other hand, some region graph free “variation method using triplet regions as the largest regions,

ergy approximations are provaliiptmaxent-normal, as shown Will surely give poor results, because even if there are no in-
by the following example teractions at all, the approximation will disfavor the (correct)

uniform distribution. It is therefore no surprise that other re-
searchers have noticed that this approximation gives poor re-
A. Example of an Approximation that is Not Maxent-Normal sults for the Sherrington-Kirpatrick model [51], [55].

Consider a factor graph which consists/éfbinary variable g Example of an Approximation that is Maxent-Normal
nodes, where every pair of nodes is connected by a factor. (ﬁ:

version of this factor graph with random factors is known in the ortgnatgly, itis not too hard to find examples of region graph
agprommaﬂons thadre maxent-normal, besides those based on

physics literature as the Sherrington-Kirpatrick Ising spin glafhe Bethe approximation. We now present a non-trivial example

[541) . . . . of an approximation that is provably maxent-normal.
Now take, as the regions to include in the region graph, EVelYConsider art by L square lattice of binary variable nodes,

triplet of nodes (and all three factors that connect them), ev ere each variable node is connected by pair-wise factors to

pair of nodes (and the factor that_cp_nnects them),_ and eve Y nearest neighbors. Of course we would normally be inter-
single node. To complete the definition of the region grap sted in cases whelkis large, but for the sake of example we
draw an arc from each triplet region to each of the three PR hsider a smalk by 3 version’, shown in figure 10.
regions that are sub-sets of it, and an arc from each pair regioRy,g can construct a region graph for such square lattice factor
to each of the two single node regions that are sub-sets ofgit; nhg by using the cluster variation method (see Appendix B),
This is the region graph that would be obtained using the CluS[gL rin g with smalb by 2 clusters as the largest regions. For our
variation method (see appendix B), starting with all the triplef 5 example, the resulting region graph is shown in figure 11.
regions as the largest regions. We can prove that this particular region graph gives a free
We can compute the counting numbers as follows. There &figergy approximation that imaxent-normaby following the
N(N —1)(N —2)/6 “triplet” regions, each having a countingidea of the proof that the Bethe appoximations will be maxent-
number ofcs = 1. There areN(N — 1)/2 “pair” regions, normal (see the proof of theorem 4).
each having a counting number @f = 3 — N (because each o .
pair of variable nodes belongs 1 — 2 triplet regions). There ~ Theorem 14: The free energy approximation for the region
are N single node regions, each having a counting number @f2ph shown in figure 11 is maxent-normal. _
¢1 = (N — 2)(N — 3)/2 (this can be computed from the fact Proof: We rjeed to ;hoyv that t_he entropy of this free en-
that each single variable node belongg — 1)(N — 2)/2 €9y approximation attains its maximum when all the beliefs

triplet regions andV — 1 pair regions). are uniform. Rewrite the region graph entropy as
Now consider the consistent set of beliefs where each single N
node region had the beliefs Hrg = ZH(bi) —1(1,2,{4,5}) — 1(3,6,{2,5})
i=1
blx; =0)=b(z; =1)=1/2, (118) — 1(8,9,{5,6})—1(4,7,{5,8}) (122)
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using the cluster variation method, starting withy 2 overlap-

1 M ping clusters as the largest regions, is maxent-normal.
1 L A EZ DB_O3 Proof: Left as an exercise for the reader. |
C D [] E C. Discussion and Heuristics
(\ — ~ —/ ,) In general, the problem of how to generate region graph ap-
- 4 LIF \J5 L G N6 proximations that give highly accurate marginals is still very
much an open research problem. While the notiomakent-
|::| [] |: normal region graph approximations is helpful, it is not the
H | J complete story. In this sub-section we further discuss this is-
sue, and suggest some heuristics that should prove useful.
O D O B O First, we point out that we have been focusing on the accu-
7 K 8 L ° racy of the free energy approximation, while in the end, we are

actually usually most interested in the accuracy of the approx-
imate marginals that we compute. The two are related, but we
will not discuss this point further in this paper. Instead, we refer
the interested reader to work of Wainwright, et.al. [24], which

c=1 c=1 c=1 c=1 develops bounds on the approximation error for the marginals
1245 2356 4578 56,89 for any _alg(_)rlthm that minimizes the Bethe free energy or its
ACDF BD.EG FHILK GlJIL generalizations.

Although we do not here propose a systematic approach to
>< >< >< choose promising region graph approximations, we do suggest
"25 e e 5; the following “common-sense” heuristics. First, as we have

| already emphasized, a region graph approximation should be
maxent-normal Secondly, to improve upon the ordinary Bethe

D F G
Cz_lﬁ /V c=1 approximation, one should try to include at least the shortest
cycles in a factor graph inside regions.

Finally, we have observed that region graph approximations
that obey the following heuristic tend to be very accurate:
c=1 namely, that the sum of the counting numbers of all regions
equals one:

5

S er=1. (125)

Fig. 11. A region graph for the factor graph in figure 10 obtained using the
cluster variation method, starting with 2 by 2 clusters. The counting number

for each region is listed next to the region. To avoid any confusion, we emphasize that this heuristic is dif-
ferent from the validity condition given in equation (29) that
where ensures that each variable node and factor node is counted once.
H(b;) = *Zbi(‘ri)lnbi(xi) (123) This heuristic can be rationalized by considering a factor
o graph with binary variable nodes (the following argument can
also be easily generalized tpary variable nodes), and con-
sidering the global probability distribution that allows just two
1(1,2,{4,5}) = H(b1oas) — H(b1) — H(by) — H(bys) (124) states with equal probability: the state where all nodes are ze-
ros, and the state where all nodes are ones. (The reader may be
The maximum ofH (b;), subject to the constraints dn(x;), growing familiar with this distribution, which we already used
is achieved whem;(x;) has a uniform distribution. The mu-in the examples of approximations that can give negative en-
tual informations like/(1,2,{4,5}) must be greater than ortropies, and the examples of approximations that are provably
equal to zero, and will equal zero if all the beliefs involvesot maxent-normal.) The exact entropy of this probability dis-
have uniform distributions (see, e.g. theorem 2.6.4 in [37}yibution is obviously justn 2.
Since H (b;) achieves its maximum and the mutual informa- |f we marginalize this distribution, we find that every region
tions achieve their minimum when the beliefs are uniform, thlso has a marginal probability that allows only the all-zeros
theorem is proved. B or all-ones state for its variable nodes. Therefore, every region
éll also have a region entropy @fi 2. Thus, for any region-
ased approximation to give the correct entropy for beliefs cor-
responding to this global distribution, the sum of the counting
Theorem 15: For the factor graph consisting of dnby L numbers, over all regions, must be one.
lattice ofg-ary variables, connected by pair-wise factors to their This heuristic ismotnormally satisfied by Bethe approxima-
nearest neigbhors, the free energy approximation obtainedtlons, with the exception of exact Bethe approximations when

and, for example,

This theorem, and its proof, can easily be generalized to t
general case of ah by L lattice ofg-ary variables:
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the factor graph has no cycles. However, some more compdijust the product of all the messages bearing information from
cated region graph approximations do indeed satisfy the heunigighboring factor nodes, while the belief at the region of vari-

tic, including, for example, the maxent-normal approximatioable nodes adjoining a single factor node is the product of that
discussed in the previous sub-section for square lattices basgdrnal factor, multiplied by all the messages coming intc the

on two by two clusters. group of nodes from factor nodes outside the region.

Clearly, it would be worthwhile to develop a method that The parent-to-child algorithm generalizes this idea. In this
would accept arbitrary factor graphs, and automatically coalgorithm (which in a previous exposition we called the “canon-
struct maxent-normal region graph approximations that al&al” GBP algorithm [17]) the belief at any regidR will be the
satisfied our heuristics. We do not know of any such methaggkoduct of all the local factors in that region, multiplied by all
but we refer the reader to an interesting paper by Welling [58he messages coming into regiffrom outside regions. There
who developed a “bottom-up” approach to generating regiasm one complication, however: to ensure that the algorithm is
graph approximations starting from the Bethe approximationequivalent to minimizing the region graph free energy, we need

to include additional messages into regions which are descen-
IX. GENERALIZED BELIEF PROPAGATIONALGORITHMS  dants ofR from other parent regions that are not themselves

We have already seen that the stationary points of the Befigscendants of regiaR.

approximation to the free energy are equivalent to the fixegefinitions: In the parent-to-child algorithm we only have
points of the standard BP algorithm, which operates on a faciie kind of message »_. z (x ) from a parent region to a child

graph. We now introducgeneralized belief propagatialgo-  region. Each regiotk has a belieb (x) given by
rithms which operate on region graphs, and demonstrate that

their fixed points correspond to the stationary points of the re-

gion graph free energy. br(xr) o H fa(%a) H mp_r(XR)
One can construct generalized belief propagation (GBP) al- a€Ap PeP(R)
gorithms corresponding to any region graph free energy approx-
imation. In fact, there are many ways to construct message- . H H mp—p(xp) | (126)
passing algorithms whose fixed points are equivalent to the sta- DED(R) P'eP(D)\E(R)

tionary points of a region graph free energy. In all these algo-
rithms, messages of some sort are sent between regions d¢#eEe P (R) is the set of regions that are parents to regian
region graph. D(R) is the set of all regions that are descendants of refion
Note first that we can obtain different GBP algorithms cof(12) = RUD(R) is the set of all regions that are descendants
responding to the same free energy by using different regigh/2 and also regiortt itself, andP(D)\E(R) is the set of all
graphs that have the same free energy. For example, if {@gions that are parents of regidhexcept for region? itself
modified a region graph by Connecting a grandparent regi@hthose those regions that are also descendants of r@ion
directly to a grandchild region, then the GBP algorithms that The message-update rules the parent-to-child algorithm
we describe below would be correspondingly modified, but tiyéll be
approximate free energy would not be changed, and the new
constraints would be redundant. Making such a modification
will thus alter the dynamics of a GBP algorithm, but not its 2eapin Llacrp n fa(#a) Il nenip ) mI*J(IJ)(127)
fixed points. Pakzad and Anantharam [31], [32] have focused H(I,J)ED(RR) mr—j(zr)

on the problem of constructing thminimal region graph for a

free energy approximation; we will not focus on that problerﬁf‘,’;necrs tr;(;eg(g ’ t]ﬁlz iﬁg f(ilfzgo%ine?teega;gijrlgtg? rigg?gr;s
and instead refer the interested reader directly to their papers. : ’
Y PEPETPr 1) such that/ is in £(P) but not&(R) while I is not in

Even if we fix attention on a particular region graph, therg ) ; X
are still a variety of different GBP algorithms that we can creE(P)' D(P, R) IS _the set of f"‘" cpn.nected pairs of regions
such that/ is in £(R), while I is in £(P), but not€(R).

ate. In the main text of this paper, we will describe one posgi[’ J)
ble approach, which we call thearent-to-child algorithm In _
appendices D and E, we describe two other approaches thé\n _example should help ma_ke Fhese definitions _much clearer.
child-to-parent algorithmand thetwo-way algorithry which ~Consider the example shown in figure 12. The béljgfx ) at

give algorithms with equivalent fixed points, and which ha&9ion 1 is the product of its local factor] ¢ 4, fa(xa), the

their own advantages. An main advantage of the parent-to-cHjgSSages from its parents, . z(xz) andmp-.r(xr), and
algorithm, in comparison with the other algorithms, is that tH&'® Messages into descendants from other parents who are not
message-passing rules make no reference to region counfifgcendantsnc—e(xe), me—u(xXu), andme— i (xm). .
numbers, just as in the standard BP algorithm. The standar ne obtains self-consistent message-update rules by requir-

BP algorithm is a special case of all three algorithms when tH¥ consist_ency t_)etween thg bt_aliefs between every pair of par-
region graph is obtained using the Bethe method. ent and child regions. Thus in figure 12, we might focus on the
regionR and its childE. The belief at regiorR is given by

mp_r(TR) =

A. The Parent-to-Child Algorithm
. . br X MA_RMB_RMC—EMC—H MF—H H Ja(Xa)
Recall that the standard BP message-passing equations can aEAR

be derived from the fact that the belief at a single variable node (128)
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Theorem 16: Interior stationary points of the constrained
A l:' region-based free energy for a valid region graph with no re-

I / gions that have counting numbeg = 0 must be fixed points

of the parent-to-child GBP algorithm for that region graph.

@

Proof: The region graph free energy is

|
| f\\| ,|/ =({br}) = ZCRFR (br)- (132)

py)
O

|F ReER

\ / \ / To derive the stationarity conditions, we need to create a La-
I:I G I:I H grangianL for the free energy which enforces consistency be-

tween the beliefs in every pair of connected regions. To that
end, we add Lagrange multiplieks>c (x¢) which enforce that
Fig. 12. A region graph used to illustrate the parent-to-child GBP algorithm.

Note that we do not explicitly give the variable and factor node labels for each be(xc) = Z bp(xp) (133)
region, as for our purposes, we are only interested in the topology of the region
graph. xp\xc

for every pair of parent and child regiodd andC. We also

(where we have lightened the notation by removing the obvieed to include Lagrange multiplieys which enforce the nor-

ous functional dependencies of the messages) and the belighafization of the beliefs>_, br(xr) = 1. We can ignore
regionE is given by the Lagrange multipliers corresponding to the inequality con-

straintsbr(xr) > 0, because for interior stationary points,

bg X MR—E MC—E MD—GMC—H MF—H H falxa) these constraints are inactive and the Lagrange multipliers are

e zero.
(129) Setting the derivatives df with respect to the beliefs; (xr)
Using the marginalization constraint equal to zero gives us the following stationarity conditions:
br(xg) = Z ba(x4), (130) crInbr(xr) =R +cr Z In fo(Xa)
xA\XR a€AR
. . . - A A 134
we obtain a relation between messages that we can interpret as Z PR(XR) + Z rolxc),  (134)
PeP(R) CeC(R)
the message update rule
whereP(R) is the set of regions that are parents of regign
mp—p(Xp)mp-c(xc) = andC(R) is the set of regions that are children of reginin
Z ma—r(Xr)Mmp_r(XR) H fa(x4). (131) this expressionx, andxc are entirely determined by the value
xr\XE a€AR\Ap of xp.

Our proof will now work backwards from the belief equa-
Of course, similar message update rules would be obtaingshs that we want to derive. We want to show that there exists
for all the pairs of parent and children regions. There will be “rotation” from our Lagrange multipliers to another set of
enough conditions to determine every message. Lagrange multiplierg. such that the stationary point conditions
can be re-written as

B. GBP Fixed Points are Free Energy Stationary Points crInbr(xpr) =Yr+cr Y, Infa(xa) + (135)
We now prove that the fixed points of the parent-to-child acAg
GBP algorithm using a given region graph correspond to theCR pr(XR) + cr Z Z 1p o (XD).

stationary points of the region-based free energy for the same
region graph. To simplify the presentation, we will restrict our
attention to interior stationary points. (For an alternative exGlearly, if we can show this, then by identifying the message
position of the following two theorems, based on our earliehp ., z(xr) = exp(upr(xr)), we will recover our desired
reports, we refer the reader to the proof of theorem 3 in [30].belief equations.

For the purposes of these theorems, we will also assume thaBo what do the Lagrange multipliefsrr(xg) constrain?
no regionR in the region graph has counting numlagr = 0. The answer is that they impose the constraint
In appendix F, we discuss this technically useful assumption
in detail. In particular, we show that it is easy to remove any crbg(xz) + > ea Y ba(xa)=0. (136)
cr = 0 regions to get an equivalent region graph; and also that A€ A(R\(PUA(P)) xa\Xr
even if we do permit them, the parent-to-child GBP algorithm

will still work properly, although the proofs of the following !N words, the Lagrange multiplierp ; constrains the weighted
theorems no longer hold. belief in regionR plus the sum of the weighted beliefs in all the

ancestor regions of regioR, exceptfor regionsP and all its

PeP(R) DeD(R) P'eP(D)\E(R)
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ancestors, to be equal to zero. If we make a Lagrangian using X. DETAILED EXAMPLE OF A GBP ALGORITHM
these Lagrange multipliers, it is straightforward to work out that
its stationary points are given by equation (135).

Now we need to show that the new setwofagrange multi-
pliers and their associated constraints are equivalent to the old
set of A Lagrange multipliers and their constraints. We first note
thatbecauser +3_ yc ar)ca = 1,@ndcp+3° 4 4py Ca =
1, we can subtract these two equations and obtain

cr+ > ca=0 (137)
A€EA(R)\(PUA(P))

If we start with the A\pc(x¢) constraints thatc(xc) =

> xp\xo 0P (xp) for every pair of parent and child regions, we
can use equation (137) as a basis for deriving the constraints
associated with the Lagrange multipliers. |

Fig. 13. A factor graph that we will use for our detailed example of how to

. : . . truct a GBP algorithm.
Theorem 17: For a valid region graph with no regiorf? constructa algoriim

that have counting numbetz = 0, any fixed point of the ) ) .

parent-to-child GBP algorithm for that region graph that has e will now give a detailed example of how to construct
all beliefsbr(xz) > 0 must also be a stationary point of the® GBP_ algorithm. Cons!der the factor graph drawn in figure
region-based free energy for that region graph. 13, which has seven variable nodes and ten factor nodes. For

Proof: Because of the condition that there are no countirf§is factor graph, it is convenient to slightly alter our labeling
numbersc = 0, the u constraints in the proof of the pre\,iousconventions so that some of the factor nodes (the ones attached
theorem are linearly independent. Therefore, if we begin witA @ Single variable node) are labeled with a number rather than
the fixed point equations, which are equivalent to theon- a_let_ter. _Thls factor graph corresponds to the joint probability
straints, then there must exist a rotation to theonstraints, so distribution
we can reverse the direction of the previous proof and recover A
the conquons on the constraints which must hold at an inte- p(21, 22, .., 77) = — H filzi) ] ... (140)
rior stationary point. | Z \;

Note that we have not given a general formula relating the fal@y, 2,23, 25) fB (21, T2, T4, w6) fo (21, w3, T4, 27)
1 Lagrange multipliers to the Lagrange multipliers. Fortu- ] ] ) ]
nately, such a formula is not actually necessary for our proof, We will work out a GBP algorithm making no assumptions
as we only need to show there always exists such a rotation 82put the actual forms of the functions, but we note that this
new set of Lagrange multipliers, even though we do not spec?m?u'?‘r factor graph can be used_to represent the probab_lllty
it explicitly. It is very difficult to derive a general formula relat-distribution that occurs when decoding a block error-correcting
ing the two sets of Lagrange multipliers, but for region grapl%?de [21]: In particular, if each of the yarlable nodes is binary,
with only two “generations” of regions like those constructelith possible state8 or 1, and the functiong s, /5, andfc are
using the junction graph method (see appendix A), we can RRrity-check functlons_ (equal toif the sum of their arguments
fact give the relationship explicitly in both the forward and in@'€ even, and otherwise), then this factor graph corresponds

verted directions: to th_e linear block(7,4,3) Hamming code with parity check
matrix
Apr(xp) = Y per(xg), (138) 1110100
P'EP(R)\P H=(1101010|. (141)
1 01 1 001
1-— 1
ppr(XR) = °h APR(XR) + — Z AP R(XR). _ _
CR “R prep(R)\P For the decoding problem, the functiotigz;) represent the

(139) likelihoods of the possible states of the bits, in light of the re-

Also note that this technical difficulty does not arise at all fogeived block from the channel and the assumed channel model.
the child-to-parentandtwo-wayGBP algorithms described in  To obtain a GBP algorithm, we first need to create a region
Appendix D, because in those algorithm, the messages aregifph. We use the cluster variation method, with largest regions
rectly exponentiated Lagrange multipliers. {fa, f1, fos f3, 5, 1,2,3, 5}, {fB, f1, fo, fa, f6,1,2,4,6} and

We will not here investigate the issue of edge stationafyc, f1, f3, f4, f7,1,3,4,7}. Following the cluster variation
points and active inequality constraints for general constraingwethod prescription for finding intersection regions detailed in
region graph free energies. One might expect that the genexppendix B, we obtain the region graph shown in figure 14.
picture that emerged for the Bethe/BP case to be reproducedNow that we have a region graph, we need to choose what
here, but the existence of valid constrained region-based fieed of GBP algorithm we want to use and then write down
energy approximations that are nevertheless not maxent-norha belief and message equations for the GBP algorithm. We
makes the problem quite intricate. choose to use the parent-to-child algorithm.
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far fis fon fou fs fg, fr fp, f4 fg LV PR P A

1235 1246 1347 bizar < fo f1f3fafrmas—13mas—14ma1. (145)
Note that since these regions do not have parents, all the rele-
vant messages are into descendant regions from other parents
who are not descendants.
y v The belief equations for the intermediate-sized regions will
., f, f, f, i, f, be
L2 13 L4 bi2 o< f1famss_12Ma6—~12M31M4—1, (146)
\ / bi3 o f1 famas_13mar—13Mo_1Ma—1 (147)
3 ;' and
11 b1 o< f1famag_14m37r_14ma 1 M3 1. (148)

Finally, the belief equation for the regidrf;, 1} will be

Fig. 14. A r_egion graph obtained for the factor graph of figure 13 using the b1 o fimo_1M3—1M4—1. (149)
cluster variation method.
The message-update rules are obtained by combining these
Note that although the region graph free energy is useful foelief equations with the marginalization conditions between
theoreticallyjustifyinga GBP algorithm, it will not be necessaryparent and child regions:
for constructingthe algorithm. Instead, we can work directly
with the belief equations. bo(xc) = Y brixp). (150)
Recall that in the parent-to-child algorithm, we only have one xp\xc
kind of messagenp_. r(xr) from a parent region to a child
region. Each regio has a beliebr(xz) given by equation
(126) which we re-write here:

For example, requiring consistency between the beliefs at the
region{ f1,1} and the regioH f1, f2, 1, 2} tells us that

bi(x1) = ) bia(x1,2) (151)
br(xr) H fa(%a) H mp_r(Xg) xzz 2

acA PEP(R
An PR from which we obtain
H H mp_p(xp) | .(142) Mo 1= Zf2m35_>12m46—>12- (152)
DeD(R) P'eP(D)\E(R) s

In words, this equation says that the belief at each region is arhe other message-update rules, obtained in the same way

product of the local factors in that region, the messages frq@y equivalently by using equation (127), will be
parents, and the messages into descendant regions from other

parents who are not also descendants. M3y i= Z famMas—13Ma7—13, (153)
In our region graph, we have seven regions that can be o
grouped into three types of regions: the three regions exem-
pllfled by {fA7 fl, fg, f3, f5, 1,2,3, 5} that contain five factor me—1 = Z f4m26ﬁ14m37_>14, (154)
nodes and four variable nodes; the three regions exemplified x4
by { f1, f2, 1,2} that contain two factor nodes and two variable
nodes; and the single regidy;, 1} that contains one factor M3—1M35-12 == Z fafsfsmar—is, (155)
node and one variable node. 3T
We will use an abbreviated notation, dropping explicj M1 M5 13 i= Z Fafofsmag—no, (156)

dependence, for beliefs and messages and factor functions. The
notation is best explained with some examples: we vbiite;,

x2,T5

b1, and b; for the beliefs at the regions listed in the previ- M4 1Ma6—12 = Z IBfafemar—1a, (157)
ous paragraph; we write35_,12 for the message from region T4,T6
{fa, f1, f2, f3, f5,1,2,3,5} to region{ f1, f2, 1,2}, ma_,; for
. . - 14 = 192, 1
the message from regidfi, f2, 1,2} to region{ f1, 1}, and we 1121112614 mz; T f2fomas—12 (158)
abbreviatef 4 (21, zo, x5, 25) aSfa4. #re
In this abbreviated notation, the belief equations for the M4 MAT—15 1= Z foFafrmagoia, (159)
largest regions will be z4,27
bi23s o< faf1f2f3fsmae—12mar—13ma_1, (143) and
ma_imar1a = Y fofsfrmas iz (160)
bi2as o< fBf1f2fafemas—12mar—1ama_1, (144) 2507
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In practice, it often helps convergence to only step the mes-in a ferromagnetic state. (For more discussion of this model,
sages part-way to their newly computed values. This simpee any textbook on statistical mechanics, e.g. [46].)
heuristic can eliminate “over-shooting” problems. Because of the translational symmetry of the model, it is easy
We emphasize here one potential practical pitfall to avoid construct Bethe or Kikuchi approximations, treat them ana-
when using this “inertia” heuristic. Let us suppose that wigtically, and compare with known exact results. Already in
have a set of old messagés:*'¢}, which we use in the up- 1951, Kikuchi studied the approximation obtained using the
date equations to calculate a set of messdge¥d2tc}, and cluster variation method, starting wighby 2 overlapping clus-
that we want to set our new messages to be half-way Hers. Aswe stated in section VI, this approximation is maxent-
tween the old messages and the updated messfg€8*} = normal, and satisfies our heuristics that the shortest loops are
1{m°} + L{murdate}  We strongly recommend that whencontained in regions, and that the sum of the counting numbers
using an update equation with more than one message ondhall regions equals one.
left hand side, that all those messages-at@d*tc equations.  One finds that for this model, the exact critical temperature
Mixing in m"*" or m°9 messages on the left hand side empiri. is approximately2.2692.7, compared to the mean field the-
cally often results in poor convergence properties. For exampdgy prediction of4.0./, the Bethe approximation prediction of
the update equation (155) given above should explicitly be 2.8854.J, and the Kikuchi prediction (using by 2 clusters) of
2.4257.J [16], [57].
miP T OmiP S = N " fafsfsm§i s (161)  Qualitatively similar results are available in the physics lit-
z3,25 erature for a wide variety of models of magnetic systems with

. ) translationally invariant interactions. However, when consider-
Fortunately, itis always possible to schedule the message Wgy propabilistic inference for Bayesian networks or decoding
dates so that one computes the updated messages into the sgalrorcorrecting code, we are more interested in studying the
est regions first (e.g. messages likg™;"™), so that they are 5ccyracy of the predictions for marginals made by these approx-
available when needed to compute the updated messages {ij&ions for factor graphs that do not have any symmetries.
larger regions. _ . Besides the results that we now discuss, which were first
There are many other details that can be handled in diff¢kported in [17], the interested reader can find similar empir-
ent ways in iterating the message update equations. For exgs results for GBP algorithms in references [58], [59], [56],
ple, the messages can be initialized in any way one likes; ty43] 149]. Readers who are more interested in rigorous bounds
reasonable choices are random or uniform messages. Theydlihe accuracy of marginals will want to consult the work of
gorithm typically terminates after a fixed number of iterationgyainwright et.al. [24].
or after some convergence criterion is satisfied, but other termi\e studied factor graphs known in the physics literature as
nation conditions are possible. In a decoding application, 0Bgyare lattice Ising spin glasses in a random magnetic field. The
typ|cally checks at each iteration whether 'Fhe thresholded t%?a‘riable nodes were arranged in Brby L square lattice, and
liefs correspond to a code-word, and terminates the decodighnected to their nearest neighbors by factors of the form
algorithm if they do, stopping otherwise when some fixed num-
ber of iterations has passed. oy [ exp(Jiy/T)  exp(—Ji;/T) )
fa(@i, zj) = ( exp(—Jij/T)  exp(Ji;/T) . (163)

where the parameter$;; are chosen independently for each
We naturally are interested in GBP algorithms, and their cdfactor from a Gaussian probability distribution. In addition,

responding region-based free energy approximations, onlydach variable node was connected to a “local random field” fac-

the extent that they improve upon the standard BP/Bethe apr nodef;(x;) of the form

proach. Fortunately, maxent-normal region-based free energy

approximations, particularly those that satisfy the heuristics de- Filw) = < exp(h;/T ) (164)

scribed in section VIII, do indeed reliably give more accurate o exp(—hi/T) )’

estimates of marginal probabilities than the Bethe approxima- )

tion. where the parametels are also chosen independently from a
Consider, as an example, the square lattice Ising ferromagfagussian probability distribution.

This is a model wheraV binary variable nodes are arranged in Ve focused on the case where the parameters were cho-

an L by L square lattice, and each variable node is connecte from a zero-mean Gaussian distribution with standard devi-
to its nearest neighbors by a pairwise factor of the form ation of 1.0, while theh; parameters were chosen from a zero-
mean Gaussian distribution with standard deviatiof. of This

exp(J/T) exp(—J/T) highly frustrated model was chosen because it highlights the

fa(zi,zj) = ( exp(—=J/T)  exp(J/T) ) (162) \yeaknesses of ordinary BP, which performs perfectly well for
many other factor graphs. For all our algorithms, we used “in-

In this model, neighboring variable nodes (“spins”) prefer tertia” (see section X, and also [58], [59]) to help convergence.
be in the same state. The parameteneasures the strength of For L = 10, we found, over dozens of samples, that the
this preference, an@ is the temperature. In the limit of largeparent-to-child GBP algorithm always converged to accurate
L, this model has a phase transition at a critical temperdtyre answers, while ordinary BP usually did not usually converge at
above which it is a in a paramagnetic state, and below whichaif. For L sufficiently small, we could compute exact marginals

Xl. ACCURACY OFGBPALGORITHMS
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by re-writing the factor graph as a chain 6fby 1 “super- Secondly, we require that for any indéx I, the subgraph of
nodes,” which could each take @# different states. To give a G consisting only of the vertices which contaiin their labels,
qualitative feel for the results, we compare ordinary BP, parerig-a connected tree.

to-child GBP, and the exact results for ohe= 10 lattice where ~ The “junction graphs” introduced by Aji and McEliece [29]
ordinary BP did converge. We plot the results for the “localre a special case of those described here. In their junction
magnetization” (the belief of the node that the node is in theraphs, small vertices were restricted to have precisely two
first state minus the belief that it is in the second state) for tineighboring large vertices, so that the small vertices can be in-
ten variable nodes in one row of the lattice in figure 15. Noterpreted as labeled “edges” between the large vertices. They
that the GBP algorithm is much more accurate than ordinafityrther required that small region labels not include any indices
BP, which tends to correctly predict the direction of the magnespresenting factor nodes.

tization, but is highly “over-confident.” Given a set of region® ;¢ = R U Rg that are organized
into a junction graph, we can always obtain a valid region-based
approximation by defining a set of counting numbegsas fol-
lows. For all regionsk € R, we letcg = 1, while for all

! regionR € Rg, we letcg = 1 — dr wheredg is the de-
& o5 - gree (numbering of neighboring large regions) of regitnit
g L. L mBP is through this prescription that the arcs the junction graph be-
5 O ‘ g LEUU e | m GBP come relevant—a small region’s contribution to the free energy
£ 1 2 4 6 7 8 9 10||0Exact is subtracted out from that of a large region only if the two re-
8057 gions are connected by an arc. It is straightforward to confirm
4 that this prescription for the counting numbers gives us a valid

region-based free energy approximation, as the junction graph
condition that the sub-graph for each variable or factor node
is a tree guarantees that each variable and factor node will be
counted once as required in equation (29).

Fig. 15. The local magnetization for 10 variable nodes in a 10 by 10 spin gIassAji and McEliece proved a theorem that tells us that given
with random magnetic fields, as computed exactly, and using ordinary BP or . . .
GBP. anyset of large region® ;, that contain all the factor and vari-
able nodes in a factor graph, we can find a corresponding set of
small regionsk s and organize the regions® ;¢ = RLURg

into a junction graph. Their theorem generalizes without diffi-

_ culty to our version of junction graphs.
We thank Dave Forney and Robert McEliece for helpful and a5 g example, consider the factor graph which we intro-

encouraging discussions, and David MacKay for his commen{§ced in the main text and re-draw in figure 16. We could take
on a draft of this paper. We also thank the anonymous referg@s,ur set of large regio®,, the four regiong 4, C, 1,2, 4, 5},

variable node
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of this paper for their criticisms and suggestions. (B,D,2,3,5,6}, {C,E,4,5,7,8}, and {F,5,6,8,9}. An
acceptable set of corresponding small regighs would be
APPENDIXA: THE JUNCTION GRAPH METHOD {2,5}, {C,4,5}, {5,6}, and {8}, with a junction graph as

ﬁgown in figure 16. Because in this case each of the small re-
gions is connected to two large regions, they would each have
an counting number of 1.

A natural idea to generalize the Bethe Method is to keep t
notion thatR should be the union of a set of large regidtg
and a set of small regiorB s, but to let the regions iR ;, or
Rs contain more nodes. Thanction graph methodthat we
describe here, exploits this idea, and is based on a generaliza-
tion of the “junction graphs” that were introduced by Aji and
McEliece [29].

We define gunction graphto be a labeled bipartite graph
G = (V1,Vs, E, L) in which there ardarge vertices(corre-
sponding to large regions) € V1, small verticegcorrespond-
ing to small regionsy; € Vs, and directed edges (@rcs)

e € F connecting large vertices to small vertices. The vertices
in the junction graph are labeled, and the label of vertels Fig. 16. A junction graph (on the right) for the factor graph on the left.
denoted(v;) € L. The labels will be subsets of a set of indices

I representing factor or variable nodes of a factor graph. The set of regions given by the Bethe method can also always

For the graplg to be considered a junction graph, we insigee organized into a junction graph (though not necessarily the
upon two conditions. First, if, is a small vertex neighboring restricted Aji-McEliece version of a junction graph); using as
thek large verticesy, , v, , ..., vy, , then we require thdtv,) is an example the same factor graph, the resulting junction graph

a subset of each éfv;, ), (v, ), ..., 1(v1, ), or equivalently, that is shown in figure 17. It is obvious from this example that there
will always be a one-to-one isomorphism between the origi-

l(vs) C U(vr,) Nl(wg,) N O (g, ). (A-1) nal factor graph and the corresponding junction graph obtained
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where(RS) denotes pairs of connected regions in a given re-
gion graph for that factor graph. Specifically, when we set

Op(xp) = ([Taca, fo(Xa)) ™ and¥ps(xp, xs) equal to 1
/ \ / if xg is consistent withkg and equal to 0 otherwise, this form
-A,1,2,4,5 -52,3,5_6 of the joint probability distribution will be equivalent to the one
in the original factor graph form. Since the formula (A-5) is
true for pairwise Markov Random Fields when the set of nodes
_— —[se J—{¢] in R, are separated by the set of nodesip, and we have
/ shown how to convert a region graph into an equivalent pair-
wise Markov Random Field, we have justified using formula
J NS AN (A-5) for region graphs as well.

]

APPENDIXB: THE CLUSTER VARIATION METHOD

Another method for selecting a valid set of regidRsand
Fig. 17h Qilﬁnctionhgrgthftir t?he factor grarllph S%O\{Vﬂ in fitghl_"e_ 4 9t¢nerat%’(r)]unting numbersy, is thecluster variation methothtroduced
using the Bethe method. Note the isomorphism between this junction gr. . .. . . .
and the original factor graph. BY Kikuchi in 1951 and further developed in the physics lit-
erature since then [20]. The main feature distinguishing this

method from the junction graph method is tliatmay be the

from the Bethe method. o union of more than just two generations of regions.
The junction graph approximation for the variational free en- |n the cluster variation method, we begin with a set of dis-
ergy I1s tinct large regionsk, such that every factor nodeand every

variable node in our factor graph is included in at least one
Fia({br}) = Usa({br}) — Hic({br}), (A-2) regionR € Ry. We also require that no regiaR € R, be
where a subregion of any other region 8. We then construct the
set of regiongk; by forming all possible intersections between
Usc({br}) = Z Ugr(br)+ Z (1—dgr)Ur(br), (A-3) regionsinR, but discarding fronR, any intersection regions
RERL RERs that are sub-regions of other intersection regions. If possible,
we then construct in the same way the set of regigagrom
the intersections between regionsii. As long as there con-
He({br}) = Z Hg(bg) + Z (1 —dr)Hg(bg). tinue to be intersection regions, we construct sets of regions
ReRy ReRs Rs,Ra,...Rk inthe same way. Finally, the set of regions used
(A-4) inthe cluster variation method willBR = RoyUR1U...URKk.
Junction graphs are a special case of region graphs, wher®/e define the counting numbers in the cluster variation
there are only two “generations” of regions. It follows thamethod to be
minimizing the junction graph free enerdy; ¢ will once again cr=1- Z cs (B-1)
give beliefs{br} that are equivalent to those obtained from a SeS(R)

rknessage-passmg B.P algprlt.hm.. That algonthm s SometlmﬁﬁereS(R) is the set of all regions which are super-regions of
nown as thgeneralized distributive la\i25]. Again it follows reqion R

as a corollary of our more general results for region graphs tha%eturﬁin to our example factor graph drawn in figure 4, we
the junction graph approximation to the variational free energ\;{)([in choosg the base sert) of 1e idg tg consist of the fou’r
will be exact, and the generalized distributive law will give ex-__. 9iotls

act results, when the junction graph is a tree. In that case, trﬁgmns{A, C.1,2,4,5}, {B,D,2,3,5,6}, {C, E,4,5,7, 8},

junction graph is gunction tree and the generalized distribu-and{D’ F, 5.’6’ 8,9}. Once the set of base reglom’.'s cho-
tive law reduces to the famoiinction tree algorithm sen, there is no further choice in the cluster variation method.

We can apply the well-known result [13] for the joint probaln our case, the set of intersection regidRs would be the

bility function in junction trees to our case and obtain reg|(_)ns{2, 5.} {C. 4,5}, {D, 5,6}, {5,8}, and the set of inter-
section region®R» would be{5}.

[Irer, Pr(XR) Each of the region® € R, would have an counting number
(A-5) cr = 1. Because each of the regioRsc R is the subregion
of two regions iRy, they each have an counting humber of
To obtain this result, we note that while we have describeg; = 1 — 2 = —1. Finally since every region iRy andR; is
region graphs and junction graphs as directed graphs, from thsuper-region of5}, its counting number i$ — 4 + 4 = 1.
point of view of statistical graphical models, they are equivalent We can represent this set of regions and counting numbers
to undirected graphs. In particular, one can re-write the fullith the region graph shown in figure 18.
joint probability distributiornp(x) for a factor graph in the form  Note that the Bethe approximation will be a special case of
1 the cluster variation method if and only if no factor node shares
p(x) = — H Uprs(xp,Xs) H O r(xR) (A-6) more than one variable node with another factor node (or equiv-
Z (RS) R alently, there are no cycles of length four in the factor graph.)

and

plx) = [rers Pr(XR)" 1
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Fig. 18. Aregion graph generated using the cluster variation method. Fig. 19. For this factor graph, the choice of regidns, 1, 2,4}, {B, 1, 3,5},
{C,2,3,6}, and{1, 2, 3}, with corresponding counting numbersiof,1,and
—1, will give a valid region-based approximation that cannot be represented by
N . region graph.
The factor graph shown in figure 18 is therefore one exampa\e
of a factor graph for which the Bethe approximation canbe
generated by the cluster variation method.

We remark that in the physics literature, the cluster variation
method has normally been applied to a restricted class of fac-
tor graphs that are particularly relevant as models of magnetic
materials. In particular, the factor graph normally represents a
translationally invariant crystal lattice, and the factor nodes nor-
mally have degree two, corresponding to two-body interactions.
Translational symmetry in the factor graph often dramatically
simplifies the problem of minimizing the Kikuchi free energy,
and when the factor nodes have degree two, the Bethe method
will always be a special case of the cluster variation method.

Valid Region-based Approximations

Region Graphs

Cluster
Variational
Method

(Kikuchi)

Junction graphs

APPENDIXC: RELATIONSHIPSBETWEEN DIFFERENT Fig. 20. A Venn diagram illustrating the relationships between different meth-

METHODS ods of generating valid region-based free energy approximations. The Bethe

. . . . . method is always an exemplar of the junction graph method, but is only a spe-
In this appendix, we summarize the relationships betwegg case of the cluster variation method if the factor graph has no pair of factor

the different methods for generating valid sets of regions fomades that share more than one variable node, and is only a special case of Aji
region-based free energy approximation. Fist of al, as is cledf; MeEleces jnclon graoh method e elevant feclr gragh s 2 Foney
from its definition, a junction graph will always be a region
graph (though the converse is not true). The sets of regions and
counting numbers generated by the cluster variation method egaph, the cluster variation method and the generalized junc-
also always be represented by a region graph. We already san graph method each generate valid region-based free en-
one example in figure 18. ergy approximations that are subclasses of all the possible valid
We emphasize that one can construct region graph appraag@proximations. Neither the cluster variation method nor the
mations that cannot be generated with either the junction gragémeralized junction graph method is more general than the
or cluster variation methods. We already saw such an examptier, and both are subsumed by the more general region graph
when we introduced region graphs in the main text in sectionethod. The set of regions generated by the Bethe method is
VII. Constructions that are more general than those constructddiays an examplar of those generated by the junction graph
using the cluster variation method or the junction graph methatethod, and will be an examplar of those generated by the clus-
may be useful for a variety of reasons, including reducing ther variation method if and only if the factor graph has no cycles
computational complexity of a GBP algorithm. of length four. In general, the Bethe method will not be a spe-
Note, however, that although the region graph method is thial case of the Aji-McEliece junction graph method, though it
most general method we have introduced, there do exist vahill be for factor graphs such that each variable node is adjacent
region-based free energy approximations that do not have ateeno more than two factor nodes (Forney’s so-called “normal”
gion graph representation. We demonstrate an example in figetor graphs [22]).
ure 19. In addition to being a more general method than the clus-
In summary, we have the following relationships, as illuger variation method or the junction graph method, we feel that
trated in the Venn diagram of figure 20. For a given factdhe region graph method is easier to understand on an intuitive
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level. We simply select a set of regions and counting numbenssuper-regions via the marginalization conditions); instead we
such that every variable and factor node gets counted once, abthin the following condition on the messages into and out of
we enforce consistency for the beliefs between connected regionR:

gions. Region graphs also have the important advantage of be- (Hcecm) no—r(xc) ) .

ing a natural graphical structure for describing generalized be- (D-3)

lief propagation algorithms.
Pakzad and Anantharam have suggested strengthening thd ke message update rules are then obtained by applying the

gion graph requirements described in section VIl so that for emarginalization conditiondc (xc) = > .\, br(xp).

ery sub-set of variable nodes in the factor graph, the sub-graptf small example might help clarify the meaning of these

of regions containing that sub-set must be connected and megtations for the reader. Consider the probability distribution

have a sum of counting numbers equal to one [31]. Such a 1

strengthening would ensure that the beliefs computed for any p(x1, w2, x3) = = fa(x1,22) fB(22, 23). (D-4)

sub-set of nodes would always be consistent, no matter which Z

regions were used to compute it. The cluster variation methide use the Bethe approximation, which should be exact in this

produces region graphs that satisfy these stronger requiremeeéise because the factor graph is a tree. Thus, we obtain large

but we chose not to insist on these stronger requirements in gesgions{ A, 1,2} and{B, 2, 3}, with counting numbers, and

eral, because region graphs created using the Bethe Method wrilall regions{1}, {2}, and{3}, with counting numbers, 1,

not necessarily satisfy them. and0 respectively. We obtain the following belief equations for

the regions withcy # 0:

[lpep(r) nr—pP(xR)

APPENDIXD: THE CHILD-TO-PARENT ALGORITHM

The observation underlying the “child-to-parent algorithm” ba(z1,22) < fa(z1, 2)ni—a(21)n2—a(z2),  (D-5)
is that when we minimize the Bethe free energy, the La-
grange multipliers enforcing the marginalization constraints
correspond exactly (after exponentiation) to the,, (x;) mes- ba(72) o< na— a(z2)n2- 5(T2), (D-7)
sages from variable nodes to factor nodes in the BP algorithgh the following conditions on messages for the regions with
Considering these messages as messages from child reglor&%to: 0:
parent regions in a region graph, we can try to generalize the na(z1) = 1, (D-8)
approach to arbitrary region graphs. Thus, we construct a GBP
algorithm by simply minimizing a region graph free energy anand
identifying Lagrange multipliers that enforce consistency be- n3—p(z3) = 1. (D-9)
tween beliefs with messages from child regions to parent figsing these conditions and the marginalization conditions, we
gions. Such an approach was considered in detail by Kapgg{y that
and Wiegerinck for region graphs constructed using the cluster na—oa(z2) = Z f5(x2, 3), (D-10)

z3

bp(xz,x3) < fB(r2, 23)n2— B(T2)N3—B(T3), (D-6)

variation method [51].
We begin with the Lagrangian stationary point equation

(again assuming interior stationary points) obtained by diffe‘?—nd
entiating the Lagrangian with respect to beliefs. We obtained nap(w2) =) fa(wr, @2). (D-11)
this equation previously (see equation (134)), and re-write it o
here: We can now easily check that in this example, the computed
beliefs give back the desired marginal probabilities exactly.
crlnbr(xr) =Vr +cr Z In fo(xa) The child-to-parent algorithm, by its construction, clearly
a€AR gives a generalized BP algorithm whose fixed points correspond
_ Z Apr(XR) + Z Arc(xc), (D-1) tothe stationary points of the region graph free energy. On the
PEP(R) Cec(r) other hand, it might be considered inelegant both because it fo-

cuses only on the messages from child regions to parent regions
whereP(R) is the set of regions that are parents of reglin and because the message update equations will inevitably be
andC(R) is the set of regions that are children of regi®nand complicated and involve the counting numbefs The two-
Apr(xp) are the Lagrange multipliers that enforce consistengyayalgorithm described in Appendix E and tharent-to-child

between the beliefs in regiah and those in regiork. described in the main text in section IX-A are different GBP
Forcr # 0, we can re-write this equation as algorithms that attempt to ameliorate these flaws.
1/cr
br(xr) o< [] fo(xa) <HCEC(R) ncuR(Xo)) , APPENDIX E THE TWO-WAY ALGORITHM
aCAp Hpepn nr—p(xn) To motivate the two-way algorithm, we return to the standard

] (D-2) Bp algorithm, where we recall that the belief equations can be
wherenc_.p(xc) = exp(Apc(xc)) is a “message” from a \yritien in the form
child regionC' to a parent regiorP, in analogy with the mes-
sages;..(z;) in standard BP. Itz = 0, we do not get a con- bi(z;) = H Ma—i(x;) (E-1)
dition onbr(xg) (br(xg) can still be determined from beliefs a€N(i)
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and The two-way algorithm is completed by the belief equations,

ba(x4) = fa(Xa) H Ni—a(T;) (E-2) which have the form already given in equation (E-4). We are
i€N(a) now in position to prove the following theorem:
where Theorem 18: The interior stationary points of the region
Nica(@i) =[] me—ili). (E-3) graph free energy are the same as the fixed points of two-way
cEN(i)\a GBP (defined by the message and belief equations given above)
Given these equations, it is natural to aim for a generalizati§tat have strictly positive beliefs. _
where the belief equations will have the form Proof: We form a Lagrangian from the region graph en-

ergy as already indicated in the previous section on the child-

br(xg) = fR(XR) H ne—nr(xc) H mp_p(xp). to-parent algorithm. If we exponentiate equation (134) derived
) there, we obtain the equation

CeC(R) PeP(R
(E-4) 1
In other words, we aim to write the belief equations so that -
the belief in a region is a product of local factors and medr(xr)" o fr(xg) [[ e*re><) ( 11 6APR(XR)) :
sages arriving from all the connected regions, whether they CeC(R) PEP(R)
are parents or children. It will turn out that we can do this, (E-9)

but in order that the GBP algorithm correspond to the region SUPPOse that we are given a sebaindbr that satisfy these
graph free energy, we will need to use modified factors andStionary conditions of the Lagrangian. Now we define
rather complicated relation between the_. p(xc) messages

— APR(XR) -
andmp_c(xp) messages generalizing the relation for stan- na—p(Xp) =€ (E-10)
dard BP given in equation (E-3). and
It will be convenient to denote the number of parents of re- mp—r(xg) = bp(xp)He PR (E-11)

gion R by pg, and define the numbetg; = (1 — ¢, )/p, and

Br =1/(2 — ¢.). When a region has no parent so that= 0 Of course, we have ongi message and one message for
andcgp = 1, we takegr = Gr = 1. Note that within the Bethe €Very Lagrange multipliep, so for these definitions to hold,
approximationgr = Br = 1 for all regions. We will assume We also ne_ed to _have constraints relgu_n_g this and n’s.
thatqr # 2 so that8r is well-defined (normally, if one has a The constraints will be given by the definitions of the pseudo-
region graph with a region such thgt = 2, one should be able Messages and the relations between the messages and the

to change the connectivity d# to avoid this problem). pseudo-messages that we defined above. We want to show that
We first define the set of pseudo-messages for all regﬁbnsthes? relati0n§, as well as the two-way GBP belief equations
and their parent® and childrenC: previously defined, must hold.
First, we show that the belief equations (E-4) hold. We have
0
np_.p(Xgr) = (E-5) -
- br(xr)R x e re(xc) e~ APR(XR)
frxr) ] mp—r(xz) [] ne—rixc) ) ) 061}1%) Pel;[(R)
P'eP(R)\P CeC(R) Falxn) |
3 R\XR
and x fR(XRggR;”LCHR(XCI)DEI;I(R)(bR(XR)) mp_r(XR)
m_c(xc) = (E6) o (br(xr)” " fr(xr) [ [ no—r(xe) [] mp—r(xg)
Z fR(XR) H mp_,R(XR) H nC’—>R(XC’)7 CEC(R) PEP(R)
xRr\XC PeP(R) C’eC(R)\C X (bR(XR))CR_lfR(XR) H ’rlc_,R(Xc) H mPﬁR(XR)

N . CeC(R) PEP(R)
wherefr(xgr) = (HaeA,,, fa(xa)) R
Aside from the fact that we raised the product of the locab that indeed(xr) is product of local potentials and incom-

factors to a power of, these pseudo-messages are what oivey messages.

would naively expect the message updates to look like. To ob-Turning to the constraints, we have from the definition of
tain the true message updates, however, one needs to combihe ,,(xr), that

the pseudo-messages going in the two directions of a link as

follows: ng_p(Xr) mp_gr(xg) = br(XR) (E-12)
nr-p(xr) = (M p(xr) ™ (M p(xp) ™" (E7) - XP%R rixr) (E139
and = np—p(Xr)mp_ p(Xr). (E-14)

mp_r(Xg) = (n%HP(XR))ﬁR‘l (mOPHR(XR))[’R (E-8)  Equations (E-10) and (E-11) imply that

Note that wherBz = 1, the messages are precisely the same as™i—P(Xr)mp—r(Xr) = br(xg)"" (E-15)
the pseudo-messages. = (n%_p(xr)mp_r(xr))"". (E-16)
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Together these equations give us two equations for the two
unknownsmp_.g(xg) andng_, p(xg): ca=l cg=1 cy=1 cg=1

mp_r(xr) mh_ p(xg)

nR_>P(XR) = n(})%_)P(XR) fR(XR)qu (E'17) Cr= '1: CCZO |:> -
and \ ‘/ E
o] oo | [ 7
np—p(xp)mp_g(xp)' """ = (NG_pxr))"  (E-18) \ / \ / -
o=
The unique solution of these equations is given by equations

(E-7) and (E-8). Thus, we have shown that the message passing

algorithm PrEVIOUSIY defined has f_lxed points that are equwalq'—%. 21. Anillustration of how one can take a region graph with some regions
to the stationary points of the region graph free energy. B that have counting number zero, and obtain another region graph with no such
regions but with an identical free energy. One first removes regions with a

The two-way algorithm will be particularly elegant whercounting number of zero, and then directly connects any ancestor-descendant

r _ _ ; pairs that have become disconnected. In this example, we form new direct

fR(XR) B fR(X_R) an_d whenjy = 1 for all reglon_s. In that_ connections between regiofisand H and between region8 and H.

case, each region will send messages to all adjacent regions,

and the message update rgles W|_II be the_natural generalization |:|A |:|B |:|C

of the ordinary BP rules written with two kinds of messages. It

is interesting to note that the condition thiat(xr) = fr(xr) \ / \ /

can be ensured by requiring that only regions with no parents [ [

contain factor nodes, while the condition tht = 1 for all \ /

regions can be ensured by requiring that the sub-graph obtained

by taking any region and all of its ancestor regions must always I:I

form a tree. Fig. 22. A small illustrative region graph (see text). Note that rediohas

. Wh(_anﬁR = 1 for all regions, the two-way GBP algorithmcogqntin'g numbet s = 0. glon grap '

is equivalent to Pearl’'s method of clustering [9]: we form new

nodes from clusters of variables in the original graph (these are ) )
the regions) and run an ordinary BP algorithm on the resultingConstraints are actually not necessary-they all invojve- 0

graph. It is important to bear in mind that this equivalence onl§#9ions that do not contribute to the free energy in any case.
holds for a subset of possible region graphs: if one uses thé® Small example may make this point more comprehensi-
method of clustering on a set of regions that does not satisfy fN§- Consider the small region graph shown in figure (22). The
region graph conditions, or on a region graph for whigh# 1 counting numbers of the regions arg = cp = cc = 1,

for some regions, the resulting beliefs will generally be a po6p = ¢z = —1, andcg = 0, so that regior” could clearly be
approximation. removed to obtain an equivalent region graph. For the purpose

of illustration, we leave it in. We have six constraints, each
) of which is very straightforward. For example, the constraint
APPENDIXF: REGION- GRAPI-.|S WITHcg =0 REGlor\fs associated With\ap (xp) is bp(xp) = ZxA\xD ba(xa),

In our proof that the fixed points of the parent-to-child GBRhile the constraint associated Wiltp r(xF) is br(xp) =
algorithm correspond to the stationary points of the regi \ bp(xp.
graph free energy (given in section IX-A), we assumed thatThe six; constraints are somewhat less straightforward. Go-
no region has counting numbef, = 0. That is never diffi- jng pack to the prescription given in equation (136), we see for

cult to arrange: if one has a region graph with regions Whoéﬁample that the constraint associated wiff), (xp ) is
counting number equals zero, one can remove them, and then

connect directly any regions that were previously ancestors or cpbp(xp) + ¢ Z bp(xp) =0 (F-1)
descendants of each other, but are no longer after the removal xB\%D
of thecr = 0 regions. The remaining regions will have iden-
tical counting numbers by construction, and since the regioﬂ
yvith cr=0 d?d npt contribute to the region graph freg energy bp(xp) = Z bi(x5) (F-2)
in any case, it will be unchanged. In figure 21, we illustrate
the “surgery” that needs to be performed on a region graph to
remove regions with counting number zero. while the constraint associated wijthy 7 (x5 ) is

In fact, however, the parent-to-child algorithm is well defined
even when some of the regions have counting numbers equaltebr (Xr)+ce > be(xp)+co Y bol(xe) =0 (F-3)
zero, and when one implements it, one finds that the results at its XE\XF xc\xr
fixed points are identical_ to those obtained when one S“rgicagyequivalently
removes thec.r = 0 regions. The reason that the algorithm
still gives proper results, even though the above proof breaks Z bo(xc) = Z be(xg). (F-4)
down, is that the\ constraints that cannot be derived from the xo\xp xE\xp

E

gequivalently,

xp\xD
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Because:r = 0, there will not be any: constraint directly [27]
involving br(xr), SO we cannot derive some of thecon-

straints. On the other hand, these constraints are not necesé%lsrg/

A. Braunstein, M. Mezard, and R. Zecchina. Survey propagation: An
algorithm for satisfiability. http://xxx.lanl.gov/pdf/cs/0212002, 2002.
J. Dauwels, H.-A. Loeliger, P. Merkli, and M. Ostojic. Structured-

'summary propagation, LFSR synchronization, and low-complexity trellis

because the region graph free energy itself also does not dependdecoding. InProceedings of the 41st Allerton Conference on Communi-

directly onbr(xr). We also see that the constraints are still 29
sufficient to ensure that all the beliefs are consistent when th[e))
are marginalized down to regiafi. Finally, if we do surgery

on this region graph and remove regish we can then easily 30
verify that the\ constraints are then entirely equivalent to the
4 constraints. [31]
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