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Abstract

Important inference problems in statistical physics, computer vision, error-correcting
coding theory, and artificial intelligence can all be reformulated as the computation of
marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an
efficient way to solve these problems that is exact when the factor graph is a tree, but
only approximate when the factor graph has cycles.

We show that BP fixed points correspond to the stationary points of the Bethe ap-
proximation of the free energy for a factor graph. We explain how to obtain region-
based free energy approximations that improve the Bethe approximation, and corre-
sponding generalized belief propagation (GBP) algorithms.

We emphasize the conditions a free energy approximation must satisfy in order to
be a “valid” or “maxent-normal” approximation. We describe the relationship between
four different methods that can be used to generate valid approximations: the “Bethe
method,” the “junction graph method,” the “cluster variation method,” and the “region
graph method.”

The region graph method is the most general of these methods, and it subsumes
all the other methods. Region graphs also provide the natural graphical setting for
GBP algorithms. We explain how to obtain three different versions of GBP algorithms
and show that their fixed points correspond to stationary points of the region graph
approximation to the free energy.

Finally, we explain how to tell whether a region-based approximation, and its corre-
sponding GBP algorithm, is likely to be accurate, and describe empirical results show-
ing that GBP can significantly outperform BP.
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Constructing Free Energy Approximations and
Generalized Belief Propagation Algorithms

Jonathan S. Yedidia†, William T. Freeman‡, and Yair Weiss§

Abstract— Important inference problems in statistical physics,
computer vision, error-correcting coding theory, and artificial in-
telligence can all be reformulated as the computation of marginal
probabilities on factor graphs. The belief propagation (BP) algo-
rithm is an efficient way to solve these problems that is exact when
the factor graph is a tree, but only approximate when the factor
graph has cycles.

We show that BP fixed points correspond to the stationary
points of the Bethe approximation of the free energy for a factor
graph. We explain how to obtain region-based free energy approx-
imations that improve the Bethe approximation, and correspond-
ing generalized belief propagation (GBP) algorithms.

We emphasize the conditions a free energy approximation must
satisfy in order to be a “valid” or “maxent-normal” approxima-
tion. We describe the relationship between four different meth-
ods that can be used to generate valid approximations: the “Bethe
method,” the “junction graph method,” the “cluster variation
method,” and the “region graph method.”

The region graph method is the most general of these methods,
and it subsumes all the other methods. Region graphs also pro-
vide the natural graphical setting for GBP algorithms. We explain
how to obtain three different versions of GBP algorithms and show
that their fixed points correspond to stationary points of the region
graph approximation to the free energy.

Finally, we explain how to tell whether a region-based approxi-
mation, and its corresponding GBP algorithm, is likely to be accu-
rate, and describe empirical results showing that GBP can signifi-
cantly outperform BP.

I. I NTRODUCTION

Problems involving probabilistic inference using graphical
models are important in a wide variety of disciplines, includ-
ing statistical physics, signal processing, artificial intelligence,
and digital communications [1], [2]. Message-passing algo-
rithms are a practical and powerful way to solve such problems.
The centrality of such problems and the utility of message-
passing algorithms for solving them is an explanation for the
fact that equivalent or very closely-related message-passing al-
gorithms have now been independently invented many times.
They are well-known by names like the forward-backward al-
gorithm for Hidden Markov Models [3], the Viterbi algorithm
[4], [5], Gallager’s sum-product algorithm for decoding low-
density parity check codes [6], the “turbo-decoding” algorithm
[7], [8], Pearl’s “belief propagation” algorithm for inference on
Bayesian networks [9], the “Kalman filter” for signal process-
ing [10], [11], and the “transfer matrix” approach in statistical
mechanics [12].
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In this list of “standard” belief propagation (BP) algorithms,
we have blurred a distinction between two different objectives
that one might have, and the slightly different algorithms that
result. Sometimes, one might be interested in obtaining the one
global state of a system that is most probable or otherwise op-
timal. In other cases, one is interested in obtaining marginal
probabilities for some subset of the nodes of the system, given
evidence about other nodes in the system. In this paper, we will
focus exclusively on this latter problem.

In all standard BP algorithms, messages are sent from one
node in a graphical model to a neighboring node. The algo-
rithms are exact when the graphical model is free of cycles.
Thus, a common approach for dealing with graphical models
that do have cycles is to try to convert them to equivalent cycle-
free graphical models, and then to use the standard BP algo-
rithm [13]. In some cases, this is possible, but for many other
cases of practical interest, such an approach is intractable, and
one must settle for approximate methods.

Fortunately, the standard BP algorithms are well-defined, and
often give surprisingly good approximate results, for graphical
models with cycles. Nevertheless, in such cases there are no
guarantees, and sometimes the results are quite poor, or the al-
gorithm fails to give any result at all because it does not con-
verge [14]. Two major goals of this paper are to explain why the
standard BP algorithm often works so well even for graphical
models with cycles, and to use that understanding to develop
improved algorithms for cases when it does not work well.

The class of algorithms that we will describe, which we call
generalized belief propagation(GBP) algorithms, all have the
characteristic that sets orregionsof nodes will send messages to
other regions of nodes. The regions of nodes that communicate
with each other can be easily visualized in terms of aregion
graph. The standard BP algorithm is a special case of a GBP
algorithm, with a particular choice of regions. Different choices
of region graphs will give different GBP algorithms, and the
user can choose to trade off complexity for accuracy.

In practice, GBP algorithms can often dramatically outper-
form BP algorithms in terms of either their accuracy or their
convergence properties, for minimal computational cost, if one
makes an intelligent choice of regions. However, how to opti-
mally choose regions for a GBP algorithm remains at this point
an open research problem. We hope that this paper contributes
to this problem by delineating what classes of constructions are
likely to give good results.

We shall give a theoretical justification of GBP algorithms
by showing that their fixed points are identical to the stationary
points of aregion-based free energy, which is an approximation
to another free energy that can be justified by a rigorous vari-
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ational principle. The first specialized examples of such free
energies were introduced long ago in the physics literature by
by Bethe [15] and Kikuchi [16]. For the important special case
of the standard BP algorithm, we show that its fixed points are
the same as the stationary points of theBethe free energy, thus
establishing an important basic link between a classical algo-
rithm and a classical approximation from physics.

One must be careful in constructing a region graph in or-
der to ensure that the resulting approximations are accurate. In
our original work introducing GBP algorithms [17], we focused
on a sub-class of GBP algorithms that were equivalent to free
energy approximations based on Kikuchi’scluster variation
method[16], [18], [19], [20]. We shall show that this method
is only one of a variety of methods to generate region graphs
and their corresponding free energies and message-passing al-
gorithms.

In our original work, we also focused on graphical models
defined in terms of pair-wise or higher-order Markov random
fields (MRFs). In this paper, we shall instead focus on graphi-
cal models defined in terms offactor graphs.All our results can
be re-expressed for other graphical models without difficulty.
Using factor graphs has certain practical advantages–in partic-
ular we can refer the neophyte reader to the excellent review by
Kschischang et.al. [21]. That review explains the equivalence
to factor graphs of other graphical models such as Bayesian net-
works, Tanner graphs for error-correcting codes, or pair-wise
MRFs, and explains the standard BP algorithm in its various
guises as an algorithm that operates on factor graphs.

There have been a number of other recent papers that have
tried to explain, reformulate, or generalize the standard belief
propagation algorithm in a variety of ways. We point the inter-
ested reader to [22], [23], [24], [25], [26], [27], [28].

After our original work which introduced region-based free
energies and GBP algorithms based on the cluster variation
method, other works appeared which explored parallel ideas
[29], [30], [31], [32]. In fact, one of the goals of this paper
is to unify our previous approach with the one that Aji and
McEliece presented based onjunction graphs[29]. We also
recommend the elegant exposition of generalized belief propa-
gation presented by McEliece and Yildirim in [30].

We have also previously released a number of technical re-
ports [33], [34], [35] that are largely superseded by this paper,
as well as a somewhat more popular introduction [36].

The outline for the rest of the paper is as follows. In section
II, we review and introduce our notation for factor graphs and
the standard BP algorithm. In sections III and IV, we introduce
and explain the physical intuition behind variational free ener-
gies and region-based approximations to them. In section V, we
consider theBethe Methodwhich can be used to obtain partic-
ularly simple region-based free energy approximations. In sec-
tion VI we show that the standard BP algorithm has fixed points
corresponding to the stationary points of the Bethe approxima-
tion to the free energy. In section VII, we describe theRegion
Graph Method, a very general method for generating “valid”
region graphs and their associated free energies. In section VIII
we explain how to determine whether a particular region-based
free energy approximation is likely to give accurate answers. In
section IX, we introduce GBP algorithms, and show that there

are actually a variety of ways to define GBP algorithms for any
given region graph, all of which have identical fixed points. We
focus on one particular type of GBP algorithm, which we call
theparent-to-childalgorithm. In section X, we give a detailed
example of the implementation of the parent-to-child GBP al-
gorithm. Finally, in section XI, we give some empirical results
showing how GBP algorithms can improve upon the accuracy
of standard BP.

We have chosen to put a large amount of material in the ap-
pendices of this paper. The appendices describe a variety of
other methods to generate region graphs and GBP algorithms
which could easily prove to be as important in practice as the
methods described in the main text.

II. FACTOR GRAPHS AND BELIEF PROPAGATION

Let {X1, X2, ..., XN} be a set ofN discrete-valued ran-
dom variables and letxi represent the possible realizations
of random variableXi. We consider the joint probability
mass functionp(X1 = x1, X2 = x2, ..., XN = xN ), which
we shall write more succintly asp(x), wherex stands for
{x1, x2, ..., xN}. We suppose thatp(x) factors into a product
of functions. That is, we suppose thatp(x) has the very general
form

p(x) =
1
Z

∏
a

fa(xa). (1)

Here a is an index labelingM functionsfA, fB , fC , ..., fM ,
where the functionfa(xa) has argumentsxa that are some sub-
set of{x1, x2, ..., xN}. We assume that the functionsfa(xa)
are non-negative and finite, so that p(x) is a well-defined prob-
ability distribution.Z is a normalization constant.

A factor graph [21] is a bipartite graph that expresses the
factorization structure in equation (1). A factor graph has a
variable node(which we draw as a circle) for each variablexi,
a factor node(which we draw as a square) for each functionfa,
with an edge connecting variable nodei to factor nodea if and
only if xi is an argument offa. (We shall always index variable
nodes with letters starting withi, and factor nodes with letters
starting witha.) As an example, the factor graph corresponding
to

p(x1, x2, x3, x4) =
1
Z

fA(x1, x2)fB(x2, x3, x4)fC(x4) (2)

in shown in figure 1.

A B C

1 2 3 4

Fig. 1. A small factor graph representing the joint probability distribution
p(x1, x2, x3, x4) = 1

Z
fA(x1, x2)fB(x2, x3, x4)fC(x4).
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We shall focus on the problem of computing marginal proba-
bility distributions. We call the possible values ofXi thestates
of variable nodei. We useqi to denote the number of possible
states of variable nodei. If S is a set of variable nodes, we
usexS to denote the states of the corresponding variable nodes.
pS(xS) will denote the marginal probability function obtained
by marginalizingp(x) onto the set of variable nodesS, i.e.,

pS(xS) =
∑

x\xS

p(x). (3)

Here the sum overx\xS indicates that we sum over the states
of all the variable nodesnot in the setS. We shall writepi(xi)
for the marginal probability function when the setS consists of
the single nodei.

Thebelief propagation(BP) algorithm is a method for com-
puting marginal probability functions. One should note that the
problem of computing marginal probability functions is in gen-
eral hard because it can require summing an exponentially large
number of terms. We describe the BP algorithm in terms of op-
erations on a factor graph. As we already mentioned in the in-
troduction, the computed marginal probability functions will be
exact if the factor graph has no cycles, but the BP algorithm is
still well-defined and empirically often gives good approximate
answers even when the factor graph does have cycles.

To define the BP algorithm, we first introducemessagesbe-
tween variable nodes and their neighboring factor nodes and
vice versa. The messagema→i(xi) from the factor nodea to
the variable nodei is a vector over the possible states ofxi. This
message can be interpreted as a statement from factor nodea to
variable nodei about the relative probabilities thati is in its dif-
ferent states, based on the functionfa. The messageni→a(xi)
from the variable nodei to the factor nodea may in turn be
interpreted as a statement about the relative probabilities that
nodei is in its different states, based on all the information that
nodei hasexceptfor that based on the functionfa.

The messages are updated according to the following rules:

ni→a(xi) :=
∏

c∈N(i)\a
mc→i(xi). (4)

and

ma→i(xi) :=
∑

xa\xi

fa(xa)
∏

j∈N(a)\i
nj→a(xj) (5)

Here,N(i)\a denotes all the nodes that that are neighbors of
nodei except for nodea, and

∑
xa\xi

denotes a sum over all the
variablesxa that are arguments offa exceptxi. This standard
BP algorithm is sometimes called the “sum-product” algorithm
because of the sum and product that occurs on the right-hand-
side of equation (5).

The messages are usually initialized toma→i(xi) = 1 and
ni→a(xi) = 1 for all factor nodesa, variable nodesi, and states
xi. In fact, other initializations are also possible, and the overall
normalization of the messages can also be chosen arbitrarily.
The only important normalization condition is on the beliefs,
introduced below, which must sum to one in order to properly
represent probabilities. The messages should be initialized to

be positive, which implies, because of the non-negativity of the
factors in the message-update rules, that the messages remain
non-negative at every iteration.

The message-update rules may initially appear quite myste-
rious, and a major goal of this paper will be to explain, justify,
and ultimately improve upon them. First though, to complete
our preliminary description of the standard BP algorithm, we
introduce thebelief bi(xi) at a variable nodei, which is the
BP approximation to the exact marginal probability function
pi(xi). The beliefbi(xi) can be computed from the equation

bi(xi) ∝
∏

a∈N(i)

ma→i(xi), (6)

where we have used the proportionality symbol∝ to indicate
that one must normalize the beliefs so that they sum to one.
The BP message-update equations are iterated until they (hope-
fully) converge, at which point the beliefs can be read off from
equation (6).

We can also use the BP algorithm to compute joint beliefs
bS(xS) over sets of variable nodesS that may contain more
than one node. Consider the important case when the setS
consists of all the variable nodes attached to theath function
fa(xa). We denote the corresponding belief byba(xa), which
will be given within the BP approximation by

ba(xa) ∝ fa(xa)
∏

i∈N(a)

ni→a(xi)

∝ fa(xa)
∏

i∈N(a)

∏

c∈N(i)\a
mc→i(xi). (7)

� ∏ ∏�
∈ ∈

→∝
iaia x aNi aiNb

iibaa
x

aa xmfb
\x )( \)(\x

)()x()x(

i ai

∏
∈

→∝
)(

)(
iNa

iiai xmb

=

i i a

� ∏ ∏
∈ ∈

→→ =
ia x iaNj ajNb

jjbaaiia xmfxm
\x \)( \)(

)()x()(

=

Fig. 2. This figure illustrates how the message update rules can be derived us-
ing the belief equations and the marginalization conditions. The one-node be-
lief over nodei (upper left) is equal to a multi-node belief over nodes including
i, which in this case is a two-node belief (upper right), when it is marginalized
over all nodes excepti. We denote marginalization by using a hatched pattern
on the marginalized variable node. If we cancel out equivalent messages on the
two sides of the equation, we obtain the message-update rules (lower).

We can directlyderivethe message update rules (4) and (5)
from the belief equations (6) and (7), along with the marginal-
ization condition

bi(xi) =
∑

xa\xi

ba(xa) (8)
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which holds whenxi is one of the arguments in the setxa.
Thus, the belief equations (6) and (7) can be considered to de-
fine the BP algorithm, a point of view that will prove useful
later. In figure 2, we explain this point in more detail, using di-
agrams to show how the message update rules follow from the
belief equations and the marginalization conditions.

The BP algorithm is normally justified as being an exact al-
gorithm when the factor graph has no cycles (i.e., it has the
topology of a tree.) We shall not prove that property here, but
instead simply give a small example: consider the joint proba-
bility distribution given by equation (2) as illustrated in figure
1. Suppose that we would like to computep1(x1), the marginal
probability distribution at variable node1. Repeatedly using the
BP equations, we find

b1(x1) ∝ mA→1(x1)

∝
∑
x2

fA(x1, x2)n2→A(x2)

∝
∑
x2

fA(x1, x2)mB→2(x2)

∝
∑

x2,x3,x4

fA(x1, x2)fB(x2, x3, x4)n3→B(x3)n4→B(x4)

∝
∑

x2,x3,x4

fA(x1, x2)fB(x2, x3, x4)mC→4(x4)

∝
∑

x2,x3,x4

fA(x1, x2)fB(x2, x3, x4)fC(x4) (9)

which is exactly the desired marginal probability function. We
could similarly demonstrate that equation (7) would give ex-
act multi-node marginal probabilities for graphs with no cycles.
We can already see from this example that for graphs with no
cycles, the BP algorithm is essentially a dynamic programming
algorithm that organizes the computations necessary to com-
pute marginal probability distributions in such a way that they
become tractable.

The BP algorithm was introduced into the coding literature
by Gallager as a sub-optimal probabilistic decoding algorithm
for linear block error-correcting codes, and some readers may
be most familiar with the BP algorithm in that context [6].
Pearl [9] introduced and popularized a version of the algorithm,
along with the widely adopted terminology of “belief propaga-
tion,” in the context of the problem of probabilistic inference in
Bayesian networks. Readers who are more familiar with the BP
algorithm written in one of these forms may want to consult the
review by Kschischang et.al. [21], which explains the equiva-
lence between these forms of the BP algorithm and the one we
have chosen to use here.

III. F REE ENERGIES

In this section, we turn from simply describing the BP algo-
rithm to explaining its success. In section II, we saw that the
BP algorithm can be defined in terms of the belief equations (6)
and (7). We shall eventually show that these belief equations
correspond to the stationarity conditions for a functional of the
beliefs called theBethe free energy, FBethe(bi, ba). This fact
serves in some sense to justify the BP algorithm even when the

factor graph it operates on has cycles, because minimizing the
Bethe free energy is a sensible approximation procedure that
has a long and successful history in physics. It also points to a
variety of ways to improve upon or generalize BP, especially by
improving upon the approximations used in the Bethe free en-
ergy. In the rest of the paper, we will discuss all of these issues,
but we first turn to an explanation of the notion of afree energy.

Suppose that one has a system ofN particles, each of which
can be in one of a discrete number of states, where the states
of the ith particle are labeled byxi. (As an example, one
might make a variety of simplifications and characterize the
states of the atoms in a magnetic crystal by whether a given
electron in each atom has an “up” spin or a “down” spin.)
The overall state of the system will be denoted by the vector
x = {x1, x2, ..., xN}. Each state of the system has a corre-
spondingenergyE(x). A fundamental result of statistical me-
chanics is that, in thermal equilibrium, the probability of a state
will be given byBoltzmann’s Law

p(x) =
1

Z(T )
e−E(x)/T . (10)

Here,T is the temperature, andZ(T ) is simply a normalization
constant, known as thepartition function:

Z(T ) =
∑

x∈S

e−E(x)/T (11)

whereS is the space of all possible statesx of the system.
A substantial part of statistical mechanics theory is devoted

to the justification of Boltzmann’s Law. On the other hand, if
one begins with a joint probability distributionp(x) for some
non-physical system, one can view Boltzmann’s law as a pos-
tulate that serves to define an energy for the system, where the
temperature can be set arbitrarily, as it simply sets a scale for
the units in which one measures energy. We shall take this
point of view and setT = 1 throughout the rest of this paper.
For the case of a factor graph probability distribution function
p(x) = (1/Z)

∏M
a=1 fa(xa), we therefore define theenergy

E(x) of a statex to be

E(x) = −
M∑

a=1

ln fa(xa) (12)

in order to be consistent with Boltzmann’s Law.
Note that if one or more of the factorsfa(xa) are equal to

zero for particular configurations ofxa, then the over-all prob-
ability of statesx which contain these forbidden configurations
is zero. The corresponding energy of states containing forbid-
den configurations is infinite. A particularly important class
of factors that have forbidden configurations are deterministic
functions such as exclusive-or functions, which are used for ex-
ample in defining error-correcting codes.

TheHelmholtz free energyFH of a system is

FH = − ln Z. (13)

This free energy is a fundamentally important quantity in sta-
tistical mechanics, because if one can calculate the functional
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dependence ofFH on quantities like a macroscopic magnetic
field H or temperatureT , then it is easy to compute experimen-
tally measurable quantities like the response of the system to a
change inH or T . Physicists have therefore devoted consider-
able energy to developing techniques which give good approx-
imations toFH .

One important technique is based on a variational approach.
Suppose again thatp(x) is the true probability distribution of
the system, and obeys Boltzmann’s Lawp(x) = e−E(x)/Z.
It may be that even if we knowp(x) exactly, it is of a form
that makes the computation ofFH difficult. We therefore in-
troduce a “trial” probability distributionb(x), which should of
course be normalized and obey0 ≤ b(x) ≤ 1 for all x, and
a correspondingvariational free energy(this quantity is also
sometimes called theGibbs free energy) defined by

F (b) = U(b)−H(b). (14)

whereU(b) is thevariational average energy:

U(b) =
∑

x∈S

b(x)E(x) (15)

andH(b) is thevariational entropy:

H(b) = −
∑

x∈S

b(x) ln b(x). (16)

(Note that we measure entropy using the natural logarithm in-
stead of the base-2 logarithm in order to be consistent with the
physics literature.)

It follows directly from our definitions that

F (b) = FH + D(b||p) (17)

where

D(b||p) ≡
∑

x∈S

b(x) ln
b(x)
p(x)

(18)

is the Kullback-Leibler divergence betweenb(x) and p(x).
Since there exists a theorem (e.g. Theorem 2.6.3 in [37])
that D(b||p) is always non-negative and is zero if and only if
b(x) = p(x), we see thatF (b) ≥ FH , with equality precisely
whenb(x) = p(x).

Minimizing the variational free energyF (b) with respect to
trial probability functionsb(x) is therefore an exact procedure
for computingFH and recoveringp(x). Of course, asN be-
comes large, this procedure is also totally intractable, asb(x)
will take exponentially large memory just to store. A more
practical possibility is to upper-boundFH by minimizingF (b)
over a restricted class of probability distributions. This is the
basic idea underlying themean fieldapproach.

One very popular mean-field form forb(x) is the factorized
form:

bMF (x) =
N∏

i=1

bi(xi), (19)

where eachbi(xi) is a normalized trial probability function
over the single variablei. Using this bMF (x), and an en-
ergy functionE(x) of the factor graph form given in equa-
tion (12), we can easily compute the mean field free energy

FMF = UMF −HMF for an arbitrary factor graph:

UMF ({b1, ..., bN}) = −
M∑

a=1

∑
xa

ln fa(xa)
∏

i∈N(a)

bi(xi),

(20)

HMF ({b1, ..., bN}) = −
N∑

i=1

∑
xi

bi(xi) ln bi(xi). (21)

Minimizing FMF (b1, ..., bN ) over the bi will give us self-
consistent equations for thebi, which can be solved numerically
to obtain a mean-field approximation for the beliefsbi(xi).

Instead of a factorized form, one might consider other more
complicated forms forb(x) which still lead to tractable approx-
imations. This is the idea behind the “structured mean-field”
approach [38]. We will not follow that path, and will instead
describe a quite different approach to approximatingF (b) in
the next section; one which underlies the BP algorithm.

IV. REGION-BASED FREE ENERGY APPROXIMATIONS

Kikuchi and the other physicists who further developed the
so-calledcluster variation method[16], [18], [19], [20] intro-
duced a class of approximations to the variational free energy
F (b). The idea behind these approximations is similar, but
slightly different from the mean field approximation. Whereas
the factorized mean-field free energyFMF is a function of
single-node beliefsbi(xi), in a Kikuchi approximation the ap-
proximate free energyFK will be a function of beliefsbS(xS)
over larger setsS of variable nodes.

One drawback of the cluster variation method is that in con-
trast with the mean-field approach, one cannot normally explic-
itly construct an overall “trial” belief vectorb(x) that is consis-
tent with the multi-node beliefsbS(xS), and therefore one does
not normally obtain any upper bound onF [39]. On the other
hand, one can make approximations that are much more accu-
rate than the factorized mean-field approximation, and there is a
great deal of flexibility in the exact choice of approximation. As
we shall also see in further detail, these approximations can be
exploited to yield message-passing algorithms, and a particu-
larly simple version–the Bethe approximation–will give results
that are equivalent to the standard BP algorithm.

We shall actually describe here a class of approximations that
generalize those generated by the cluster variation method as it
has been described in the physics literature, and will therefore
refer to such approximations asregion-based approximations.
We refer to the sub-class of approximations specifically gener-
ated using the cluster variation method asKikuchi approxima-
tions.

A. Region-based Approximations

Until this point, we have essentially reviewed notions and
definitions that were developed by others. We shall now begin
to define concepts that did not appear in the previous literature;
to mark this break we now explicitly indicate important new
definitions and theorems.

Definition: We define aregionR of a factor graph to be a set
VR of variable nodes and a setAR of factor nodes, such that if a
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A B C

1 2 3 4

Fig. 3. An illustration of the definition of aregion. Regions are sets of variable
and factor nodes in a factor graph such that all variable nodes connected to
any included factor nodes are included. Thus, the sets of nodes{1, 2} and
{B, C, 2, 3, 4} could be regions, but{B, 3} couldnotbe a region (since factor
nodeB was included, variable nodes2 and4 should also be included.)

factor nodea belongs toAR, all the variable nodes neighboring
a are inVR.

We give examples of sets of nodes that would or would not be
considered regions in figure 3. Note that the setAR may be
empty, and that a factora need not be included inAR even if
all its neighboring variable nodes are inVR.

We define the statexR of a regionR to be the collective set
of variable node states{xi|i ∈ VR}. The marginal probability
function over a regionR will be denoted bypR(xR), by which
we mean a marginalization ofp(x) onto the variable nodes in
VR. The corresponding beliefbR(xR) will be an approximation
to the truepR(xR).

Definition: We define theregion energyER(xR) to be

ER(xR) = −
∑

a∈AR

ln fa(xa). (22)

Note that because all the variable nodes neighboring a factor
nodea ∈ AR are guaranteed to be in the regionR, we can
always determine any needed statexa from the statexR.

Definitions: For any regionR, we define theregion average
energyUR(bR), theregion entropyHR(bR), and theregion free
energyFR(bR), by

UR(bR) =
∑
xR

bR(xR)ER(xR) (23)

HR(bR) = −
∑
xR

bR(xR) ln bR(xR) (24)

and
FR(bR) = UR(bR)−HR(bR). (25)

The intuitive idea behind a region-based free energy approx-
imation is that we will try to break up the factor graph into a set
of large regions that include every factor and variable node, and
say that the overall free energy is the sum of the free energies of
all the regions. Of course, if some of the large regions overlap,
then we will have erred by counting the free energy contributed
by some nodes two or more times, so we then need to subtract
out the free energies of these overlap regions in such a way that
each factor and variable node is counted exactly once. Let us
make these notions more precise.

Definitions: We define aregion-based approximate entropy
HR by

HR({bR}) =
∑

R∈R
cRHR(bR) (26)

and theregion-based average energyUR by

UR({bR}) =
∑

R∈R
cRUR(bR) (27)

where the chosen set of regionsR, and the associated set of
counting numberscR instantiate the approximation. We define
theregion-based free energyby

FR({bR}) = UR({bR})−HR({bR}). (28)

Note, in passing, that we could generalize these approxima-
tions by allowing fordifferentcounting numbers for the average
energy and entropy. In fact, constructing such approximations,
starting with the regions used in the Bethe approximation, but
modifying the entropic counting numbers to differ from those
given in the Bethe approximation, is one way of deriving the
“fractional belief propagation algorithm” [40] and the essen-
tially equivalent “convexified Bethe free energy” [41] approx-
imation. In this paper, we will always assume just one set of
counting numbers.

In fact, not all region-based approximations to the variational
free energy are equally good. At this point, we introduce the
notion of avalid region-based approximation. Later, we shall
narrow our focus even further to a sub-set of valid approxima-
tions that we callmaxent-normalregion-based approximations.

Definition: We say that a set of regionsR and counting num-
berscR give avalid region-based approximation when, for ev-
ery factor nodea and every variable nodei in the factor graph,

∑

R∈R
cRIAR(a) =

∑

R∈R
cRIVR(i) = 1 (29)

whereIS(x) is the set-membership indicator function indicator
function equal to1 if x ∈ S and equal to 0 otherwise.

These conditions ensure that every factor and variable node
will be counted exactly one time in the approximation to the
free energy. If a given factor or variable node is added into the
free energy in two different regions, then there must be another
region where it is subtracted back out.

We now are in a position to prove two theorems that help
explain our interest invalid region-based approximations.

Theorem 1: (Exactness of the average energy)
If the beliefs{bR(xR)} are equal to the corresponding exact

marginal probabilities{pR(xR)}, then the average energy

UR({bR}) =
∑

R∈R
cRUR(bR) (30)

of a valid region-based approximation will be exact.
Proof: Compare the region-based average energy

UR({bR}) = −
∑

R∈R
cR

∑
xR

bR(xR)
∑

a∈AR

ln fa(xa) (31)
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with the exact average energy

U =
∑

x∈S

p(x)E(x) = −
M∑

a=1

∑
xa

pa(xa) ln fa(xa) (32)

and note that the overcounting numberscR guarantee that each
factor is counted exactly once in equation (31). The region-
based average energy is linear in the beliefs, so if all the{bR}
are exact in equation (31), they will properly marginalize into
the termspa(xa) in equation (32).

On the other hand, the region-based entropy

HR({bR}) =
∑

R∈R
cRHR(bR)

= −
∑

R∈R
cR

∑
xR

bR(xR) ln bR(xR) (33)

will typically only be an approximation even if the beliefs
bR(xR) are exactly equal to the true marginal probabilities.
Nevertheless, the condition that each variable node is counted
once lets us prove the following theorem, which says that the
entropy is at least counting the total number of degrees of free-
dom correctly.

Theorem 2: (Correct counting of degrees of freedom)
If the true joint probability distribution is an equiprobable

distribution over all possible states, and if the beliefs{bR(xR)}
are equal to the corresponding exact marginal probabilities
{pR(xR)}, then the entropy of a valid region-based approxi-
mation is exact.

Proof: For a uniform joint probability distribution, the
entropy is just the logarithm of the number of possible configu-
rations,

H = ln
N∏

i=1

qi. (34)

On the other hand, using the fact that each marginal probability
over a region, and therefore each belief over a region, will also
be a uniform distribution, the region-based entropy will be

HR =
∑

R∈R
cR ln

∏

i∈VR

qi. (35)

Because the counting numbers in a valid region-based approx-
imation guarantee that each variable node is counted exactly
once, this entropy reduces to the exact entropy.

Although these theorems, particularly the theorem about the
entropy, may not seem like very strong results, they still provide
some justification for our focus onvalid region-based approxi-
mations, in that choices of counting numbers that did not satisfy
our validity conditions would not even give exact results for the
average energy or entropy under the restricted conditions of the
theorems.

B. Constrained Region-based Free Energies

In the end, we want to find the minimum of the region-based
free energy with respect to the set of region beliefs. More pre-
cisely, we will try to minimize the region-based free energy

with respect to the region beliefs, subject to a set of constraints
on those region beliefs.

Definition: We define aconstrainedregion-based free energy,
entropy, or average energy to be an approximate region-based
free energy, entropy or average energy subject to the following
constraints on the region beliefs. Each region beliefbR(xR)
has the form of a probability function; that is, it must normalize
to one and obey0 ≤ bR(xR) ≤ 1 for any statexR. Moreover,
the marginal region beliefsb(xS) must be consistent for pairs of
regions if the set of variable nodesS is included in both regions.
(As we shall see, the particular pairs of regions that we demand
consistency across can change according to the approximation.)

Because the constrained region-based free energy must be
minimized, we are most interested in the accuracy of the con-
strained region-based entropy near itsmaximum. Of course, the
maximum of the true entropy occurs when the joint probability
distribution is uniform. We would like for a similar property to
hold for constrained region-based entropies. This motivates the
following definition.

Definition: We say that a constrained region-based free energy
approximation ismaxent-normalif it is valid and the corre-
sponding constrained region-based entropyHR({bR} achieves
its maximum when all the beliefsbR(xR) are uniform.

As we shall see, important classes of region-based approx-
imations, including the Bethe approximation, are provably
maxent-normal. On the other hand not all possible Kikuchi ap-
proximations, for example, are maxent-normal. We emphasize
that a region-based approximation that is not maxent-normal
cannot be expected to give good results, because it will give
wrong answers even when there is no energy term.

How does one go about selecting a set of regionsR, count-
ing numberscR, and consistency constraints for a given factor
graph that give a valid, or better yet, maxent-normal approxi-
mation? There are in fact an infinite number of ways to do that.
In the next section we will describe a very straightforward ap-
proach which we call theBethe method, which is guaranteed to
give a maxent-normal region-based approximation. In section
VI, we then prove (in broad terms, to be made more precise
later) that the fixed points of the standard BP algorithm corre-
spond to stationary points of the constrained Bethe approxima-
tion to the free energy.

In section VII, we introduce theregion graph method, which
is a very general approach for constructing valid region-based
approximations, using aregion graph. Region graphs play a
central role in the description both of the region graph free en-
ergy, and in the construction of corresponding GBP algorithms,
and provide the clear way of visualizing and understanding a
region-based approximation.

The Bethe method is an important special case of the much
more general region graph method. In appendices A and B, we
discuss two other important methods that are also special cases
of the region graph method: thejunction graph methodand the
cluster variation method. In appendix C, we discuss in detail
the relationship between the different methods.
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Fig. 4. A factor graph which we use to illustrate a variety of region-based free
energy approximations.

V. THE BETHE METHOD

The origins of the Bethe method date back to 1935 and
Bethe’s famous approximation method for magnets [15]. In
his 1951 paper that pioneered the cluster variation method [16],
Kikuchi recognized that Bethe’s approximation was the sim-
plest example of an approximation that could be generated us-
ing that method. From the modern point of view, these early
papers focused on very special graphical models, and we warn
the reader who wants to read the original papers that our de-
scription of Bethe’s and Kikuchi’s methods will bear little re-
semblance to their expositions.

First, we make a small preliminary definition: ifR1 andR2

are two regions, we say thatR1 is a sub-regionof R2 andR2

is asuper-regionof R1 if the set of variable and factor nodes in
R1 are a subset of those inR2.

Definition: In the region-based approximation generated by
theBethe method, we take the set of regions included inR to be
of two types. First, we have a set oflarge regionsRL such that
theM regions inRL each contain exactly one factor node and
all the variable nodes neighboring that factor node. Second, we
have a set ofsmall regionsRS , such that theN regions inRS

each contain a single variable node. The counting numberscR

for each regionR ∈ R are given by

cR = 1−
∑

S∈S(R)

cS (36)

whereS(R) is the set of regions that are super-regions ofR.

We take as an example the factor graph shown in figure
4, which has six factor nodes which we labelA throughF
and nine variable nodes which we label1 through 9. For
this example, we would have the following large regions
in RL: {A, 1, 2, 4, 5}, {B, 2, 3, 5, 6}, {C, 4, 5}, {D, 5, 6},
{E, 4, 5, 7, 8}, and{F, 5, 6, 8, 9}, and the following small re-
gions inRS : {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, and{9}.
The complete set of regionsRBethe included in the Bethe ap-
proximation isRBethe = RL ∪RS .

Using our definition we see that for every regionR ∈ RL,
cR = 1, while for every regionR ∈ RS , cR = 1−di, wheredi

is the degree (number of neighboring factor nodes) of the vari-
able nodei. It is easy to confirm that the Bethe approximation

will always be avalid approximation, as each factor and vari-
able node will clearly be counted once as required in equation
(29). We can use our expressions for the counting numberscR

to obtain the Bethe approximation to the free energy, entropy,
and average energy.

Definition: The Bethe free energyis FBethe = UBethe −
HBethe, where theBethe average energyis

UBethe = −
M∑

a=1

∑
xa

ba(xa) ln fa(xa) (37)

and theBethe entropyis

HBethe = −
M∑

a=1

∑
xa

ba(xa) ln ba(xa)

+
N∑

i=1

(di − 1)
∑
xi

bi(xi) ln bi(xi). (38)

The Bethe free energy is sometimes justified in the physics
literature by some version of the following theorem, which
states that it would be exact if the factor graph had no cycles.

Theorem 3: The exact variational free energy is equal to the
Bethe free energy when the factor graph has no cycles.

Proof: The exact average energy reduces to the Bethe av-
erage energy by the argument used in theorem 1. The Bethe
entropy will also be exact if the factor graph has no cycles, be-
cause in that case we have the exact formula [13]

p(x) =
∏M

a=1 pa(xa)∏N
i=1 (pi(xi))

di−1
, (39)

which we can substitute into the formula for the variational en-
tropy to recoverHBethe.

The Bethe free energy, entropy, and average energy are all
functions of the beliefsbi(xi) and ba(xa). The constrained
Bethe free energy is defined by enforcing that the beliefs obey
the normalization constraints

∑
xi

bi(xi) =
∑
xa

ba(xa) = 1, (40)

the consistency constraints

∑

xa\xi

ba(xa) = bi(xi), (41)

and the inequality constraints

0 ≤ bi(xi) ≤ 1 (42)

and
0 ≤ ba(xa) ≤ 1. (43)

Definition: We refer to the Bethe free energy, subject to the
above constraints on the beliefs, as theconstrained Bethe free
energy, and similarly for theconstrained Bethe entropyand the
constrained Bethe average energy.
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We now prove that the Bethe method givesmaxent-normal
region-based approximations.

Theorem 4: (Bethe approximations are maxent-normal.)
The global maximum of the constrained Bethe entropy is

achieved when the beliefsbi(xi) andba(xa) are all uniform.
Proof: Rewrite the Bethe entropy as

HBethe =
N∑

i=1

H(bi)−
M∑

a=1

I(ba) (44)

where
H(bi) ≡ −

∑
xi

bi(xi) ln bi(xi) (45)

and

I(ba) ≡ −

∑

xa

ba(xa) ln ba(xa)−
∑

i∈N(a)

H(bi)


 (46)

The maximum ofH(bi), subject to the constraints onbi(xi), is
achieved whenbi(xi) has a uniform distribution. The mutual
information I(ba) must be greater than or equal to zero, and
it equals zero if all the beliefs involved have uniform distribu-
tions (see, e.g. theorem 2.6.4 in [37]). SinceH(bi) achieves its
maximum andI(ba) achieves its minimum when the beliefs are
uniform, the theorem is proved.

It is a simple corollary of this theorem and Theorem 2 that
the constrained Bethe entropy is exact at its maximum.

At this point we wish to re-emphasize that free energies ob-
tained using a region based approach are only approximations
to the true variational free energy, and that in particular the en-
tropy obtained is incorrect. This can give rise to some strange-
looking problems, which can already be illustrated with some
very simple factor graphs when the Bethe approximation is
used.

A. Unrealizability of Beliefs

First, the constrained Bethe free energy may be minimized by
a set of beliefsba(xa) andbi(xi) which are not be the marginals
of anyglobal probability functionb(x).

A very simple example, first pointed out in [39], consists of a
factor graph with three binary variable nodes, where each pair
of nodes is connected by a factor node. Let us take the factor
connecting nodes1 and2 to be

fA(x1, x2) =
(

0.4 0.1
0.1 0.4

)
, (47)

the factor connecting nodes1 and3 to be

fB(x1, x3) =
(

0.4 0.1
0.1 0.4

)
, (48)

and the factor connecting nodes2 and3 to be

fC(x1, x3) =
(

0.1 0.4
0.4 0.1

)
. (49)

Note that the factor connecting nodes1 and2, and the factor
connecting nodes1 and3 prefer that the connected variables to
be in the same state, while the factor connecting nodes2 and3
prefers them to be in different states. Not all of these factors can
be satisfied simultaneously; this is thus a very simple example
of what statistical physicists call a “frustrated” system [42].

The beliefsba(xa) andbi(xi) that minimize the constrained
Bethe free energy for this model are

bA(x1, x2) = bB(x1, x3) =
(

0.4 0.1
0.1 0.4

)
, (50)

bC(x1, x2) =
(

0.1 0.4
0.4 0.1

)
, (51)

and

b1(x1) = b2(x2) = b3(x3) =
(

0.5
0.5

)
. (52)

For this problem, these beliefs are also the ones that are ob-
tained as stable fixed points of the BP update equations, with
messages equal to

ma→i(xi) =
(

1
1

)
(53)

for all a andi, as one would expect from the theorems that we
prove later. However, one can also prove that this set of beliefs
cannot be obtained as the marginals ofany three-node belief
b(x1, x2, x3) [39].

Wainwright and Jordan have emphasized this problem and
proposed new variational inference techniques, closely related
to our region-based approximations, but differentiated by a re-
quirement that the set of beliefs used must be marginals of some
global belief [43]. They call the set of beliefs realizable from a
global belief the “marginal polytope.”

B. Negative Entropies

Because some of the terms in the Bethe entropy have a sign
that is flipped from the normal form of the entropy, for some
factor graphs it is actually possible to find sets of beliefs that
satisfy all our constraints, but for which the Bethe entropy is
negative. Of course, the true entropy can never be negative for
any global probability distribution.

For example, consider a factor graph with four binary vari-
able nodes, where all pairs of nodes are connected by a factor.
There are six pairs of nodes, and four single nodes. Each large
region is assigned a counting number of1, and each small re-
gion containing a single variable node is assigned an overcount-
ing number of−2 in the Bethe approximation. If we consider
the set of beliefs (that satisfy all the constraints)

ba(xi, xj) =
(

1/2 0
0 1/2

)
, (54)

for all pairsi, j, and

bi(xi) =
(

1/2
1/2

)
(55)

for all i, we find that each pair of nodes contributesln 2 to the
Bethe entropy, but that each single node contributes−2 ln 2, so
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that the total Bethe entropy for this set of beliefs isHBethe =
(6− 8) ln 2 = −2 ln 2.

For this example, it does not seem to be possible to construct
a set of factors such that this set of beliefs is alocal minimum
of the constrained Bethe free energy. More generally, we con-
jecture that the Bethe entropy must in fact be non-negative at
all local minima of the constrained Bethe free energy.

Notice for this example, that if all the factors had the form

fa(xi, xj) =
(

1 0
0 1

)
, (56)

then the beliefs given above would actually be equal to the cor-
responding exact marginal probabilities, so the correct beliefs
would give a negative Bethe entropy. However, the minimum
of the Bethe free energy would occur for beliefs that had the
form

ba(xi, xj) =
(

1 0
0 0

)
, (57)

for all pairsi, j, and

bi(xi) =
(

1
0

)
(58)

or the set obtained by favoring the second state instead of the
first, and these beliefs give a non-negative (zero) Bethe entropy.

VI. CORRESPONDENCEBETWEEN THEBETHE

APPROXIMATION AND STANDARD BP

The logic behind region-based free energy approximations
tells us that we should ultimately minimize the constrained
Bethe free energy. We now establish the nature of the con-
nection between the minima, or more generally, the stationary
points of the constrained Bethe free energy, and the fixed points
of the BP algorithm. We exploit Lagrange multiplier theory,
which can be used to identify the stationary points of functions
subject to linear equality and inequality constraints.

A. Review of Lagrangian Formalism

We first briefly review some necessary background about the
Lagrangian formalism for constrained optimization. An excel-
lent textbook containing more information is [44].

Consider a functionf(x1, x2, ..., xN ) of N variablesxi,
where the variables may be subject to equality constraint(s)
(written ashj(x1, ..., xN ) = 0) and inequality constraint(s)
(written asgk(x1, ..., xN ) ≤ 0). We will assume throughout
that the equality and inequality constraints are linear in thexi,
because the constraints that we will later deal with are always of
this form, and for such constraints, it is straightforward to prove
the existence of Lagrange multipliers (see proposition 3.3.7 of
[44]).

An inequality constraint is said to beactive if it is satis-
fied with equality, and it isinactiveotherwise. A pointx =
(x1, ..., xN ) is said to be anedgepoint if one or more of the
inequality constraints is active; otherwise it is aninterior point.

A point x̂ = (x̂1, ..., x̂N ) is a local interior minimumif it is
an interior point, such that an infinitesmal variation away from
the point in any direction that satisfies the equality constraints

would increase the value of the function. Local interior maxima
are similarly defined, although we will drop the modifier “local”
and presume all maxima and minima to be local unless explic-
itly specified otherwise. Aninterior stationary point̂x is an in-
terior point such that the gradient is zero in the direction of all
variations that satisfy the equality constraints. Of course, such
stationary points may be minima, maxima, or saddle-points, de-
pending on the second derivatives of the function.

At an edge point, one or more inequality constraints must be
active. Anedge-maintaining variationis a variation that keeps
all active inequality constraints active, while also satisfying all
the equality constraints. A point̂x is anedge stationary pointif
it is an edge point whose gradient is zero in the direction of all
edge-maintaining variations. Note that an edge stationary point
may have gradients not equal to zero in the direction of allowed
variations that are not edge-maintaining. Edge stationary points
may be minima, maxima, or saddle-points.

The Lagrangian formalism can be used to recover all con-
strained stationary points, whether they be interior or edge sta-
tionary points. Let us review how this works. Lagrange mul-
tipliers λj are constructed corresponding to each of the equal-
ity constraintshj(x1, ..., xN ), and other Lagrange multipliers
πk are constructed corresponding to each of the inequality con-
straintsgk(x1, ..., xN ). One defines a Lagrangian

L(x, {λj}) ≡ f(x) +
∑

j

λjhj(x) +
∑

k

πkgk(x). (59)

One next obtain a set of conditions on the constrained station-
ary points, which we will call theLagrangian stationary point
conditions, by setting equal to zero the derivative ofL with re-
spect to allxi and allλj , and by imposing the so-calledcomple-
mentary slackness conditionswhich enforce thatπkgk(x̂) = 0.
The complementary slackness conditions enforce that either an
inequality constraint must be active at a constrained stationary
point, or the corresponding Lagrange multiplier must be zero
(or both).

All solutions of the Lagrangian stationary point conditions
will correspond to interior or edge stationary points, and all in-
terior or edge stationary points will correspond to solutions of
the Lagrangian stationary point conditions.

A small example should help illuminate these notions. Con-
sider the function

f(x1, x2, x3) = x2
1 + x2

2 + x2
3 (60)

subject to the equality constraintx1 + x2 + x3 = 1 and the
inequality constraintsx1 ≥ 0, x2 ≥ 0, and x3 ≥ 0. This
function has an interior minimum at̂x = (x̂1, x̂2, x̂3) =
(1/3, 1/3, 1/3), wheref(x̂) = 1/3. It has three edge saddle-
points at x̂ = (1/2, 1/2, 0); x̂ = (1/2, 0, 1/2); and x̂ =
(0, 1/2, 1/2) wheref(x̂) = 1/2. Finally, it has three edge max-
ima at the pointŝx = (1, 0, 0); x̂ = (0, 1, 0); andx̂ = (0, 0, 1);
wheref(x̂) = 1.

We define the equality function

h(x) = x1 + x2 + x3 − 1 (61)

and the inequality functions

g1(x) = −x1, (62)
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g2(x) = −x2, (63)

and
g3(x) = −x3. (64)

We introduce the Lagrange multipliersλ, π1, π2, andπ3, cor-
responding to these constraints, and construct the Lagrangian

L = x2
1 +x2

2 +x2
3 +λ(x1 +x2 +x3−1)−π1x1−π2x2−π3x3.

(65)
The Lagrangian stationary point conditions are then

2x̂1 + λ− π1 = 0, (66)

2x̂2 + λ− π2 = 0, (67)

2x̂3 + λ− π3 = 0, (68)

x̂1 + x̂2 + x̂3 − 1 = 0, (69)

π1x̂1 = 0, (70)

π2x̂2 = 0, (71)

and
π3x̂3 = 0. (72)

These equations have seven solutions, corresponding to the
seven constrained stationary points already described previ-
ously. For example, the interior minimum is given by the so-
lution x̂ = (1/3, 1/3, 1/3), λ = −2/3, π1 = π2 = π3 = 0.
One of the edge saddle points is given by the solutionx̂ =
(1/2, 1/2, 0), λ = −1, π1 = π2 = 0, π3 = −1. One of the
edge maxima is given by the solution̂x = (1, 0, 0), λ = −2,
π1 = 0, π2 = π3 = −2.

B. Application to the Constrained Bethe Free Energy

We now apply the Lagrangian formalism to the constrained
Bethe free energy.

Theorem 5: Interior stationary points of the constrained
Bethe free energy must be BP fixed points.

Proof: The idea of the proof is to show that the La-
grangian stationary point conditions which must hold at inte-
rior stationary points of the constrained Bethe free energy are
the same as the BP message update rules at BP fixed points.

Note that we will omit from consideration the small regions
consisting of a single variable node that is only connected to a
single factor node (i.e. it has degreedi = 1). These regions
have counting number of zero, which means that they do not
contribute to the Bethe free energy. The beliefsbi(xi) at these
variable nodes will not be arguments of our Lagrangian, nor
will they figure in the BP fixed point equations that we ulti-
mately derive.

We will need to enforce the the normalization constraints that∑
xa

ba(xa) = 1 for every factor nodea and
∑

xi
bi(xi) = 1

for every variable nodei with degreedi ≥ 2, the marginaliza-
tion constraints

∑
xa\xi

ba(xa) = bi(xi) for every factor node
a and all its neighboring variable nodesi with degreedi ≥ 2,
and the inequality constraintsba(xa) ≥ 0 for every factor node
a. These are a sufficient set of constraints; other constraints like
0 ≤ bi(xi) ≤ 1 can be derived from the ones we have enforced.

We form Lagrange multipliersγa andγi for the normalizia-
tion constraints, Lagrange multipliersλai(xi) for the marginal-
ization constraints, and Lagrange multipliersπa(xa) for the in-
equality constraints. These Lagrange multipliers will necessar-
ily exist because the equality and inequality constraints are all
linear in the beliefs (see Proposition 3.3.7 in [44].) In fact, be-
cause for this theorem we are assuming aninterior stationary
point, the inequality constraints will all be inactive, and all the
πa(xa) will equal zero, so we ignore them hereafter.

We thus construct a Lagrangian of the form

L = FBethe

+
∑

a

γa[
∑
xa

ba(xa)− 1] +
∑

i

γi[
∑
xi

bi(xi)− 1]

+
∑

i

∑

a∈N(i)

∑
xi

λai(xi)[bi(xi)−
∑

xa\xi

ba(xa)]. (73)

where the sum overi extends over variable nodes with degree
di ≥ 2.

Setting the derivatives of the Lagrangian with respect to the
Lagrange multipliers equal to zero gives back the equality con-
straints. Setting the derivatives of the Lagrangian with respect
to the beliefs equal to zero gives the equations for the beliefs at
the stationary points:

b̂a(xa) = fa(xa) exp


γa − 1 +

∑

i∈N(a)

λai(xi)


 (74)

and

b̂i(xi) = exp


 1

di − 1


1− γi +

∑

a∈N(i)

λai(xi)





 . (75)

If we make the identification

λai(xi) = ln ni→a(xi) = ln
∏

c∈N(i)6=a

mc→i(xi), (76)

then we find that we recover the standard BP fixed-point belief
equations

b̂a(xa) ∝ fa(xa)
∏

i∈N(a)

∏

c∈N(i)\a
mc→i(xi) (77)

and
b̂i(xi) ∝

∏

a∈N(i)

ma→i(xi), (78)

which, together with the marginalization and normalization
constraints already obtained, give us back the fixed point equa-
tions of the BP algorithm.

Note that although we are missing the belief equations for
those single variable nodes that are only connected to a sin-
gle factor node, these equations are not necessary in the BP
algorithm in any case. Such variable nodes are “dead-ends” for
messages, and their beliefs can always be computed from the
beliefsba(xa) at the factor nodea to which they are connected.
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We can also prove a theorem in the other direction.

Theorem 6: BP fixed points such that all the beliefs are pos-
itive are interior stationary points of the constrained Bethe free
energy.

Proof: The proof just runs in the reverse direction from
the proof of the previous theorem. We start with the BP belief
update equations at the fixed point and the marginalization and
normalization constraints. We invert equation (76) to obtain

ma→i(xi) = exp


2− di

di − 1
λai(xi) +

1
di − 1

∑

c∈N(i)\a
λci(xi)


 .

(79)
Replacing the messages in the BP update equations with La-
grange multipliers, we reverse the derivation given in the proof
of the previous theorem to obtain the Lagrangian stationary
point conditions for an interior stationary point of the con-
strained Bethe free energy.

C. Factor Graphs Containing only Soft Factors

It is not necessarily the case that all the beliefs are positive at
a BP fixed point. But there are large classes of factor graphs for
which this is indeed true, namely those factor graphs that only
contain “soft factors.”

Definition: We say that a factorfa(xa) is a “soft factor” if
fa(xa) is strictly positive for allxa. If fa(xa) = 0 for some
xa, we call it a “hard constraint.”

Because it helps us prove a variety of interesting results, we
will assume for the time being that all factors in our factor
graphs are soft, before returning to consider factor graphs that
also contain hard constraints.

Theorem 7: If all the factorsfa(xa) in a factor graph are
soft, then all the beliefs at the BP fixed points are positive.

Proof: We denote the beliefs and messages that hold at
a BP fixed point bỹba(xa), b̃i(xi), ñi→a(xi), etc. We will
show that all the BP fixed-point beliefs̃ba(xa) are positive,
from which one can use the marginalization conditions to show
that all the beliefs̃bi(xi) are also positive. From the fixed-point
belief-update equations

b̃a(xa) ∝ fa(xa)
∏

i∈N(a)

ñi→a(xi) (80)

one sees (using the assumption that all factorsfa(xa) > 0) that
if all the messages̃ni→a(xi) are positive, then so are the beliefs
b̃a(xa).

The messages̃ni→a(xi) obey the fixed-point message equa-
tions

ñi→a(xi) ∝
∏

c∈N(i)\a
m̃c→i(xi). (81)

which tells us that they will all be positive if all the messages
m̃a→i(xi) are positive. However, the messagesm̃a→i(xi) obey
the update rules

m̃a→i(xi) ∝
∑

xa\xi

fa(xa)
∏

j∈N(a)\i
ñj→a(xj). (82)

Recall that we assumed that all messages are initialized to be
non-negative in the BP algorithm, and that this implies that they
remain non-negative. We can therefore assume, without loss
of generality, that the messagesñj→a(xj) are all non-negative
and normalized to sum to one, so that at least one of them (as
a function of the possible states ofxj) is positive, and none are
negative. Given that, and the assumption that all the factors are
positive, the form of equation (82) implies that all the messages
m̃a→i(xi) are positive, so the theorem is proved.

This theorem, combined with Theorem 6, gives the following
easy corollary.

Theorem 8: If all the factorsfa(xa) are soft, then all BP
fixed points are interior stationary points of the constrained
Bethe free energy.

We can also prove the following theorem:

Theorem 9: If all the factorsfa(xa) are soft, then all local
minima of the constrained Bethe free energy areinterior min-
ima.

Proof: We wish to show that given that all the factors
are soft, one can decrease the Bethe free energy of any con-
figuration of beliefs{ba(xa), bi(xi)} that contains zero beliefs
by replacing those zero beliefs with very small positive beliefs,
while always satisfying the constraints on the beliefs. For sim-
plicity, we will give examples to clarify the proof that use binary
variable nodes and “large” regions that contain only two vari-
able nodes, but the examples can easily be extended to the fully
general case.

We first assume that all the one-node beliefsbi(xi) are pos-
itive, so that the only zero beliefs are in theba(xa). These
zero beliefs can be replaced with infinitesmally small positive
beliefs in such a way that the one-node beliefs are unchanged.
For example, if we have a set of beliefs such that

ba(xi, xj) =
(

A B
C 0

)
, (83)

whereA, B, andC are some positive constants ofO(1), then
we can keep all other beliefs unchanged and replace that belief
with

ba(xi, xj) =
(

A + ε B − ε
C − ε ε

)
. (84)

Doing this could possibly gain us an average energy ofO(ε),
but we will also gain an entropy ofO(ε ln ε), so the overall free
energy must decrease for small enoughε. (Note that if some
of the factorsfa(xa) = 0, we could gain an infinite average
energy, so the proof would break down at this point.)

Suppose instead that some of thebi(xi) were zero. Let us
suppose, without loss of generality, that node1 was a “culprit,”
with belief

b1(x1) =
(

1
0

)
. (85)

Then of course all the “larger” regions that contained node1
must also have beliefs that contain zeros as well; that is, they
must be of the form

ba(x1, xj) =
(

A 1−A
0 0

)
, (86)

12

Owner
If all the factors fa(xa) in a factor graph are

Owner
soft, then all the beliefs at the BP fixed points are positive.

Owner
If all the factors fa(xa) are soft, then all BP

Owner
fixed points are interior stationary points of the constrained

Owner
Bethe free energy.

Owner
If all the factors fa(xa) are soft, then all local

Owner
minima of the constrained Bethe free energy are interior minima.



or, if nodej is also a “culprit,” the beliefs will be of the form

ba(x1, xj) =
(

1 0
0 0

)
. (87)

We can now increase the Bethe entropy by an amount of
O(ε ln ε) if we adjust the beliefb1(x1) to be

b1(x1) =
(

1− ε
ε

)
, (88)

while adjusting the beliefs of the connected “large” regions to
be

ba(x1, xj) =
(

A− ε/2 1−A− ε/2
ε/2 ε/2

)
, (89)

or

ba(x1, xj) =
(

1− ε 0
ε 0

)
. (90)

The point is that although this adjustment gives a negative con-
tribution to the Bethe entropy from the one-node terms, it will
always give a larger positive contribution to the Bethe entropy
from the “large” region terms. This is guaranteed by the fact
that the sum of the counting number of the “culprit” one-node
region plus the sum of the counting numbers of the relevant
larger regions must always be one.

Using these “adjustments,” we can systematically remove all
the zeros from the collections of the beliefs that we started with,
while always decreasing the constrained Bethe free energy.

Theorem 5 and Theorem 9 can be combined to give the fol-
lowing:

Theorem 10: If all the factorsfa(xa) are soft, then all lo-
cal minima of the constrained Bethe free energy are BP fixed
points.

Although we have shown, assuming soft factors, that all inte-
rior stationary points and local minima of the constrained Bethe
free energy are BP fixed points, one should note that it is easy
to constructedge maximaof the constrained Bethe free energy
that arenot BP fixed points. For example, consider a factor
graph that is a tree, with constant soft factors that weight all
local configurations equally, and a set of beliefs consistent with
a single configuration where every variable node is completely
biased to one of its states. This will be a local maximum of the
Bethe free energy, but it will certainly not be a BP fixed point.

We can now prove that at least one BP fixed point must exist,
for any factor graph with soft factors.

Theorem 11: If all the factorsfa(xa) are soft, then at least
one BP fixed point exists.

Proof: The constrained Bethe free energy is bounded
below. This is true because all the factorsfa(xa) are non-
negative, so the average energy must be bounded below, while
the entropy clearly cannot diverge to positive infinity. The fact
that the constrained Bethe free energy is bounded below means
that there must be a global minimum, and using Theorem 10,
we know that the global minimum will be a BP fixed point.

Of course, the existence of a BP fixed point does not imply
that the BP algorithm will converge starting from arbitrary ini-
tial conditions.

The conditions for theuniquenessof BP fixed points are also
clarified by the equivalence with the Bethe approximation. In
graphs with no more than a single cycle, it was known that if all
factors are soft, then there was a unique BP fixed point [45]. For
general graphs, we can use the equivalence established above to
show that the same factor graph may sometimes have a unique
BP fixed point, and other times have more than one BP fixed
point, depending on the strength of the interactionsfa(xa).

To be more precise, we can imagine defining a sequence of
probability distributions where some or all of our original func-
tions are all raised by a power:fa(xa;T ) = fa(xa)1/T . This
is equivalent to changing the temperatureT in a physical sys-
tem. Many systems, for example Ising ferromagnets, will have
different numbers of solutions above or below acritical tem-
peratureTc within the Bethe approximation [46]. AboveTc,
the constrained Bethe free energy has a unique stationary point,
while belowTc, there are multiple stationary points. Using this
equivalence it is easy to define small factor graphs that show a
similar behavior. Although the topology does not change and
the factors are always soft, as we smoothly change the factors
we go from a regime with a unique fixed point to one with mul-
tiple fixed points.

Fig. 5. A factor graph with four variable nodes, each connected by a factor
node to all the other variable nodes.

As an explicit example, consider the factor graph containing
four binary variable nodes, where every pair of variable nodes
are connected by a factor node, as shown in figure 5. We assume
that the factors connecting any two variable nodes are identical
and “ferromagnetic,” that is, they have the form

fa(xi, xj) =
(

exp(1/T ) exp(−1/T )
exp(−1/T ) exp(1/T

)
, (91)

whereT is a temperature-like parameter. These factors have the
effect of making neighboring variable nodes prefer to be in the
same binary state, and the effect is stronger at lowerT .

Given the symmetry of this example, it makes sense to search
for fixed points of the BP message update rules where all mes-
sages are identical. It is relatively straightforward to work out
(see the analysis of the Bethe approximation in [46] for a similar
computation) that above the critical temperatureTc = 2/(ln 3),
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there is only one such solution, and that solution gives all vari-
able nodes equal beliefs to be in their two states. AboveTc

this fixed point is stable, but belowTc, it becomes unstable, and
two new stable fixed points appear. At the new fixed points,
all the variable nodes have identical beliefs, but at one of the
fixed points, the beliefs are biased towards the first binary state,
while at the other fixed point, the beliefs are biased towards the
second binary state.

Tatikonda and Jordan [47] have explored the question of
uniqueness of BP fixed points in detail. They used the connec-
tion to the Bethe free energy to obtain a set of sufficient condi-
tions on the strength of the factorsfa(xa) to ensureuniqueBP
fixed points for arbitrary Markov random fields. More recently,
Heskes [48] has analyzed the same question using the connec-
tion to the Bethe free energy, but his sufficient conditions for
uniqueness also take into consideration the topology of the fac-
tor graph.

While we have shown that standard BP converges to station-
ary points of the constrained Bethe free energy, we emphasize
that BP does not perform constrained minimization of the Bethe
free energy; that is, it does not decrease the constrained Bethe
free energy at every iteration. Indeed, the marginalization con-
straints are typically not satisfied at intermediate iterations of
BP; it is only at a BP fixed point that the beliefs necessarily
obey all the consistency constraints. Based on the correspon-
dence between BP fixed points ane Bethe free energy stationary
points, first noted in our earlier work [17], others have devised
algorithms that directly minimize the free energy on the feasible
set of beliefs [49], [50], [51]. Such free energy minimizations
are somewhat slower than the BP algorithm, but they are guar-
anteed to converge.

D. Factor Graphs Containing Hard Constraints

We now return to consider the more general situation of fac-
tor graphs that also contain hard constraints. Such hard con-
straints are ubiquitious for example in factor graph representa-
tions of parity check codes.

In contrast to the situation when all the factors are soft, if
one has hard constraints, it is possible for the local minima of
the constrained Bethe free energy to beedgeminima, and it is
possible for some of the beliefs at BP fixed points to be zero.
We now give a small example to illustrate these statements.

Consider again the factor graph with four binary variable
nodes, and factors which connect each pair of variable nodes
(see figure 5). Assume now that all the factors are hard parity
checks over two variables of the form

fa(xi, xj) =
(

1 0
0 1

)
. (92)

For this factor graph, there is an unstable BP fixed point with
all messages and one-node beliefs given by

ma→i(xi) = bi(xi) =
(

1/2
1/2

)
, (93)

and all two-node beliefs given by

ba(xi, xj) =
(

1/2 0
0 1/2

)
. (94)

There are also two stable BP fixed points; one with the mes-
sages and beliefs

ma→i(xi) = bi(xi) =
(

1
0

)
, (95)

and

ba(xi, xj) =
(

1 0
0 0

)
, (96)

and one with the messages and beliefs

ma→i(xi) = bi(xi) =
(

0
1

)
, (97)

and

ba(xi, xj) =
(

0 0
0 1

)
. (98)

From the point of view of the constrained Bethe free energy,
the only set of beliefs that satisfy the marginalization and nor-
malization constraints, and do not have an infinite Bethe aver-
age energy, are beliefs of the form

ba(xi, xj) =
(

α 0
0 1− α

)
(99)

and

bi(xi) =
(

α
1− α

)
, (100)

where the constantα is the same for all the beliefs.
For the factor graph that we are considering, these sets of

beliefs all give a Bethe average energy that is zero, and a Bethe
entropy which is maximized atα = 0 or α = 1, and minimized
atα = 1/2.

Based on this example, one might guess that there is a cor-
respondence between Bethe free energy edge minima, and BP
fixed points with zero beliefs. We believe and argue below that
such a correspondence indeed exists. Unfortunately, there are
technical issues that make our arguments for this correspon-
dence less than completely rigorous.

The first issue results from the fact that if one uses the La-
grangian formalism to identify edge stationary points of the
constrained Bethe free energy, some of the Lagrange multipliers
will diverge logarithmically at edge points. One can already see
that such a phenomenon must exist from the form of equation
(76), which relates the marginalization Lagrange multipliers to
the logarithm of the BP messages. If a BP message is zero, as it
will be at an edge point, the corresponding Lagrange multiplier
diverges logarithmically.

The following trivial example demonstrates how inescapable
this issue is, and also makes clear that the issue arises because
the derivative of the entropy function diverges logarithmically
at its edges. Consider a single binary variable, with no factor at
all. We denote the belief that the variable is in its two states by
b1 andb2, so that the free energy is just

f(b1, b2) = b1 ln b1 + b2 ln b2 (101)

with the equality constraintb1 + b2 = 1, and the inequality
constraintb1 ≥ 0, andb2 ≥ 0. The minimum of this free energy
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obviously occurs when̂b1 = b̂2 = 1/2, andf = − ln 2, and
two maxima occur at the edge of the region of allowed beliefs,
whenb̂1 = 0 andb̂2 = 1, or when̂b1 = 1 andb̂2 = 0. The free
energy at the maxima is zero.

To recover these results using the Lagrangian formalism, we
introduce a Lagrange multiplierγ to enforce the normalization
equality constraint, and the Lagrange multipliersπ1 andπ2 for
the inequality constraints. Our Lagrangian is then

L = b1 ln b1 + b2 ln b2−γ(b1 + b2− 1)−π1b1−π2b2. (102)

Taking derivatives of the Lagrangian with respect tob1, b2

andγ, and imposing the complementary slackness conditions,
we find the five Lagrangian stationary point conditions:

ln b̂1 + 1− γ − π1 = 0 (103)

ln b̂2 + 1− γ − π2 = 0 (104)

b̂1 + b̂2 = 1 (105)

π1b̂1 = 0 (106)

π2b̂2 = 0 (107)

These equations have one solution which is completely unob-
jectionable, when̂b1 = b̂2 = 1/2, π1 =π2 =0, andγ = 1−ln 2,
corresponding to the free energy interior minimum. They also
have two solutions corresponding to the free energy edge max-
ima, but only if one accepts Lagrange multipliers that are log-
arithmically divergent. Thus, we have the solutionb̂1 = 0,
b̂2 = 1, π1 = ln(0), π2 = 0, andγ = 1, and the solution
b̂1 = 1, b̂2 = 0, π1 = 0, π2 = ln(0). Note that the comple-
mentary slackness conditionsπibi = 0 are always satisfied if
we assume that0 ln 0 = 0.

Following the lessons of this simple example, we would like
to assume the legitimacy of all logarithmically divergent La-
grange multipliers in identifying edge stationary points. Read-
ers willing to accept such Lagrange multipliers should upgrade
the status of the following “conjecture” to that of a “theorem.”

Conjecture 1: BP fixed points with some beliefs equal to
zero are edge stationary points of the constrained Bethe free
energy.

Argument: We need to show that the BP fixed point con-
ditions can be rewritten in a way that guarantees that all the
Lagrangian stationary point conditions are satisfied, including
those resulting from inequality constraints. We will use in-
equality Lagrange multipliersπa(xa) to enforce the inequality
constraintŝba(xa) ≥ 0. The complementary slackness condi-
tions that will need to be satisfied will be

πa(xa)b̂a(xa) = 0. (108)

The other Lagrangian stationary conditions that will need to be
satisfied will be the marginalization and normalization condi-
tions on the beliefs, and the belief equations

b̂a(xa) = fa(xa) exp


πa(xa) + γa − 1 +

∑

i∈N(a)

λai(xi)




(109)

and (for variable nodes with degreedi ≥ 2)

b̂i(xi) = exp


 1

di − 1


1− γi +

∑

a∈N(i)

λai(xi)





 . (110)

Starting with the BP fixed point conditions, and making the
identification between messages and marginalization Lagrange
multipliers

λai(xi) = ln ni→a(xi) = ln
∏

c∈N(i)6=a

mc→i(xi), (111)

we recover the Lagrangian stationary conditions withπa(xa) =
0, which will be consistent with the complementary slackness
conditions. Note the the marginalization Lagrange multipliers
corresponding to zero messages will be logarithmically diver-
gent. Thus, assuming that such Lagrange multipliers are le-
gitimate, we have shown that BP fixed points, even with some
of the beliefs equal to zero, are always stationary points of the
constrained Bethe free energy.

We emphasize that the converse of this conjecture certainly
does not hold; as we described previously, edgemaximaof the
constrained Bethe free energy need not be BP fixed points.

On the other hand, we argue now that edgeminima of
the constrained Bethe free energy are indeed always BP fixed
points. However, we again do not claim the following argument
is a proof, this time because the argument depends on continuity
arguments, that, while reasonable, could be questioned.

Conjecture 2: Edge minima of the constrained Bethe free
energy are BP fixed points.

Argument: Recall from Theorem 9 that if all the factors
fa(xa) are positive, then all local minima of the constrained
Bethe free energy must necessarily be interior minima. That
means that if we have edge minima, they necessarily result from
a factor graph that includes factorsfa(xa) that equal zero for
some state of their argumentsxa.

Let us consider a transformation of the factor graph that adds
an infinitesmal positive term to each zero factor. We expect the
edge minima to be mapped, under this transformation, to inte-
rior minima that are infinitesmally far away. By Theorem 10,
all these minima correspond to BP fixed points with all beliefs
positive. Making the inverse transformation back to a factor
graph with hard constraints, we expect these BP fixed points to
be mapped to BP fixed points where some of the beliefs equal
zero. Thus, assuming our continuity expectations are indeed
met, the original edge minima of the constrained Bethe free en-
ergy should be BP fixed points.

To complete the general picture of the relation between BP
fixed points and the stationary points of the constrained Bethe
free energy, we refer the reader to a paper by Heskes [52], which
argues thatstableBP fixed points must be localminimaof the
constrained Bethe free energy, but gives a counter-example that
shows that the converse is not true.

VII. T HE REGION GRAPH METHOD

We now introduceregion graphs, which are central to the
region graph method for generating valid free energy approxi-
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mations, and also will provide a graphical framework for GBP
algorithms. We will first focus on generatingvalid free energy
approximations, and then turn our attention in the next section
to question of when a region graph free energy approximation
will be maxent-normal.

It is possible to construct valid, or even maxent-normal, free
energy approximations that do not correspond to a region graph.
The region graph method has the virtue, though, of generaliz-
ing other methods, including the Bethe method, thejunction
graph method, and thecluster variation method. In appendices
A and B, we discuss the junction graph method and the clus-
ter variation method in detail. In appendix C, we fully describe
the relationship between all the different methods considered in
this paper.

Definitions: Let I be the set of indices for the factor and vari-
able nodes in a factor graph. Aregion graphis a labeled, di-
rected graphG = (V, E, L) in which each vertexv ∈ V (corre-
sponding to a region) is labeled with a subset ofI. We denote
the label of vertexv by l(v) ∈ L. A directed edge (orarc)
e ∈ E may exist pointing from vertexvp to vertexvc if l(vc) is
a subset ofl(vp). If such an arc exists, we say thatvc is achild
of vp, thatvp is a parentof vc. If there exists a directed path
from vertexva to vertexvd, we say thatva is anancestorof vd,
andvd is adescendantof va.

Note that because of the transitivity of the subset relationship, a
region graph must be a directed acyclic graph, in the sense that
the arrows cannot loop around.

A region graph is closely related to theHasse diagramfor a
partially ordered set, or poset[53], if we consider our regions
to be organized into a poset, with the ordering relationship be-
tween the regions to be given by the ancestor-descendant rela-
tionship [30], [31]. There are, however, some differences be-
tween region graphs and Hasse diagrams. First, region graphs
are labeled graphs, and we will insist on some “region graph
conditions,” described below, that the labels must satisfy. Sec-
ond, region graphs can include an arc between two regions that
are also connected by a path of length two or greater, which is
forbidden for Hasse diagrams.

Definitions: The counting numbercv for every vertex in the
region graph is given by

cv = 1−
∑

u∈A(u)

cu, (112)

whereA(u) is the set of vertices that are ancestors ofu. For
a graphG to qualify as a region graph, we insist on theregion
graph condition, which requires that for everyi ∈ I (whether
it is the index of a factor node or a variable node), the subgraph
G(i) = (V (i), E(i), L(i)) formed by just those vertices whose
labels includei is a connected graph that satisfies the condition

∑

v∈V (i)

cv = 1. (113)

Having defined region graphs, it is almost trivial to define a
correspondingregion graph methodfor generating valid region-
based free energy approximations. We simply create a region

graph such that the vertices correspond to regions, with labels
corresponding to the factor and variable nodes in a region, and
we require that every factor and variable node be contained in
at least one region. We associate the counting numberscR for
regions directly with the counting numberscv for the region
graph, and the region graph free energyFRG will be given by
FRG =

∑
R cRFR, whereFR is the free energy of the region

R.
Finally, to obtain aconstrainedregion graph free energy, we

enforce the constraints that every region belief is normalized,
and that for each pair of regions connected by an arc in the
region graph, the beliefs for the variable nodes in both regions
are consistent.

We have now presented enough definitions, so that the fol-
lowing theorem is true by inspection:

Theorem 12: Region based free energy approximations cre-
ated using the region graph method will be valid.

C,E,4,5,7,8

C,4,5

A,C,1,2,4,5 B,D,2,3,5,6

F,5,6,8,9

5,65

2

6

8

1=c

1=c

1=c

1=c

1−=c

1−=c

1−=c

0=c1−=c 2−=c

Fig. 6. An example of a region graph. We have listed the counting numbercR
next to each region.

In figure 6, we give an example of a region graph for the fac-
tor graph that we already introduced in figure 4. This region
graph was constructed to demonstrate what is and is not per-
mitted in a legal region graph, rather than what would likely
give good results. Note that a region graph enforce any clear
delineation of “generations” (region{8} is a child of both re-
gions{C, E, 4, 5, 7, 8} and regions{F, 5, 6, 8, 9}, while region
{5} is a grand-child of region{C, E, 4, 5, 7, 8} and a child of
region{F, 5, 6, 8, 9}.) Note also that regions may have count-
ing number equal to zero (e.g. region{5, 6}), and that the fact
that a region is a sub-set of another region need not imply that
it is also a descendant of that region (e.g. regions{F, 5, 6, 8, 9}
and{5, 6}).

What is essential is that theregion graph conditionsthat we
described above are obeyed. We insist on these conditions for
the following reasons. First, to reiterate the results of the the-
orems previously proved about valid region-based free energy
approximations, the condition that every factor node in the fac-
tor graph is counted once when we do the weighted sum over
all regions ensures that the region graph average energy is exact
if the region beliefs are exact (recall Theorem 1); and the condi-
tion that every variable node is counted once ensures that the re-
gion graph entropy correctly counts degrees of freedom (recall
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Theorem 2). The condition that the regions containing a partic-
ular variable node form a connected sub-graph will ensure that
the marginal probability at any node isconsistentirrespective of
which region’s beliefs one uses to compute it. Empirically, we
have found that if one attempts to run a GBP algorithm (as de-
scribed later) on graphs that do not satisfy all the region graph
conditions, the results are likely to be poor.

C,E,4,5,7,8

C,4,5

A,C,1,2,4,5 B,D,2,3,5,6

D,F,5,6,8,9

D,5,6

2,5

5,8

1=c

1=c

1=c

1=c

1−=c

1−=c

1−=c1−=c

Fig. 7. An example of a graph of regions that isnota region graph because the
sum of the counting numbers of regions containing variable node 5 is not one.

An example of a “false region graph” or graph of regions that
doesnotsatisfy the region graph conditions is shown in figure 7.
The problem with this plausible-looking construction is that the
sum of the counting numbers of the regions containing variable
node 5 is zero, rather than one. We could modify this false
region graph in a variety of ways to obtain a real region graph.
For example, we could simply remove node 5 from the region
{2, 5}. The resulting region graph would be an example of a
junction graph; see appendix A. Alternatively, we could add a
region{5} which just contained variable node5, and connect
the regions{2, 5}, {C, 4, 5}, {D, 5, 6}, and{5, 8} to it (the
result of using the cluster variation method; see appendix B).

We can generalize theorem 3, which states that the Bethe free
energy is exact when the factor graph has no cycles, to the fol-
lowing theorem about region graphs:

Theorem 13: The exact variational free energy will equal
the region graph free energy if the region graph has no cycles.

Proof: The exact average energy reduces to the region
graph average energy by the argument used in theorem 1. The
exact entropy reduces to the region graph entropy after recur-
sively applying the following junction graph formula for the
probability distribution of a factor graph divided into large re-
gionsRL, and small regionsRS which separate the large re-
gions (see Appendix A for more details):

p(x) =

∏
R∈RL

pR(xR)∏
R∈RS

pR(xR)dR−1
. (114)

We illustrate this theorem with an example, that has the factor
graph given in figure 8, and the region graph given in figure
9. We will recursively break down the full joint probability
distribution and show that it is equal to a product of marginal

probability distributions over regions that has precisely the form
necessary to make the region graph free energy be exact.

1 2

3 4 5

6 7

A B

C D

Fig. 8. A factor graph that has a tree region graph shown in figure 9.

A,1,3,4 C,3,4,6 B,2,4,5 D,4,5,7

3,4 4,5

4

Fig. 9. A region graph with no cycles that has a corresponding region graph
free energy approximation which is exact.

Note that for this region graph, the region{4} separates the
left part of the tree and the right part of the tree. That means
that we have

p(x1, ..., x7) =
p(x1, x3, x4, x6)p(x2, x4, x5, x7)

p(x4)
. (115)

The marginal probability distributionsp(x1, x3, x4, x6) and
p(x2, x4, x5, x7) can in turn be written in terms of marginal
probabilities of smaller regions. For example, we see that the
region{3, 4} separates the regions{A, 1, 3, 4} and{C, 3, 4, 6},
so that

p(x1, x3, x4, x6) =
p(x1, x3, x4)p(x3, x4, x6)

p(x3, x4)
. (116)

Expanding everything out, we obtain that the joint probability
distributionp(x1, ..., x7) equals

p(x1, x3, x4)p(x3, x4, x6)p(x2, x4, x5)p(x4, x5, x7)
p(x3, x4)p(x4, x5)p(x4)

. (117)
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Notice that equation (117) is the product of seven local ker-
nels, where each kernal has an exponent corresponding to the
counting number of the associated region. Substituting this re-
sult into the formula for the exact entropy, we recover the region
graph entropy. Since the region graph average energy is always
exact when the region beliefs are, this demonstrates that the ap-
proximation is exact in this case.

VIII. M AXENT-NORMAL REGION GRAPH

APPROXIMATIONS

The region graph method is not very restrictive, and a natural
question to ask is whether there are any criteria that one can use
to choose between different region graphs. In this section, we
focus on the notion ofmaxent-normalfree energy approxima-
tions previously defined in section IV.

Recall that the approximation in all region-based free ener-
gies originates from the entropy term. A natural requirement
that one can make on the entropy approximation is that it should
at least give the correct answer when there are no interactions,
that is, that it should achieve its global maximum when all
the beliefsbR(xR) are uniform. We defined free energy ap-
proximations that obey this criterion to bemaxent-normal, and
proved in theorem 4 that the Bethe approximation is always
maxent-normal. On the other hand, some region graph free en-
ergy approximations are provablynotmaxent-normal, as shown
by the following example.

A. Example of an Approximation that is Not Maxent-Normal

Consider a factor graph which consists ofN binary variable
nodes, where every pair of nodes is connected by a factor. (A
version of this factor graph with random factors is known in the
physics literature as the Sherrington-Kirpatrick Ising spin glass
[54].)

Now take, as the regions to include in the region graph, every
triplet of nodes (and all three factors that connect them), every
pair of nodes (and the factor that connects them), and every
single node. To complete the definition of the region graph,
draw an arc from each triplet region to each of the three pair
regions that are sub-sets of it, and an arc from each pair region
to each of the two single node regions that are sub-sets of it.
This is the region graph that would be obtained using the cluster
variation method (see appendix B), starting with all the triplet
regions as the largest regions.

We can compute the counting numbers as follows. There are
N(N − 1)(N − 2)/6 “triplet” regions, each having a counting
number ofc3 = 1. There areN(N − 1)/2 “pair” regions,
each having a counting number ofc2 = 3 − N (because each
pair of variable nodes belongs toN − 2 triplet regions). There
areN single node regions, each having a counting number of
c1 = (N − 2)(N − 3)/2 (this can be computed from the fact
that each single variable node belongs to(N − 1)(N − 2)/2
triplet regions andN − 1 pair regions).

Now consider the consistent set of beliefs where each single
node region had the beliefs

b(xi = 0) = b(xi = 1) = 1/2, (118)

each pair node region had the beliefs

b(xi = 0, xj = 0) = b(xi = 1, xj = 1) = 1/2; (119)

with other pair beliefs equal to zero, and each triplet node re-
gion had the beliefs

b(xi =0, xj =0, xk =0) = b(xi =1, xj =1, xk =1) = 1/2
(120)

with all other triplet beliefs equal to zero. These beliefs are
the beliefs that one would obtain from marginalizing a global
probability distribution that only allowed two states with equal
probability: the all-zeros state and the all-ones state.

For these beliefs, the entropy of every region, whether it be
a triplet, pair, or single node region, will beln 2. So the overall
entropy is just determined by the sum of the counting numbers
for all the regions, and is given by

H

ln 2
=

N(N − 1)(N − 2)
6

+
N(N − 1)(3−N)

2
+

+
N(N − 2)(N − 3)

2
(121)

Using this formula, it is easy to determine that these beliefs
give an entropy greater thanN ln 2, which is the result of using
a uniform distribution, for allN ≥ 6.

Thus we see that the approximation derived from the clus-
ter variation method using triplet regions as the largest regions,
will surely give poor results, because even if there are no in-
teractions at all, the approximation will disfavor the (correct)
uniform distribution. It is therefore no surprise that other re-
searchers have noticed that this approximation gives poor re-
sults for the Sherrington-Kirpatrick model [51], [55].

B. Example of an Approximation that is Maxent-Normal

Fortunately, it is not too hard to find examples of region graph
approximations thataremaxent-normal, besides those based on
the Bethe approximation. We now present a non-trivial example
of an approximation that is provably maxent-normal.

Consider anL by L square lattice of binary variable nodes,
where each variable node is connected by pair-wise factors to
its nearest neighbors. Of course we would normally be inter-
ested in cases whereL is large, but for the sake of example we
consider a small3 by 3 version, shown in figure 10.

We can construct a region graph for such square lattice factor
graphs by using the cluster variation method (see Appendix B),
starting with small2 by 2 clusters as the largest regions. For our
small example, the resulting region graph is shown in figure 11.

We can prove that this particular region graph gives a free
energy approximation that ismaxent-normalby following the
idea of the proof that the Bethe appoximations will be maxent-
normal (see the proof of theorem 4).

Theorem 14: The free energy approximation for the region
graph shown in figure 11 is maxent-normal.

Proof: We need to show that the entropy of this free en-
ergy approximation attains its maximum when all the beliefs
are uniform. Rewrite the region graph entropy as

HRG =
N∑

i=1

H(bi)− I (1, 2, {4, 5})− I (3, 6, {2, 5})

− I (8, 9, {5, 6})− I (4, 7, {5, 8}) (122)

18

Owner
that it should

Owner
at least give the correct answer when there are no interactions,

Owner
that is, that it should achieve its global maximum when all

Owner
the beliefs bR(xR) are uniform.

Owner
maxent-normal,

Owner
Bethe approximation is always

Owner
maxent-normal.



1 2 3

4 5 6

7 8 9

A B

C D E

F G

H I J

K L

Fig. 10. A 3 by 3 version of a square lattice factor graph.
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Fig. 11. A region graph for the factor graph in figure 10 obtained using the
cluster variation method, starting with 2 by 2 clusters. The counting number
for each region is listed next to the region.

where
H(bi) ≡ −

∑
xi

bi(xi) ln bi(xi) (123)

and, for example,

I(1, 2, {4, 5}) ≡ H(b1245)−H(b1)−H(b2)−H(b45) (124)

The maximum ofH(bi), subject to the constraints onbi(xi),
is achieved whenbi(xi) has a uniform distribution. The mu-
tual informations likeI(1, 2, {4, 5}) must be greater than or
equal to zero, and will equal zero if all the beliefs involved
have uniform distributions (see, e.g. theorem 2.6.4 in [37]).
SinceH(bi) achieves its maximum and the mutual informa-
tions achieve their minimum when the beliefs are uniform, the
theorem is proved.

This theorem, and its proof, can easily be generalized to the
general case of anL by L lattice ofq-ary variables:

Theorem 15: For the factor graph consisting of anL by L
lattice ofq-ary variables, connected by pair-wise factors to their
nearest neigbhors, the free energy approximation obtained by

using the cluster variation method, starting with2 by 2 overlap-
ping clusters as the largest regions, is maxent-normal.

Proof: Left as an exercise for the reader.

C. Discussion and Heuristics

In general, the problem of how to generate region graph ap-
proximations that give highly accurate marginals is still very
much an open research problem. While the notion ofmaxent-
normal region graph approximations is helpful, it is not the
complete story. In this sub-section we further discuss this is-
sue, and suggest some heuristics that should prove useful.

First, we point out that we have been focusing on the accu-
racy of the free energy approximation, while in the end, we are
actually usually most interested in the accuracy of the approx-
imate marginals that we compute. The two are related, but we
will not discuss this point further in this paper. Instead, we refer
the interested reader to work of Wainwright, et.al. [24], which
develops bounds on the approximation error for the marginals
for any algorithm that minimizes the Bethe free energy or its
generalizations.

Although we do not here propose a systematic approach to
choose promising region graph approximations, we do suggest
the following “common-sense” heuristics. First, as we have
already emphasized, a region graph approximation should be
maxent-normal. Secondly, to improve upon the ordinary Bethe
approximation, one should try to include at least the shortest
cycles in a factor graph inside regions.

Finally, we have observed that region graph approximations
that obey the following heuristic tend to be very accurate:
namely, that the sum of the counting numbers of all regions
equals one: ∑

R∈R
cR = 1. (125)

To avoid any confusion, we emphasize that this heuristic is dif-
ferent from the validity condition given in equation (29) that
ensures that each variable node and factor node is counted once.

This heuristic can be rationalized by considering a factor
graph with binary variable nodes (the following argument can
also be easily generalized toq-ary variable nodes), and con-
sidering the global probability distribution that allows just two
states with equal probability: the state where all nodes are ze-
ros, and the state where all nodes are ones. (The reader may be
growing familiar with this distribution, which we already used
in the examples of approximations that can give negative en-
tropies, and the examples of approximations that are provably
not maxent-normal.) The exact entropy of this probability dis-
tribution is obviously justln 2.

If we marginalize this distribution, we find that every region
also has a marginal probability that allows only the all-zeros
or all-ones state for its variable nodes. Therefore, every region
will also have a region entropy ofln 2. Thus, for any region-
based approximation to give the correct entropy for beliefs cor-
responding to this global distribution, the sum of the counting
numbers, over all regions, must be one.

This heuristic isnot normally satisfied by Bethe approxima-
tions, with the exception of exact Bethe approximations when
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the factor graph has no cycles. However, some more compli-
cated region graph approximations do indeed satisfy the heuris-
tic, including, for example, the maxent-normal approximation
discussed in the previous sub-section for square lattices based
on two by two clusters.

Clearly, it would be worthwhile to develop a method that
would accept arbitrary factor graphs, and automatically con-
struct maxent-normal region graph approximations that also
satisfied our heuristics. We do not know of any such method,
but we refer the reader to an interesting paper by Welling [56],
who developed a “bottom-up” approach to generating region
graph approximations starting from the Bethe approximation.

IX. GENERALIZED BELIEF PROPAGATION ALGORITHMS

We have already seen that the stationary points of the Bethe
approximation to the free energy are equivalent to the fixed
points of the standard BP algorithm, which operates on a factor
graph. We now introducegeneralized belief propagationalgo-
rithms which operate on region graphs, and demonstrate that
their fixed points correspond to the stationary points of the re-
gion graph free energy.

One can construct generalized belief propagation (GBP) al-
gorithms corresponding to any region graph free energy approx-
imation. In fact, there are many ways to construct message-
passing algorithms whose fixed points are equivalent to the sta-
tionary points of a region graph free energy. In all these algo-
rithms, messages of some sort are sent between regions on a
region graph.

Note first that we can obtain different GBP algorithms cor-
responding to the same free energy by using different region
graphs that have the same free energy. For example, if we
modified a region graph by connecting a grandparent region
directly to a grandchild region, then the GBP algorithms that
we describe below would be correspondingly modified, but the
approximate free energy would not be changed, and the new
constraints would be redundant. Making such a modification
will thus alter the dynamics of a GBP algorithm, but not its
fixed points. Pakzad and Anantharam [31], [32] have focused
on the problem of constructing theminimal region graph for a
free energy approximation; we will not focus on that problem,
and instead refer the interested reader directly to their papers.

Even if we fix attention on a particular region graph, there
are still a variety of different GBP algorithms that we can cre-
ate. In the main text of this paper, we will describe one possi-
ble approach, which we call theparent-to-child algorithm. In
appendices D and E, we describe two other approaches (the
child-to-parent algorithmand thetwo-way algorithm) which
give algorithms with equivalent fixed points, and which have
their own advantages. An main advantage of the parent-to-child
algorithm, in comparison with the other algorithms, is that the
message-passing rules make no reference to region counting
numbers, just as in the standard BP algorithm. The standard
BP algorithm is a special case of all three algorithms when the
region graph is obtained using the Bethe method.

A. The Parent-to-Child Algorithm

Recall that the standard BP message-passing equations can
be derived from the fact that the belief at a single variable node

is just the product of all the messages bearing information from
neighboring factor nodes, while the belief at the region of vari-
able nodes adjoining a single factor node is the product of that
internal factor, multiplied by all the messages coming into the
group of nodes from factor nodes outside the region.

The parent-to-child algorithm generalizes this idea. In this
algorithm (which in a previous exposition we called the “canon-
ical” GBP algorithm [17]) the belief at any regionR will be the
product of all the local factors in that region, multiplied by all
the messages coming into regionR from outside regions. There
is one complication, however: to ensure that the algorithm is
equivalent to minimizing the region graph free energy, we need
to include additional messages into regions which are descen-
dants ofR from other parent regions that are not themselves
descendants of regionR.

Definitions: In the parent-to-child algorithm, we only have
one kind of messagemP→R(xR) from a parent region to a child
region. Each regionR has a beliefbR(xR) given by

bR(xR) ∝
∏

a∈AR

fa(xa)


 ∏

P∈P(R)

mP→R(xR)


 .

.


 ∏

D∈D(R)

∏

P ′∈P(D)\E(R)

mP ′→D(xD)


 .(126)

HereP(R) is the set of regions that are parents to regionR,
D(R) is the set of all regions that are descendants of regionR,
E(R) ≡ R ∪D(R) is the set of all regions that are descendants
of R and also regionR itself, andP(D)\E(R) is the set of all
regions that are parents of regionD except for regionR itself
or those those regions that are also descendants of regionR.

The message-update rulesin the parent-to-child algorithm
will be

mP→R(xR) :=∑
xP\R

∏
a∈FP\R

fa(xa)
∏

(I,J)∈N(P,R) mI→J(xJ)
∏

(I,J)∈D(P,R) mI→J(xJ)
(127)

where the setsN(P, R) andD(P, R) can be calculated in ad-
vance. N(P,R) is the set of all connected pairs of regions
(I, J) such thatJ is in E(P ) but notE(R) while I is not in
E(P ). D(P, R) is the set of all connected pairs of regions
(I, J) such thatJ is in E(R), while I is in E(P ), but notE(R).

An example should help make these definitions much clearer.
Consider the example shown in figure 12. The beliefbR(xR) at
regionR is the product of its local factors

∏
a∈AR

fa(xa), the
messages from its parentsmA→R(xR) andmB→R(xR), and
the messages into descendants from other parents who are not
descendants:mC→E(xE), mC→H(xH), andmF→H(xH).

One obtains self-consistent message-update rules by requir-
ing consistency between the beliefs between every pair of par-
ent and child regions. Thus in figure 12, we might focus on the
regionR and its childE. The belief at regionR is given by

bR ∝ mA→R mB→R mC→E mC→H mF→H

∏

a∈AR

fa(xa)

(128)
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Fig. 12. A region graph used to illustrate the parent-to-child GBP algorithm.
Note that we do not explicitly give the variable and factor node labels for each
region, as for our purposes, we are only interested in the topology of the region
graph.

(where we have lightened the notation by removing the obvi-
ous functional dependencies of the messages) and the belief at
regionE is given by

bE ∝ mR→E mC→E mD→G mC→H mF→H

∏

a∈AE

fa(xa)

(129)
Using the marginalization constraint

bR(xR) =
∑

xA\xR

bA(xA), (130)

we obtain a relation between messages that we can interpret as
the message update rule

mR→E(xE)mD→G(xG) :=∑

xR\xE

mA→R(xR)mB→R(xR)
∏

a∈AR\AE

fa(xa). (131)

Of course, similar message update rules would be obtained
for all the pairs of parent and children regions. There will be
enough conditions to determine every message.

B. GBP Fixed Points are Free Energy Stationary Points

We now prove that the fixed points of the parent-to-child
GBP algorithm using a given region graph correspond to the
stationary points of the region-based free energy for the same
region graph. To simplify the presentation, we will restrict our
attention to interior stationary points. (For an alternative ex-
position of the following two theorems, based on our earlier
reports, we refer the reader to the proof of theorem 3 in [30].)

For the purposes of these theorems, we will also assume that
no regionR in the region graph has counting numbercR = 0.
In appendix F, we discuss this technically useful assumption
in detail. In particular, we show that it is easy to remove any
cR = 0 regions to get an equivalent region graph; and also that
even if we do permit them, the parent-to-child GBP algorithm
will still work properly, although the proofs of the following
theorems no longer hold.

Theorem 16: Interior stationary points of the constrained
region-based free energy for a valid region graph with no re-
gions that have counting numbercR = 0 must be fixed points
of the parent-to-child GBP algorithm for that region graph.

Proof: The region graph free energy is

FR({bR}) =
∑

R∈R
cRFR(bR). (132)

To derive the stationarity conditions, we need to create a La-
grangianL for the free energy which enforces consistency be-
tween the beliefs in every pair of connected regions. To that
end, we add Lagrange multipliersλPC(xC) which enforce that

bC(xC) =
∑

xP \xC

bP (xP ) (133)

for every pair of parent and child regionsP andC. We also
need to include Lagrange multipliersγR which enforce the nor-
malization of the beliefs:

∑
xR

bR(xR) = 1. We can ignore
the Lagrange multipliers corresponding to the inequality con-
straintsbR(xR) ≥ 0, because for interior stationary points,
these constraints are inactive and the Lagrange multipliers are
zero.

Setting the derivatives ofL with respect to the beliefsbR(xR)
equal to zero gives us the following stationarity conditions:

cR ln bR(xR) = γR + cR

∑

a∈AR

ln fa(xa)

−
∑

P∈P(R)

λPR(xR) +
∑

C∈C(R)

λRC(xC), (134)

whereP(R) is the set of regions that are parents of regionR,
andC(R) is the set of regions that are children of regionR. In
this expression,xa andxC are entirely determined by the value
of xR.

Our proof will now work backwards from the belief equa-
tions that we want to derive. We want to show that there exists
a “rotation” from our Lagrange multipliersλ to another set of
Lagrange multipliersµ such that the stationary point conditions
can be re-written as

cR ln bR(xR) = γR + cR

∑

a∈AR

ln fa(xa) + (135)

cR

∑

P∈P(R)

µPR(xR) + cR

∑

D∈D(R)

∑

P ′∈P(D)\E(R)

µP ′D(xD).

Clearly, if we can show this, then by identifying the message
mP→R(xR) = exp(µPR(xR)), we will recover our desired
belief equations.

So what do the Lagrange multipliersµPR(xR) constrain?
The answer is that they impose the constraint

cRbR(xR) +
∑

A∈A(R)\(P∪A(P ))

cA

∑

xA\xR

bA(xA) = 0. (136)

In words, the Lagrange multiplierµPR constrains the weighted
belief in regionR plus the sum of the weighted beliefs in all the
ancestor regions of regionR, exceptfor regionsP and all its
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ancestors, to be equal to zero. If we make a Lagrangian using
these Lagrange multipliers, it is straightforward to work out that
its stationary points are given by equation (135).

Now we need to show that the new set ofµ Lagrange multi-
pliers and their associated constraints are equivalent to the old
set ofλ Lagrange multipliers and their constraints. We first note
that becausecR+

∑
A∈A(R) cA = 1, andcP +

∑
A∈A(P ) CA =

1, we can subtract these two equations and obtain

cR +
∑

A∈A(R)\(P∪A(P ))

cA = 0 (137)

If we start with theλPC(xC) constraints thatbC(xC) =∑
xP \xC

bP (xP ) for every pair of parent and child regions, we
can use equation (137) as a basis for deriving the constraints
associated with theµ Lagrange multipliers.

Theorem 17: For a valid region graph with no regionsR
that have counting numbercR = 0, any fixed point of the
parent-to-child GBP algorithm for that region graph that has
all beliefsbR(xR) > 0 must also be a stationary point of the
region-based free energy for that region graph.

Proof: Because of the condition that there are no counting
numberscR = 0, theµ constraints in the proof of the previous
theorem are linearly independent. Therefore, if we begin with
the fixed point equations, which are equivalent to theµ con-
straints, then there must exist a rotation to theλ constraints, so
we can reverse the direction of the previous proof and recover
the conditions on theλ constraints which must hold at an inte-
rior stationary point.

Note that we have not given a general formula relating the
µ Lagrange multipliers to theλ Lagrange multipliers. Fortu-
nately, such a formula is not actually necessary for our proof,
as we only need to show there always exists such a rotation to a
new set of Lagrange multipliers, even though we do not specify
it explicitly. It is very difficult to derive a general formula relat-
ing the two sets of Lagrange multipliers, but for region graphs
with only two “generations” of regions like those constructed
using the junction graph method (see appendix A), we can in
fact give the relationship explicitly in both the forward and in-
verted directions:

λPR(xR) =
∑

P ′∈P(R)\P
µP ′R(xR), (138)

µPR(xR) =
1− cR

cR
λPR(xR) +

1
cR

∑

P ′∈P(R)\P
λP ′R(xR).

(139)
Also note that this technical difficulty does not arise at all for
the child-to-parentand two-wayGBP algorithms described in
Appendix D, because in those algorithm, the messages are di-
rectly exponentiated Lagrange multipliers.

We will not here investigate the issue of edge stationary
points and active inequality constraints for general constrained
region graph free energies. One might expect that the general
picture that emerged for the Bethe/BP case to be reproduced
here, but the existence of valid constrained region-based free
energy approximations that are nevertheless not maxent-normal
makes the problem quite intricate.

X. DETAILED EXAMPLE OF A GBP ALGORITHM

21 3 4 5 6 7

Af Bf Cf

1f 2f 3f 4f 5f 6f 7f

Fig. 13. A factor graph that we will use for our detailed example of how to
construct a GBP algorithm.

We will now give a detailed example of how to construct
a GBP algorithm. Consider the factor graph drawn in figure
13, which has seven variable nodes and ten factor nodes. For
this factor graph, it is convenient to slightly alter our labeling
conventions so that some of the factor nodes (the ones attached
to a single variable node) are labeled with a number rather than
a letter. This factor graph corresponds to the joint probability
distribution

p(x1, x2, ..., x7) =
1
Z

(
7∏

i=1

fi(xi)

)
... (140)

fA(x1, x2, x3, x5)fB(x1, x2, x4, x6)fC(x1, x3, x4, x7)

We will work out a GBP algorithm making no assumptions
about the actual forms of the functions, but we note that this
particular factor graph can be used to represent the probability
distribution that occurs when decoding a block error-correcting
code [21]. In particular, if each of the variable nodes is binary,
with possible states0 or 1, and the functionsfA, fB , andfC are
parity-check functions (equal to1 if the sum of their arguments
are even, and0 otherwise), then this factor graph corresponds
to the linear block(7, 4, 3) Hamming code with parity check
matrix

H =




1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1


 . (141)

For the decoding problem, the functionsfi(xi) represent the
likelihoods of the possible states of the bits, in light of the re-
ceived block from the channel and the assumed channel model.

To obtain a GBP algorithm, we first need to create a region
graph. We use the cluster variation method, with largest regions
{fA, f1, f2, f3, f5, 1, 2, 3, 5}, {fB , f1, f2, f4, f6, 1, 2, 4, 6} and
{fC , f1, f3, f4, f7, 1, 3, 4, 7}. Following the cluster variation
method prescription for finding intersection regions detailed in
appendix B, we obtain the region graph shown in figure 14.

Now that we have a region graph, we need to choose what
kind of GBP algorithm we want to use and then write down
the belief and message equations for the GBP algorithm. We
choose to use the parent-to-child algorithm.
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Fig. 14. A region graph obtained for the factor graph of figure 13 using the
cluster variation method.

Note that although the region graph free energy is useful for
theoreticallyjustifyinga GBP algorithm, it will not be necessary
for constructingthe algorithm. Instead, we can work directly
with the belief equations.

Recall that in the parent-to-child algorithm, we only have one
kind of messagemP→R(xR) from a parent region to a child
region. Each regionR has a beliefbR(xR) given by equation
(126) which we re-write here:

bR(xR) ∝
∏

a∈AR

fa(xa)


 ∏

P∈P(R)

mP→R(xR)


 .

.


 ∏

D∈D(R)

∏

P ′∈P(D)\E(R)

mP ′→D(xD)


 .(142)

In words, this equation says that the belief at each region is a
product of the local factors in that region, the messages from
parents, and the messages into descendant regions from other
parents who are not also descendants.

In our region graph, we have seven regions that can be
grouped into three types of regions: the three regions exem-
plified by {fA, f1, f2, f3, f5, 1, 2, 3, 5} that contain five factor
nodes and four variable nodes; the three regions exemplified
by {f1, f2, 1, 2} that contain two factor nodes and two variable
nodes; and the single region{f1, 1} that contains one factor
node and one variable node.

We will use an abbreviated notation, dropping explicitxR

dependence, for beliefs and messages and factor functions. The
notation is best explained with some examples: we writeb1235,
b12 and b1 for the beliefs at the regions listed in the previ-
ous paragraph; we writem35→12 for the message from region
{fA, f1, f2, f3, f5, 1, 2, 3, 5} to region{f1, f2, 1, 2}, m2→1 for
the message from region{f1, f2, 1, 2} to region{f1, 1}, and we
abbreviatefA(x1, x2, x3, x5) asfA.

In this abbreviated notation, the belief equations for the
largest regions will be

b1235 ∝ fAf1f2f3f5m46→12m47→13m4→1, (143)

b1246 ∝ fBf1f2f4f6m35→12m47→14m3→1, (144)

and

b1347 ∝ fCf1f3f4f7m25→13m26→14m2→1. (145)

Note that since these regions do not have parents, all the rele-
vant messages are into descendant regions from other parents
who are not descendants.

The belief equations for the intermediate-sized regions will
be

b12 ∝ f1f2m35→12m46→12m3→1m4→1, (146)

b13 ∝ f1f3m25→13m47→13m2→1m4→1 (147)

and
b14 ∝ f1f4m26→14m37→14m2→1m3→1. (148)

Finally, the belief equation for the region{f1, 1} will be

b1 ∝ f1m2→1m3→1m4→1. (149)

The message-update rules are obtained by combining these
belief equations with the marginalization conditions between
parent and child regions:

bC(xC) =
∑

xP \xC

bP (xP ). (150)

For example, requiring consistency between the beliefs at the
region{f1, 1} and the region{f1, f2, 1, 2} tells us that

b1(x1) =
∑
x2

b12(x1, x2) (151)

from which we obtain

m2→1 :=
∑
x2

f2m35→12m46→12. (152)

The other message-update rules, obtained in the same way
(or equivalently by using equation (127), will be

m3→1 :=
∑
x3

f3m25→13m47→13, (153)

m4→1 :=
∑
x4

f4m26→14m37→14, (154)

m3→1m35→12 :=
∑

x3,x5

fAf3f5m47→13, (155)

m2→1m25→13 :=
∑

x2,x5

fAf2f5m46→12, (156)

m4→1m46→12 :=
∑

x4,x6

fBf4f6m37→14, (157)

m2→1m26→14 :=
∑

x2,x6

fBf2f6m35→12, (158)

m4→1m47→13 :=
∑

x4,x7

fCf4f7m26→14, (159)

and
m3→1m37→14 :=

∑
x3,x7

fCf3f7m25→13. (160)
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In practice, it often helps convergence to only step the mes-
sages part-way to their newly computed values. This simple
heuristic can eliminate “over-shooting” problems.

We emphasize here one potential practical pitfall to avoid
when using this “inertia” heuristic. Let us suppose that we
have a set of old messages{mold}, which we use in the up-
date equations to calculate a set of messages{mupdate}, and
that we want to set our new messages to be half-way be-
tween the old messages and the updated messages:{mnew} =
1
2{mold} + 1

2{mupdate}. We strongly recommend that when
using an update equation with more than one message on the
left hand side, that all those messages aremupdate equations.
Mixing in mnew or mold messages on the left hand side empiri-
cally often results in poor convergence properties. For example,
the update equation (155) given above should explicitly be

mupdate
3→1 mupdate

35→12 :=
∑

x3,x5

fAf3f5m
old
47→13. (161)

Fortunately, it is always possible to schedule the message up-
dates so that one computes the updated messages into the small-
est regions first (e.g. messages likemupdate

3→1 ), so that they are
available when needed to compute the updated messages into
larger regions.

There are many other details that can be handled in differ-
ent ways in iterating the message update equations. For exam-
ple, the messages can be initialized in any way one likes; two
reasonable choices are random or uniform messages. The al-
gorithm typically terminates after a fixed number of iterations,
or after some convergence criterion is satisfied, but other termi-
nation conditions are possible. In a decoding application, one
typically checks at each iteration whether the thresholded be-
liefs correspond to a code-word, and terminates the decoding
algorithm if they do, stopping otherwise when some fixed num-
ber of iterations has passed.

XI. A CCURACY OFGBP ALGORITHMS

We naturally are interested in GBP algorithms, and their cor-
responding region-based free energy approximations, only to
the extent that they improve upon the standard BP/Bethe ap-
proach. Fortunately, maxent-normal region-based free energy
approximations, particularly those that satisfy the heuristics de-
scribed in section VIII, do indeed reliably give more accurate
estimates of marginal probabilities than the Bethe approxima-
tion.

Consider, as an example, the square lattice Ising ferromagnet.
This is a model whereN binary variable nodes are arranged in
anL by L square lattice, and each variable node is connected
to its nearest neighbors by a pairwise factor of the form

fa(xi, xj) =
(

exp(J/T ) exp(−J/T )
exp(−J/T ) exp(J/T )

)
. (162)

In this model, neighboring variable nodes (“spins”) prefer to
be in the same state. The parameterJ measures the strength of
this preference, andT is the temperature. In the limit of large
L, this model has a phase transition at a critical temperatureTc,
above which it is a in a paramagnetic state, and below which it

is in a ferromagnetic state. (For more discussion of this model,
see any textbook on statistical mechanics, e.g. [46].)

Because of the translational symmetry of the model, it is easy
to construct Bethe or Kikuchi approximations, treat them ana-
lytically, and compare with known exact results. Already in
1951, Kikuchi studied the approximation obtained using the
cluster variation method, starting with2 by 2 overlapping clus-
ters. As we stated in section VIII, this approximation is maxent-
normal, and satisfies our heuristics that the shortest loops are
contained in regions, and that the sum of the counting numbers
of all regions equals one.

One finds that for this model, the exact critical temperature
Tc is approximately2.2692J , compared to the mean field the-
ory prediction of4.0J , the Bethe approximation prediction of
2.8854J , and the Kikuchi prediction (using2 by 2 clusters) of
2.4257J [16], [57].

Qualitatively similar results are available in the physics lit-
erature for a wide variety of models of magnetic systems with
translationally invariant interactions. However, when consider-
ing probabilistic inference for Bayesian networks or decoding
an error-correcting code, we are more interested in studying the
accuracy of the predictions for marginals made by these approx-
imations for factor graphs that do not have any symmetries.

Besides the results that we now discuss, which were first
reported in [17], the interested reader can find similar empir-
ical results for GBP algorithms in references [58], [59], [56],
[33], [49]. Readers who are more interested in rigorous bounds
on the accuracy of marginals will want to consult the work of
Wainwright et.al. [24].

We studied factor graphs known in the physics literature as
square lattice Ising spin glasses in a random magnetic field. The
variable nodes were arranged in anL by L square lattice, and
connected to their nearest neighbors by factors of the form

fa(xi, xj) =
(

exp(Jij/T ) exp(−Jij/T )
exp(−Jij/T ) exp(Jij/T )

)
. (163)

where the parametersJij are chosen independently for each
factor from a Gaussian probability distribution. In addition,
each variable node was connected to a “local random field” fac-
tor nodefi(xi) of the form

fi(xi) =
(

exp(hi/T
exp(−hi/T )

)
, (164)

where the parametershi are also chosen independently from a
Gaussian probability distribution.

We focused on the case where theJij parameters were cho-
sen from a zero-mean Gaussian distribution with standard devi-
ation of1.0, while thehi parameters were chosen from a zero-
mean Gaussian distribution with standard deviation of0.1. This
highly frustrated model was chosen because it highlights the
weaknesses of ordinary BP, which performs perfectly well for
many other factor graphs. For all our algorithms, we used “in-
ertia” (see section X, and also [58], [59]) to help convergence.

For L = 10, we found, over dozens of samples, that the
parent-to-child GBP algorithm always converged to accurate
answers, while ordinary BP usually did not usually converge at
all. ForL sufficiently small, we could compute exact marginals
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by re-writing the factor graph as a chain ofL by 1 “super-
nodes,” which could each take on2L different states. To give a
qualitative feel for the results, we compare ordinary BP, parent-
to-child GBP, and the exact results for oneL = 10 lattice where
ordinary BP did converge. We plot the results for the “local
magnetization” (the belief of the node that the node is in the
first state minus the belief that it is in the second state) for the
ten variable nodes in one row of the lattice in figure 15. Note
that the GBP algorithm is much more accurate than ordinary
BP, which tends to correctly predict the direction of the magne-
tization, but is highly “over-confident.”
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Fig. 15. The local magnetization for 10 variable nodes in a 10 by 10 spin glass
with random magnetic fields, as computed exactly, and using ordinary BP or
GBP.
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APPENDIX A: THE JUNCTION GRAPH METHOD

A natural idea to generalize the Bethe Method is to keep the
notion thatR should be the union of a set of large regionsRL

and a set of small regionsRS , but to let the regions inRL or
RS contain more nodes. Thejunction graph method, that we
describe here, exploits this idea, and is based on a generaliza-
tion of the “junction graphs” that were introduced by Aji and
McEliece [29].

We define ajunction graphto be a labeled bipartite graph
G = (VL, VS , E, L) in which there arelarge vertices(corre-
sponding to large regions)vl ∈ VL, small vertices(correspond-
ing to small regions)vs ∈ VS , and directed edges (orarcs)
e ∈ E connecting large vertices to small vertices. The vertices
in the junction graph are labeled, and the label of vertexvi is
denotedl(vi) ∈ L. The labels will be subsets of a set of indices
I representing factor or variable nodes of a factor graph.

For the graphG to be considered a junction graph, we insist
upon two conditions. First, ifvs is a small vertex neighboring
thek large verticesvl1 , vl2 , ..., vlk , then we require thatl(vs) is
a subset of each ofl(vl1), l(vl2), ...., l(vlk), or equivalently, that

l(vs) ⊆ l(vl1) ∩ l(vl2) ∩ ... ∩ l(vlk). (A-1)

Secondly, we require that for any indexi ∈ I, the subgraph of
G consisting only of the vertices which containi in their labels,
is a connected tree.

The “junction graphs” introduced by Aji and McEliece [29]
are a special case of those described here. In their junction
graphs, small vertices were restricted to have precisely two
neighboring large vertices, so that the small vertices can be in-
terpreted as labeled “edges” between the large vertices. They
further required that small region labels not include any indices
representing factor nodes.

Given a set of regionsRJG = RL ∪ RS that are organized
into a junction graph, we can always obtain a valid region-based
approximation by defining a set of counting numberscR as fol-
lows. For all regionsR ∈ RL, we let cR = 1, while for all
region R ∈ RS , we let cR = 1 − dR wheredR is the de-
gree (numbering of neighboring large regions) of regionR. It
is through this prescription that the arcs the junction graph be-
come relevant–a small region’s contribution to the free energy
is subtracted out from that of a large region only if the two re-
gions are connected by an arc. It is straightforward to confirm
that this prescription for the counting numbers gives us a valid
region-based free energy approximation, as the junction graph
condition that the sub-graph for each variable or factor node
is a tree guarantees that each variable and factor node will be
counted once as required in equation (29).

Aji and McEliece proved a theorem that tells us that given
anyset of large regionsRL that contain all the factor and vari-
able nodes in a factor graph, we can find a corresponding set of
small regionsRS and organize the regions inRJG = RL∪RS

into a junction graph. Their theorem generalizes without diffi-
culty to our version of junction graphs.

As an example, consider the factor graph which we intro-
duced in the main text and re-draw in figure 16. We could take
as our set of large regionsRL the four regions{A,C, 1, 2, 4, 5},
{B,D, 2, 3, 5, 6}, {C,E, 4, 5, 7, 8}, and {F, 5, 6, 8, 9}. An
acceptable set of corresponding small regionsRS would be
{2, 5}, {C, 4, 5}, {5, 6}, and {8}, with a junction graph as
shown in figure 16. Because in this case each of the small re-
gions is connected to two large regions, they would each have
an counting number of−1.

1 2 3

4 5 6

7 8 9

A B

C D

E F

A,C,1,
2,4,5

B,D,2,
3,5,6

C,E,4,
5,7,8

F,5,6,
8,9

2,5

C,4,5 5,6

8

Fig. 16. A junction graph (on the right) for the factor graph on the left.

The set of regions given by the Bethe method can also always
be organized into a junction graph (though not necessarily the
restricted Aji-McEliece version of a junction graph); using as
an example the same factor graph, the resulting junction graph
is shown in figure 17. It is obvious from this example that there
will always be a one-to-one isomorphism between the origi-
nal factor graph and the corresponding junction graph obtained
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4 5 6

7 8 9

A,1,2,4,5 B,2,3,5,6

C,4,5 D,5,6

E,4,5,7,8 F,5,6,8,9

Fig. 17. A junction graph for the factor graph shown in figure 4 generated
using the Bethe method. Note the isomorphism between this junction graph
and the original factor graph.

from the Bethe method.
The junction graph approximation for the variational free en-

ergy is

FJG({bR}) = UJG({bR})−HJG({bR}), (A-2)

where

UJG({bR}) =
∑

R∈RL

UR(bR)+
∑

R∈RS

(1−dR)UR(bR), (A-3)

and

HJG({bR}) =
∑

R∈RL

HR(bR) +
∑

R∈RS

(1− dR)HR(bR).

(A-4)
Junction graphs are a special case of region graphs, where

there are only two “generations” of regions. It follows that
minimizing the junction graph free energyFJG will once again
give beliefs{bR} that are equivalent to those obtained from a
message-passing BP algorithm. That algorithm is sometimes
known as thegeneralized distributive law[25]. Again it follows
as a corollary of our more general results for region graphs that
the junction graph approximation to the variational free energy
will be exact, and the generalized distributive law will give ex-
act results, when the junction graph is a tree. In that case, the
junction graph is ajunction tree, and the generalized distribu-
tive law reduces to the famousjunction tree algorithm.

We can apply the well-known result [13] for the joint proba-
bility function in junction trees to our case and obtain

p(x) =

∏
R∈RL

pR(xR)∏
R∈RS

pR(xR)dR−1
. (A-5)

To obtain this result, we note that while we have described
region graphs and junction graphs as directed graphs, from the
point of view of statistical graphical models, they are equivalent
to undirected graphs. In particular, one can re-write the full
joint probability distributionp(x) for a factor graph in the form

p(x) =
1
Z

∏

(RS)

ΨRS(xR,xS)
∏

R

ΦR(xR) (A-6)

where(RS) denotes pairs of connected regions in a given re-
gion graph for that factor graph. Specifically, when we set
ΦR(xR) =

(∏
a∈AR

fa(xa)
)cR andΨRS(xR,xS) equal to 1

if xR is consistent withxS and equal to 0 otherwise, this form
of the joint probability distribution will be equivalent to the one
in the original factor graph form. Since the formula (A-5) is
true for pairwise Markov Random Fields when the set of nodes
in RL are separated by the set of nodes inRS , and we have
shown how to convert a region graph into an equivalent pair-
wise Markov Random Field, we have justified using formula
(A-5) for region graphs as well.

APPENDIX B: THE CLUSTER VARIATION METHOD

Another method for selecting a valid set of regionsR and
counting numberscR is thecluster variation methodintroduced
by Kikuchi in 1951 and further developed in the physics lit-
erature since then [20]. The main feature distinguishing this
method from the junction graph method is thatR may be the
union of more than just two generations of regions.

In the cluster variation method, we begin with a set of dis-
tinct large regionsR0 such that every factor nodea and every
variable nodei in our factor graph is included in at least one
regionR ∈ R0. We also require that no regionR ∈ R0 be
a subregion of any other region inR0. We then construct the
set of regionsR1 by forming all possible intersections between
regions inR0, but discarding fromR1 any intersection regions
that are sub-regions of other intersection regions. If possible,
we then construct in the same way the set of regionsR2 from
the intersections between regions inR1. As long as there con-
tinue to be intersection regions, we construct sets of regions
R3,R4, ...RK in the same way. Finally, the set of regions used
in the cluster variation method will beR = R0∪R1∪ ...∪RK .

We define the counting numbers in the cluster variation
method to be

cR = 1−
∑

S∈S(R)

cS (B-1)

whereS(R) is the set of all regions which are super-regions of
regionR.

Returning to our example factor graph drawn in figure 4, we
can choose the base set of regionsR0 to consist of the four
regions{A, C, 1, 2, 4, 5}, {B, D, 2, 3, 5, 6}, {C,E, 4, 5, 7, 8},
and{D, F, 5, 6, 8, 9}. Once the set of base regionsR0 is cho-
sen, there is no further choice in the cluster variation method.
In our case, the set of intersection regionsR1 would be the
regions{2, 5} {C, 4, 5}, {D, 5, 6}, {5, 8}, and the set of inter-
section regionsR2 would be{5}.

Each of the regionsR ∈ R0 would have an counting number
cR = 1. Because each of the regionsR ∈ R1 is the subregion
of two regions inR0, they each have an counting number of
cR = 1 − 2 = −1. Finally since every region inR0 andR1 is
a super-region of{5}, its counting number is1− 4 + 4 = 1.

We can represent this set of regions and counting numbers
with the region graph shown in figure 18.

Note that the Bethe approximation will be a special case of
the cluster variation method if and only if no factor node shares
more than one variable node with another factor node (or equiv-
alently, there are no cycles of length four in the factor graph.)
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Fig. 18. A region graph generated using the cluster variation method.

The factor graph shown in figure 18 is therefore one example
of a factor graph for which the Bethe approximation cannotbe
generated by the cluster variation method.

We remark that in the physics literature, the cluster variation
method has normally been applied to a restricted class of fac-
tor graphs that are particularly relevant as models of magnetic
materials. In particular, the factor graph normally represents a
translationally invariant crystal lattice, and the factor nodes nor-
mally have degree two, corresponding to two-body interactions.
Translational symmetry in the factor graph often dramatically
simplifies the problem of minimizing the Kikuchi free energy,
and when the factor nodes have degree two, the Bethe method
will always be a special case of the cluster variation method.

APPENDIX C: RELATIONSHIPSBETWEEN DIFFERENT

METHODS

In this appendix, we summarize the relationships between
the different methods for generating valid sets of regions for a
region-based free energy approximation. First of all, as is clear
from its definition, a junction graph will always be a region
graph (though the converse is not true). The sets of regions and
counting numbers generated by the cluster variation method can
also always be represented by a region graph. We already saw
one example in figure 18.

We emphasize that one can construct region graph approxi-
mations that cannot be generated with either the junction graph
or cluster variation methods. We already saw such an example
when we introduced region graphs in the main text in section
VII. Constructions that are more general than those constructed
using the cluster variation method or the junction graph method
may be useful for a variety of reasons, including reducing the
computational complexity of a GBP algorithm.

Note, however, that although the region graph method is the
most general method we have introduced, there do exist valid
region-based free energy approximations that do not have a re-
gion graph representation. We demonstrate an example in fig-
ure 19.

In summary, we have the following relationships, as illus-
trated in the Venn diagram of figure 20. For a given factor

BA

C

1

2

4

3

5

6

Fig. 19. For this factor graph, the choice of regions{A, 1, 2, 4}, {B, 1, 3, 5},
{C, 2, 3, 6}, and{1, 2, 3}, with corresponding counting numbers of1,1,1,and
−1, will give a valid region-based approximation that cannot be represented by
a region graph.

Cluster 
Variational

Method

(Kikuchi)

Junction graphs

Aji-McEliece

Region Graphs

Bethe

Junction trees

Valid Region-based Approximations

Fig. 20. A Venn diagram illustrating the relationships between different meth-
ods of generating valid region-based free energy approximations. The Bethe
method is always an exemplar of the junction graph method, but is only a spe-
cial case of the cluster variation method if the factor graph has no pair of factor
nodes that share more than one variable node, and is only a special case of Aji
and McEliece’s junction graph method if the relevant factor graph is a Forney
“normal” graph (no variable node is connected to more than two factor nodes).

graph, the cluster variation method and the generalized junc-
tion graph method each generate valid region-based free en-
ergy approximations that are subclasses of all the possible valid
approximations. Neither the cluster variation method nor the
generalized junction graph method is more general than the
other, and both are subsumed by the more general region graph
method. The set of regions generated by the Bethe method is
always an examplar of those generated by the junction graph
method, and will be an examplar of those generated by the clus-
ter variation method if and only if the factor graph has no cycles
of length four. In general, the Bethe method will not be a spe-
cial case of the Aji-McEliece junction graph method, though it
will be for factor graphs such that each variable node is adjacent
to no more than two factor nodes (Forney’s so-called “normal”
factor graphs [22]).

In addition to being a more general method than the clus-
ter variation method or the junction graph method, we feel that
the region graph method is easier to understand on an intuitive
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level. We simply select a set of regions and counting numbers
such that every variable and factor node gets counted once, and
we enforce consistency for the beliefs between connected re-
gions. Region graphs also have the important advantage of be-
ing a natural graphical structure for describing generalized be-
lief propagation algorithms.

Pakzad and Anantharam have suggested strengthening the re-
gion graph requirements described in section VII so that for ev-
ery sub-set of variable nodes in the factor graph, the sub-graph
of regions containing that sub-set must be connected and must
have a sum of counting numbers equal to one [31]. Such a
strengthening would ensure that the beliefs computed for any
sub-set of nodes would always be consistent, no matter which
regions were used to compute it. The cluster variation method
produces region graphs that satisfy these stronger requirements,
but we chose not to insist on these stronger requirements in gen-
eral, because region graphs created using the Bethe Method will
not necessarily satisfy them.

APPENDIX D: THE CHILD -TO-PARENT ALGORITHM

The observation underlying the “child-to-parent algorithm”
is that when we minimize the Bethe free energy, the La-
grange multipliers enforcing the marginalization constraints
correspond exactly (after exponentiation) to theni→a(xi) mes-
sages from variable nodes to factor nodes in the BP algorithm.
Considering these messages as messages from child regions to
parent regions in a region graph, we can try to generalize the
approach to arbitrary region graphs. Thus, we construct a GBP
algorithm by simply minimizing a region graph free energy and
identifying Lagrange multipliers that enforce consistency be-
tween beliefs with messages from child regions to parent re-
gions. Such an approach was considered in detail by Kappen
and Wiegerinck for region graphs constructed using the cluster
variation method [51].

We begin with the Lagrangian stationary point equation
(again assuming interior stationary points) obtained by differ-
entiating the Lagrangian with respect to beliefs. We obtained
this equation previously (see equation (134)), and re-write it
here:

cR ln bR(xR) = γR + cR

∑

a∈AR

ln fa(xa)

−
∑

P∈P(R)

λPR(xR) +
∑

C∈C(R)

λRC(xC), (D-1)

whereP(R) is the set of regions that are parents of regionR,
andC(R) is the set of regions that are children of regionR, and
λPR(xR) are the Lagrange multipliers that enforce consistency
between the beliefs in regionP and those in regionR.

For cR 6= 0, we can re-write this equation as

bR(xR) ∝
∏

a∈AR

fa(xa)

( ∏
C∈C(R) nC→R(xC)∏
P∈P(R) nR→P (xR)

)1/cR

,

(D-2)
wherenC→P (xC) = exp(λPC(xC)) is a “message” from a
child regionC to a parent regionP , in analogy with the mes-
sagesni→a(xi) in standard BP. IfcR = 0, we do not get a con-
dition onbR(xR) (bR(xR) can still be determined from beliefs

in super-regions via the marginalization conditions); instead we
obtain the following condition on the messages into and out of
regionR: ( ∏

C∈C(R) nC→R(xC)∏
P∈P(R) nR→P (xR)

)
= 1. (D-3)

The message update rules are then obtained by applying the
marginalization conditionsbC(xC) =

∑
xP \xC

bP (xP ).
A small example might help clarify the meaning of these

equations for the reader. Consider the probability distribution

p(x1, x2, x3) =
1
Z

fA(x1, x2)fB(x2, x3). (D-4)

We use the Bethe approximation, which should be exact in this
case because the factor graph is a tree. Thus, we obtain large
regions{A, 1, 2} and{B, 2, 3}, with counting numbers1, and
small regions{1}, {2}, and{3}, with counting numbers0, 1,
and0 respectively. We obtain the following belief equations for
the regions withcR 6= 0:

bA(x1, x2) ∝ fA(x1, x2)n1→A(x1)n2→A(x2), (D-5)

bB(x2, x3) ∝ fB(x2, x3)n2→B(x2)n3→B(x3), (D-6)

b2(x2) ∝ n2→A(x2)n2→B(x2), (D-7)

and the following conditions on messages for the regions with
cR = 0:

n1→A(x1) = 1, (D-8)

and
n3→B(x3) = 1. (D-9)

Using these conditions and the marginalization conditions, we
find that

n2→A(x2) =
∑
x3

fB(x2, x3), (D-10)

and
n2→B(x2) =

∑
x1

fA(x1, x2). (D-11)

We can now easily check that in this example, the computed
beliefs give back the desired marginal probabilities exactly.

The child-to-parent algorithm, by its construction, clearly
gives a generalized BP algorithm whose fixed points correspond
to the stationary points of the region graph free energy. On the
other hand, it might be considered inelegant both because it fo-
cuses only on the messages from child regions to parent regions
and because the message update equations will inevitably be
complicated and involve the counting numberscR. The two-
wayalgorithm described in Appendix E and theparent-to-child
described in the main text in section IX-A are different GBP
algorithms that attempt to ameliorate these flaws.

APPENDIX E THE TWO-WAY ALGORITHM

To motivate the two-way algorithm, we return to the standard
BP algorithm, where we recall that the belief equations can be
written in the form

bi(xi) =
∏

a∈N(i)

ma→i(xi) (E-1)
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and
ba(xa) = fa(xa)

∏

i∈N(a)

ni→a(xi) (E-2)

where
ni→a(xi) =

∏

c∈N(i)\a
mc→i(xi). (E-3)

Given these equations, it is natural to aim for a generalization
where the belief equations will have the form

bR(xR) = f̃R(xR)
∏

C∈C(R)

nC→R(xC)
∏

P∈P(R)

mP→R(xP ).

(E-4)
In other words, we aim to write the belief equations so that

the belief in a region is a product of local factors and mes-
sages arriving from all the connected regions, whether they
are parents or children. It will turn out that we can do this,
but in order that the GBP algorithm correspond to the region
graph free energy, we will need to use modified factors and a
rather complicated relation between thenC→P (xC) messages
andmP→C(xP ) messages generalizing the relation for stan-
dard BP given in equation (E-3).

It will be convenient to denote the number of parents of re-
gion R by pR, and define the numbersqR ≡ (1 − cr)/pr and
βR ≡ 1/(2− qr). When a region has no parent so thatpR = 0
andcR = 1, we takeqR = βR = 1. Note that within the Bethe
approximation,qR = βR = 1 for all regions. We will assume
that qR 6= 2 so thatβR is well-defined (normally, if one has a
region graph with a region such thatqR = 2, one should be able
to change the connectivity ofR to avoid this problem).

We first define the set of pseudo-messages for all regionsR
and their parentsP and childrenC:

n0
R→P (xR) = (E-5)

f̃R(xR)
∏

P ′∈P(R)\P
mP ′→R(xR)

∏

C∈C(R)

nC→R(xC)

and

m0
R→C(xC) = (E-6)∑

xR\xC

f̃R(xR)
∏

P∈P(R)

mP→R(xR)
∏

C′∈C(R)\C
nC′→R(xC′),

wheref̃R(xR) ≡ (∏
a∈Ar

fa(xa)
)cR .

Aside from the fact that we raised the product of the local
factors to a power ofcR, these pseudo-messages are what one
would naively expect the message updates to look like. To ob-
tain the true message updates, however, one needs to combine
the pseudo-messages going in the two directions of a link as
follows:

nR→P (xR) =
(
n0

R→P (xR)
)βR

(
m0

P→R(xR)
)βR−1

(E-7)

and

mP→R(xR) =
(
n0

R→P (xR)
)βR−1 (

m0
P→R(xR)

)βR (E-8)

Note that whenβR = 1, the messages are precisely the same as
the pseudo-messages.

The two-way algorithm is completed by the belief equations,
which have the form already given in equation (E-4). We are
now in position to prove the following theorem:

Theorem 18: The interior stationary points of the region
graph free energy are the same as the fixed points of two-way
GBP (defined by the message and belief equations given above)
that have strictly positive beliefs.

Proof: We form a Lagrangian from the region graph en-
ergy as already indicated in the previous section on the child-
to-parent algorithm. If we exponentiate equation (134) derived
there, we obtain the equation

bR(xR)cR ∝ f̃R(xR)
∏

C∈C(R)

eλRC(xC)


 ∏

P∈P(R)

eλP R(xR)



−1

.

(E-9)
Suppose that we are given a set ofλ andbR that satisfy these

stationary conditions of the Lagrangian. Now we define

nR→P (xR) = eλP R(xR) (E-10)

and
mP→R(xR) = bR(xR)qRe−λP R(xR) (E-11)

Of course, we have onem message and onen message for
every Lagrange multiplierλ, so for these definitions to hold,
we also need to have constraints relating them’s and n’s.
The constraints will be given by the definitions of the pseudo-
messages and the relations between the messages and the
pseudo-messages that we defined above. We want to show that
these relations, as well as the two-way GBP belief equations
previously defined, must hold.

First, we show that the belief equations (E-4) hold. We have

bR(xR)cR ∝ f̃R(xR)
∏

C∈C(R)

eλRC(xC)
∏

P∈P(R)

e−λP R(xR)

∝ f̃R(xR)
∏

C∈C(R)

nC→R(xC)
∏

P∈P(R)

(
fR(xR)
bR(xR)

)qR

mP→R(xR)

∝ (bR(xR))−qRpR f̃R(xR)
∏

C∈C(R)

nC→R(xC)
∏

P∈P(R)

mP→R(xR)

∝ (bR(xR))cR−1
f̃R(xR)

∏

C∈C(R)

nC→R(xC)
∏

P∈P(R)

mP→R(xR)

so that indeedbR(xR) is product of local potentials and incom-
ing messages.

Turning to the constraints, we have from the definition of
n0

R→P (xR), that

n0
R→P (xR)mP→R(xR) = bR(xR) (E-12)

=
∑

xP \xR

bP (xP ) (E-13)

= nR→P (xR)m0
P→R(xR). (E-14)

Equations (E-10) and (E-11) imply that

nR→P (xR)mP→R(xR) = bR(xR)qR (E-15)

=
(
n0

R→P (xR)mP→R(xR)
)qR

. (E-16)
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Together these equations give us two equations for the two
unknownsmP→R(xR) andnR→P (xR):

mP→R(xR)
nR→P (xR)

=
m0

P→R(xR)
n0

R→P (xR)
fR(xR)−qR (E-17)

and

nR→P (xR)mP→R(xR)1−qR =
(
n0

R→P (xR)
)qR (E-18)

The unique solution of these equations is given by equations
(E-7) and (E-8). Thus, we have shown that the message passing
algorithm previously defined has fixed points that are equivalent
to the stationary points of the region graph free energy.

The two-way algorithm will be particularly elegant when
f̃R(xR) = fR(xR) and whenβR = 1 for all regions. In that
case, each region will send messages to all adjacent regions,
and the message update rules will be the natural generalization
of the ordinary BP rules written with two kinds of messages. It
is interesting to note that the condition thatf̃R(xR) = fR(xR)
can be ensured by requiring that only regions with no parents
contain factor nodes, while the condition thatβR = 1 for all
regions can be ensured by requiring that the sub-graph obtained
by taking any region and all of its ancestor regions must always
form a tree.

WhenβR = 1 for all regions, the two-way GBP algorithm
is equivalent to Pearl’s method of clustering [9]: we form new
nodes from clusters of variables in the original graph (these are
the regions) and run an ordinary BP algorithm on the resulting
graph. It is important to bear in mind that this equivalence only
holds for a subset of possible region graphs: if one uses the
method of clustering on a set of regions that does not satisfy the
region graph conditions, or on a region graph for whichβr 6= 1
for some regions, the resulting beliefs will generally be a poor
approximation.

APPENDIX F: REGION GRAPHS WITH cR = 0 REGIONS

In our proof that the fixed points of the parent-to-child GBP
algorithm correspond to the stationary points of the region
graph free energy (given in section IX-A), we assumed that
no region has counting numbercR = 0. That is never diffi-
cult to arrange: if one has a region graph with regions whose
counting number equals zero, one can remove them, and then
connect directly any regions that were previously ancestors or
descendants of each other, but are no longer after the removal
of the cR = 0 regions. The remaining regions will have iden-
tical counting numbers by construction, and since the regions
with cR = 0 did not contribute to the region graph free energy
in any case, it will be unchanged. In figure 21, we illustrate
the “surgery” that needs to be performed on a region graph to
remove regions with counting number zero.

In fact, however, the parent-to-child algorithm is well defined
even when some of the regions have counting numbers equal to
zero, and when one implements it, one finds that the results at its
fixed points are identical to those obtained when one surgically
removes thecR = 0 regions. The reason that the algorithm
still gives proper results, even though the above proof breaks
down, is that theλ constraints that cannot be derived from the

cA=1 cB=1

cR= -1 cC=0

cD=0 cE=0 cF=1

cG=0 cH=1

cA=1 cB=1

cR= -1

cF=1

cH=1

Fig. 21. An illustration of how one can take a region graph with some regions
that have counting number zero, and obtain another region graph with no such
regions but with an identical free energy. One first removes regions with a
counting number of zero, and then directly connects any ancestor-descendant
pairs that have become disconnected. In this example, we form new direct
connections between regionsR andH and between regionsB andH.

A B C

D E

F

Fig. 22. A small illustrative region graph (see text). Note that regionF has
counting numbercF = 0.

µ constraints are actually not necessary–they all involvecR = 0
regions that do not contribute to the free energy in any case.

A small example may make this point more comprehensi-
ble. Consider the small region graph shown in figure (22). The
counting numbers of the regions arecA = cB = cC = 1,
cD = cE = −1, andcF = 0, so that regionF could clearly be
removed to obtain an equivalent region graph. For the purpose
of illustration, we leave it in. We have sixλ constraints, each
of which is very straightforward. For example, the constraint
associated withλAD(xD) is bD(xD) =

∑
xA\xD

bA(xA),
while the constraint associated withλDF (xF ) is bF (xF ) =∑

xD\xF
bD(xD.

The sixµ constraints are somewhat less straightforward. Go-
ing back to the prescription given in equation (136), we see for
example that the constraint associated withµAD(xD) is

cDbD(xD) + cB

∑

xB\xD

bB(xB) = 0 (F-1)

or equivalently,

bD(xD) =
∑

xB\xD

bB(xB) (F-2)

while the constraint associated withµDF (xF ) is

cF bF (xF )+cE

∑

xE\xF

bE(xE)+cC

∑

xC\xF

bC(xC) = 0 (F-3)

or equivalently
∑

xC\xF

bC(xC) =
∑

xE\xF

bE(xE). (F-4)
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BecausecF = 0, there will not be anyµ constraint directly
involving bF (xF ), so we cannot derive some of theλ con-
straints. On the other hand, these constraints are not necessary,
because the region graph free energy itself also does not depend
directly onbF (xF ). We also see that theµ constraints are still
sufficient to ensure that all the beliefs are consistent when they
are marginalized down to regionF . Finally, if we do surgery
on this region graph and remove regionF , we can then easily
verify that theλ constraints are then entirely equivalent to the
µ constraints.
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