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1 Introduction

Expectation Propagation (EP) [2, 3] addresses the problem of constructing tractable approx-

imations to complex probability distributions. Let x be a set of random variables of interest,

and p(x) be a distribution formed from the product of several “compatibility functions”:

p(x) ∝
∏

i

ψi(x) (1)

EP is an iterative algorithm which attempts to choose the best approximation to p(x) from

within some tractable class of distributions. To ensure that each iteration of EP is computa-

tionally feasible, we choose the approximating class to correspond to an exponential family

q(x; θ).

Distributions p(x) of the form shown in equation (1) arise in a huge range of applications.

For example, suppose that we have n independent observations yi of an unobserved random

variable x with prior distribution p0(x). By Bayes’ rule, the posterior distribution over x is

then given by

p (x | y1, . . . , yn) = p0(x)
n
∏

i=1

pi(yi|x) (2)

Similarly, the prior or posterior distribution corresponding to any graphical model may be
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written as in equation (1). For example, a pairwise Markov random field with nodes V , edges

E , hidden variables xs, and local observations ys has posterior distribution

p (x | y1, . . . , yn) =
∏

s∈V

ψs (xs, ys)
∏

(s,t)∈E

ψs,t (xs, xt) (3)

In the remainder of this summary, we focus on inference problems defined by some fixed set

of observations y. Thus, rather than explicitly specifying the observations, we assume that

the target distribution is written as in equation (1).

2 Exponential Families

An exponential family of distributions q(x; θ) can be written as

q(x; θ) = exp

{

∑

α

θαφα(x) − Φ(θ)

}

(4)

The parameter vector θ indexes the distributions in the family, each of which corresponds

to a different weighting of the potential functions φα(x). The log partition function Φ(θ)

ensures that q(x; θ) is properly normalized for any choice of parameters θ. A wide range of

classic distributions, including Gaussian, Poisson, and discrete multinomial, may be written

in exponential form. Note that when x is a continuous variable, normalization may only be

possible for certain choices of θ (e.g. Gaussian distributions must have nonnegative variance).

Exponential families have a number of properties which simplify standard computations.

Expectation Propagation makes extensive use of two of these features. First, if we multiply

or divide two exponential distributions, we produce a new distribution which is a member of

the same exponential family (although normalizability may be lost). The coefficients of the

product or quotient distribution are equal to the sum or difference of the input coefficients.

Second, consider the problem of approximating some arbitrary distribution p(x) with a

member of an exponential family. We choose the best approximation by minimizing the
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following Kullback–Leibler divergence:

θ∗ = arg min
θ

D (p(x) || q(x; θ)) (5)

The optimal solution to this problem is given by moment matching. In particular, θ∗ should

be chosen so that
∫

q(x; θ∗)φα(x) dx =

∫

p(x)φα(x) dx (6)

for all potential functions φα(x) in the exponential family. For many commonly used expo-

nential families, the mapping between moment and exponential parameterizations is easily

computed. Thus, in cases where it is tractable to compute moments of p(x), the minimization

of equation (5) has a closed form solution.

3 Assumed Density Filtering

Expectation Propagation can be seen as a method for iteratively refining the solution pro-

duced by classic Assumed Density Filtering (ADF) methods, such as the extended Kalman

filter. Consider the factorized density p(x) of equation (1). ADF begins by choosing q(x; θ1)

to best approximate the first compatibility function ψ1(x) according to equation (5). We then

proceed through the remaining compatibility functions in order, updating the approximation

to p(x) as

θi = arg min
θ

D
(

ψi(x)q(x; θ
i−1) || q(x; θ)

)

(7)

At each ADF iteration, the current best estimate q(x; θi−1) of the product distribution is

used to guide the incorporation of the next compatibility function ψi(x). While this is

preferable to constructing independent approximations to each term, it has the undesirable

property that the ADF estimate is sensitive to the order in which the compatibility terms are

processed. In particular, if the first few terms are “misleading”, so that their product is very

different from the true product p(x), ADF may produce extremely poor approximations.
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In the previous paragraph, we described ADF as iteratively refining the approximate

posterior distribution q(x; θ). Alternatively, however, each ADF iteration can be seen as

first approximating the compatibility function ψi(x) by a member of the exponential family

mi(x), and then exactly updating the posterior distribution:

q(x; θi) = mi(x)q(x; θ
i−1) mi(x) ∝

q(x; θi)

q(x; θi−1)
(8)

Note that each mi(x) is in the same exponential family as q(x; θ). In the following section,

we show how this alternate interpretation naturally leads to the EP algorithm.

4 Expectation Propagation

Consider the ADF algorithm of the previous section. The best approximation mi(x) to a

particular compatibility function ψi(x) would be produced by directly minimizing

D

(

p(x) || mi(x)
∏

j 6=i

ψj(x)

)

(9)

However, because direct computations with p(x) are intractable, ADF must neglect most

of the product terms in computing its approximations to the first processed compatibility

functions. In standard ADF, these initial approximations are never revisited, and therefore

errors may significantly bias the final approximation.

The EP algorithm exploits the interpretation of ADF as approximating compatibility

functions (as in equation (8)) to revisit each term approximation multiple times. At later

iterations, EP uses its current best estimates of all but one compatibility to improve the ex-

ponential approximation to the remaining term. One hopes that by iterating this procedure,

EP will converge to a fixed point which approximates p(x) better than the results of any

particular ADF ordering.

We initialize the EP algorithm by setting the compatibility approximations to some
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default values, typically mi(x) = 1. The posterior approximation to p(x) is initialized as

q(x; θ) ∝
∏

imi(x). Each iteration of EP then proceeds as follows:

1. Choose some mi(x) to refine.

2. Remove the effects of mi(x) from the current posterior estimate q(x; θ) by dividing and

normalizing:

q(x; θ\i) ∝
q(x; θ)

mi(x)
(10)

3. Update the exponential approximation to the posterior as q(x; θ∗), where θ∗ is found

by computing the projection

θ∗ = arg min
θ

D
(

q(x; θ\i)ψi(x) || q(x; θ)
)

(11)

4. Refine the exponential approximation to mi(x) as

mi(x) ∝
q(x; θ∗)

q(x; θ\i)
(12)

Note that the computational tractability of the EP iteration depends heavily on the proper-

ties of exponential families introduced in Section 2.

In many cases, EP produces posterior approximations which compare quite favorably with

competing techniques such as ADF. However, there is no guarantee that the EP iteration

will converge. In some cases, heuristics can be used to enforce convergence. For example,

when approximating with a Gaussian exponential family, Minka improved convergence by

constraining all variances to be positive [3]. However, there is currently no framework for

understanding how such constraints should be chosen in general, or what effect they will

have on the quality of the final approximations.
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5 Relationship to Belief Propagation

The loopy Belief Propagation (BP) algorithm can be shown to be a special case of Expecta-

tion Propagation. This relationship provides three key benefits. First, it allows much of the

recent work analyzing BP to be extended to EP. Second, it provides a mechanism for con-

structing improved approximations for models where standard BP performs poorly. Finally,

EP provides a mechanism for extending BP–style message passing updates to continuous,

non–Gaussian models (for which BP is generally intractable).

5.1 EP for Fully Factorized Discrete Approximations

Consider first a standard discrete pairwise Markov random field, with nodes V , edges E ,

and posterior distribution as in equation (3). For simplicity, we assume that all single–node

potentials have been absorbed into one of the neighboring edge potentials, so that p(x) can

be rewritten as

p(x) =
∏

(s,t)∈E

ψs,t (xs, xt) (13)

To derive an EP iteration corresponding to BP, we choose our approximating distribution

q(x; θ) to be fully factorized:

q(x; θ) =
∏

s∈V

qs(xs) (14)

Each qs(xs) is chosen to be a general discrete multinomial distribution, and hence places

no restrictions on the marginal distributions which EP can represent. This factorization of

q(x; θ) implies that the exponential approximationsms,t(xs, xt) to the compatibility functions

ψs,t (xs, xt) also have a factorized form:

ms,t(xs, xt) = mt→s(xs)ms→t(xt) (15)

As we show below, these marginal approximations to the compatibility functions precisely

correspond to the standard BP messages.
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As before, we initialize the compatibility approximations of equation (15) to some default

values. Using the factorized form of q(x; θ), we may then individually initialize each of the

terms in the factorized posterior approximation as

qs(xs) ∝
∏

t∈Γ(s)

mt→s(xs) (16)

where Γ(s) is the set of nodes neighboring s. An iteration of EP then proceeds as follows:

1. Choose some ms,t(xs, xt) to refine. Since ms,t(xs, xt) involves only xs and xt, the

approximate distributions for all other nodes are unaffected by the EP update, and are

thus neglected below.

2. Remove the effects of ms,t(xs, xt) from the current posterior estimate q(x; θ) by dividing

and normalizing:

qs\t(xs) ∝
qs(xs)

mt→s(xs)
=

∏

u∈Γ(s)\t

mu→s(xs) (17)

qt\s(xt) ∝
qt(xt)

ms→t(xt)
=

∏

v∈Γ(t)\s

mv→t(xt) (18)

3. Update the exponential approximation to the posterior by determining the appropriate

marginal distributions:

qs(xs) =
∑

xt

ψs,t (xs, xt) qs\t(xs)qt\s(xt) (19)

qt(xt) =
∑

xs

ψs,t (xs, xt) qs\t(xs)qt\s(xt) (20)
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4. Refine the exponential approximation to ms,t(xs, xt) as

mt→s(xs) ∝
qs(xs)

qs\t(xs)
=
∑

xt

ψs,t (xs, xt)
∏

v∈Γ(t)\s

mv→t(xt) (21)

ms→t(xt) ∝
qt(xt)

qt\s(xt)
=
∑

xs

ψs,t (xs, xt)
∏

u∈Γ(s)\t

mu→s(xs) (22)

Notice that step 4 of the EP update is precisely equivalent to the standard BP message

update of both messages along the chosen edge (s, t).

5.2 Free Energy Interpretation of EP

Much of the recent analysis of loopy BP has come from an association with the minimization

of a certain “free energy”, subject to marginalization constraints [5]. EP can be derived from

a similar free energy, where the marginalization constraints are replaced by expectation

constraints [1–3]. This connection has allowed much of the theoretical work on BP to be

extended to EP. In particular, EP can be shown to have at least one fixed point for any

product distribution. In addition, it is possible to construct “double loop” algorithms which

provably minimize the free energy [1].

5.3 Higher Order Approximations

BP was derived by applying EP to a fully factorized approximation. It is possible to derive

similar algorithms for approximations which are not fully factorized but still tractable, such

as a spanning tree [3]. For a discussion of the connections between these higher–order

approximations and region–based Kikuchi approximations [5], see Wainwright [4]. At this

point, it is not clear which method of creating improved approximations will be more effective

in practice.
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5.4 Continuous Non–Gaussian Models

For continuous non–Gaussian graphical models, the integral equations prescribed by loopy

BP typically have no closed form solutions. However, it is straightforward to apply EP to such

models using, for example, a Gaussian approximation to the final posterior distributions. The

only change is that the marginalization of step 3 must be supplemented by a KL projection

operation; see [1].
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