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Abstract 

This paper presents a new deterministic approx­
imation technique in Bayesian networks. This 
method, "Expectation Propagation," unifies two 
previous techniques: assumed-density filtering, 
an extension of the Kalman filter, and loopy be­
lief propagation, an extension of belief propaga­
tion in Bayesian networks. Loopy belief propa­
gation, because it propagates exact belief states, 
is useful for a limited class of belief networks, 
such as those which are purely discrete. Expec­
tation Propagation approximates the belief states 
by only retaining expectations, such as mean and 
variance, and iterates until these expectations are 
consistent throughout the network. This makes it 
applicable to hybrid networks with discrete and 
continuous nodes. Experiments with Gaussian 
mixture models show Expectation Propagation to 
be convincingly better than methods with simi­
lar computational cost: Laplace's method, vari­
ational Bayes, and Monte Carlo. Expectation 
Propagation also provides an efficient algorithm 
for training Bayes point machine classifiers. 

1 INTRODUCTION 

Bayesian inference is often hampered by large computa­
tional expense. Fast and accurate approximation methods 
are therefore very important and can have great impact. 
This paper presents a new deterministic algorithm, Expec­
tation Propagation, which achieves higher accuracy than 
existing approximation algorithms with similar computa­
tional cost. 

Expectation Propagation is an extension of assumed­
density filtering (ADF), a one-pass, sequential method for 
computing an approximate posterior distribution. In ADF, 
observations are processed one by one, updating the pos­
terior distribution which is then approximated before pro­
cessing the next observation. For example, we might re­
place the exact one-step posterior with a Gaussian having 
the same mean and same variance (Maybeck, 1982; Opper 
& Winther, 1999). Or we might replace a posterior over 
many variables with one that renders the variables inde­
pendent (Boyen & Koller, 1998). The weakness of ADF 
stems from its sequential nature: information that is dis­
carded early on may turn out to be important later. ADF is 
also sensitive to observation ordering, which is undesirable 
in a batch context. 

Expectation Propagation (EP) extends ADF to incorporate 
iterative refinement of the approximations, by making ad­
ditional passes through the network. The information from 
later observations refines the choices made earlier, so that 
the most important information is retained. Iterative refine­
ment has previously been used in conjunction with sam­
pling (Koller et al., 1999) and extended Kalman filtering 
(Shachter, 1990). Expectation Propagation is faster than 
sampling and more general than extended Kalman filtering. 
It is more expensive than ADF by only a constant factor­
the number of refinement passes (typically 4 or 5). EP ap­
plies to all statistical models to which ADF can be applied 
and, as shown in section 3.2, is significantly more accurate. 

In belief networks with loops it is known that approximate 
marginal distributions can be obtained by iterating the be­
lief propagation recursions, a process known as loopy be­
lief propagation (Frey & MacKay, 1997; Murphy et al., 
1999). In section4, this turns out to be a special case of Ex­
pectation Propagation, where the approximation is a com­
pletely disconnected network. Expectation Propagation is 
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more general than belief propagation in two ways: (1) like 
variational methods, it can use approximations which are 
not completely disconnected, and (2) it can impose useful 
constraints on functional form, such as multivariate Gaus­
sian. 

2 ASSUMED-DENSITY FILTERING 

This section reviews the idea of assumed-density filter­
ing (ADF), to lay groundwork for Expectation Propaga­
tion. Assumed-density filtering is a general technique for 
computing approximate posteriors in Bayesian networks 
and other statistical models. ADF has been indepen­
dently proposed in the statistics (Lauritzen, 1992), artifi­
cial intelligence (Boyen & Koller, 1998; Opper & Winther, 

1999), and control (Maybeck, 1982) literatures. "Assumed­
density filtering" is the name used in control; other names 
include "online Bayesian learning," "moment matching," 
and "weak marginalization." ADF applies when we have 
postulated a joint distribution p(D, x) where D has been 
observed and x is hidden. We would like to know the pos­
terior over x, p(x[D), as well as the probability of the ob­
served data (or evidence for the model), p(D). The former 
is useful for estimation while the latter is useful for model 
selection. 

For example, suppose we have observations from a Gaus­
sian distribution embedded in a sea of unrelated clutter, so 
that the observation density is a mixture of two Gaussians: 

p(yfx) 

N(y;m,V) 
(1- w)N(y; x, I)+ wN(y; o, 101) 
exp(-�(y-m)TV-1(y-m)) 

[27!V[l/2 
The first component contains the parameter of interest, 
while the other component describes clutter. w is the 
known ratio of clutter. Let the d-dimensional vector x have 
a Gaussian prior distribution: 

p(x) ,..., N(O, lOOid) (I) 

The joint distribution of x and n independent observations 
D = {Yl, ... , y,} is therefore: 

p(D,x) = p(x) IJp(y;[x) (2) 

The Bayesian network for this problem is simply x pointing 
to the y;. But we cannot use belief propagation because the 
belief state for x is a mixture of 2" Gaussians. To apply 
ADF, we write the joint distribution p(D, x) as a product 

of terms: p(D,x) = fJ.t;(x) where t0 (x) = p(x) and 
t; (x) = p(y;lx). Next we choose an approximating family. 
In the clutter problem, a spherical Gaussian distribution is 
reasonable: 

(3) 

Finally, we sequence through and incorporate the terms t; 
into the approximate posterior. At each step we move from 
an old q\i(x) to a new q(x). (To reduce notation, we drop 
the dependence of q (x) on i.) Initialize with q(x) = 1. 
Incorporating the prior term is trivial, with no approxima­
tion needed. To incorporate a more complicated term t; ( x), 
take the exact posterior 

\' 
"( ) t; (x)q • (x) p x - -;:-----7---7-'=-.-:--:---:'--:­- fx t;(x)q\i(x)dx (4) 

and minimize the KL-divergence D(jl(x) ffq(x)) subject to 

the constraint that q(x) is in the approximating family. This 
is equivalent to a maximum-likelihood problem with data 
distribution p. For a spherical Gaussian, the solution is 
given by matching moments: 

(5) 
(6) 

With any exponential family, ADF reduces to propagating 
expectations. Each step also produces a normalizing factor 
Z; = fx t; (x)q\i (x)dx. The product of these normalizing 
factors estimates p(D). In the clutter problem, we have 

Z; = (1-w)N(y;; mY, (v�'+1 )I)+wN(y;; 0, 101) (7) 

The final ADF algorithm is: 

l. Initialize m., = 0, v., = 100 (the prior). Initialize 
s = 1 (the scale factor). 

2. For each data pointy;, update (m.,, v.,, s) according 
to 

s 

r; 

m., 

v., = 

s\i >< Z; 

1 - _2_wN(y· · 0 101) Z; ,, ' 
\i 

\i \i Yi- mx m., + v., r; .:........,.\..,..i --
v., + 1 

( \i)2 ( \i)211 \il12 
\i _ · � + ·(1- · ) v., y;-mx 

v., r, \. r, r, \. 
v.,' + 1 d (v,/ + 1)2 

This algorithm can be understood in an intuitive way: for 
each data point we compute its probability r of not being 
clutter, make a soft update to our estimate ofx (m.,), and 
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change our confidence in the estimate (vz). However, it is 
clear that this algorithm will depend on the order in which 
data is processed, because the clutter probability depends 
on the current estimate of x. 

3 EXPECTATION PROPAGATION 

This section describes the Expectation Propagation algo­
rithm and demonstrates its use on the clutter problem. Ex­
pectation Propagation is based on a novel interpretation of 
assumed-density filtering. ADF was described as treating 
each observation term t; exactly and then approximating 
the posterior that includes t;. But we can also think of it as 
first approximating t, with some i, and then using an exact 
posterior with i;. This interpretation is always possible be­
cause we can define the approximate term t; to be the ratio 
of the new posterior to the old posterior times a constant: 

- q(x) t; (x) = Z; q\i (x) (8) 

Multiplying this approximate term by q\'(x) gives q(x), as 
desired. An important property is that if the approximate 
posterior is in an exponential family, then the term approx­
imations will be in the same family. 

The algorithm of the previous section can thus be inter­
preted as sequentially computing a Gaussian approxima­
tion t; (x) to every observation term t; (x), then combining 
these approximations analytically to get a Gaussian poste­
rior on x. Under this perspective, the approximations do 
not have any required order-the ordering only determined 
how we made the approximations. We are free to go back 
and refine the approximations, in any order. This gives the 
general form of Expectation Propagation: 

1. Initialize the term approximations t; 

2. Compute the posterior for x from the product ofi;: 

- ITJ;(x) 
q(x) - J fl t;(x)dx 

3. Until all t; converge: 

(a) Choose a i; to refine 

(9) 

(b) Remove t; from the posterior to get an 'old' pos­
terior q\' (x), by dividing and normalizing: 

(10) 

(c) Combine q\i(x) and t;(x) and minimize KL­
divergence to get a new posterior q(x) with nor­
malizer z,. 

(d) Updatei; =:: Z,q(x)jq\'(x). 

4. Use the normalizing constant of q(x) as an approxi­
mation to p(D): 

p(D) � J IT t;(x)dx (ll) 
• 

This algorithm always has a fixed point, and sometimes has 
several. If initialized too far away from a fixed point, it may 
diverge. This is discussed in section 3.3. 

3.1 THE CLUTTER PROBLEM 

For the clutter problem of the previous section, the EP al­
gorithm is 

1. The term approximations have the form 

Initialize the prior term to itself: vo = 100, mo = 0, 
so = (21rv0) -d/2. Initialize the data terms so that 

i; (x) = 1: v; = oo, m; = 0, and s; = 1. 

2. m'" = mo,Vz = vo 

3. Until all (m;, v;, s;) converge (changes are less than 
10-4): 

loop i = 1, ... , n: 

(a) Remove i; from the posterior to get an 'old' pos­
terior: 

-1 -1 
v., - 1!; 

\i - 1  ( ) illz + Vz V; m., - m; 

(b) Recompute (mz,Vz,Z;) from (m�',v�') as in 
ADF. 

(c) Update i;: 
-1 v, 

m; 
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4. Compute the normalizing constant: 

B 
T T m., m., """ m; m; ---- Li ---
v., . Vi I 

n 

p(D) � (2rrv.,)df2 exp(B/2) ITs; 
i=O 

Because the term approximations start at 1, the result after 
one pass through the data is identical to ADF. 

3.2 RESULTS 

EP for the clutter problem is compared with four other 
algorithms for approximate inference: Laplace's method, 
variational Bayes, importance sampling (using the prior as 
the importance distribution), and Gibbs sampling (by in­
troducing hidden variables that determine if a data point is 
clutter). The goal is to estimate the evidence p(D) and the 
posterior mean E[x[D]. Figure 1 shows the results on a 
typical run with n = 20 and with n = 200. It plots the ac­
curacy vs. cost of the algorithms. Accuracy is measured by 
absolute difference from the true evidence or the true poste­
rior mean. Cost is measured by the number of floating point 
operations (FLOPS) in Matlab, via Matlab's flops func­
tion. This is better than using CPU time because FLOPS 
ignores interpretation overhead. 

The deterministic methods EP, Laplace, and VB all try to 
approximate the posterior with a Gaussian, so they improve 
substantially with more data (the posterior is more Gaus­
sian with more data). The sampling methods assume very 
little about the posterior and cannot exploit the fact that it 
is becoming more Gaussian. However, this is an advan­
tage for sampling when the posterior has a complex shape. 
Figure 2 shows an atypical run with a small amount of 
data (n = 20) where the true posterior has three distinct 
modes. Regular EP did not converge, but a restricted ver­
sion did (Minka, 2001). Unfortunately, all of the determin­
istic methods converge to an erroneous result that captures 
only a single mode. 

3.3 CONVERGENCE 

The EP iterations can be shown to always have a fixed 
point when the approximations are in an exponential fam­
ily. The proof is analogous to Yedidia et al. (2000). Let 
the sufficient statistics be ft (x) , ... , /J(x) so that the fam­

ily has form exp('Lf=1 fJ(x))..j)· In the clutter problem 

! 1o-·:lllo 

10·2;1: 
10-�rf'-::---',"'!o'....IL.JJ.J.J.J..., •• :---,o'":--___J, •• 

FI.OPS 

n = 20 

, ... 
1 0�0'-::-, --,--: •• --, •• :---, • ..,.., ---.J, •• 

FLOPS 

n = 20 

E"*no. 
,,·-.---------, 

..... 

-·· 

10-�,'-::-, --'-,-'-:,.J:..JW.u.u...",,.---,..,..., -....J,.. 
FLOPS 

n = 200 

n = 200 

Figure 1: Cost vs. accuracy curves for expectation prop­
agation (EP), Laplace's method, variational Bayes (VB), 
importance sampling, and Gibbs sampling on the clutter 
problem with w = 0.5 and x = 2. Each 'x' is one iteration 
of EP. ADF is the first 'x'. 

-6 _,. 0 
'""'" 

(a) 

10-�o'-;-, -- ,--: •• --10.:-----!'--'----''---'10, 
FLOPS 

(b) 

Figure 2: A complex posterior in the clutter problem. 
(a) Exact posterior vs. approximations obtained by EP, 
Laplace's method, and variational Bayes. (b) Cost vs. ac­
curacy. 
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we had /1 (x) == x and h(x) ::::: x T x. When we treat 
the prior exactly, the final approximation will be q(x) oc 

p(x) exp(Lj /j (x)vj) for some v, and the leave-one-out 

approximations will be q\i(x) oc p(x) exp(Lj /j(x)Aij) 
for some A. Let n be the number of terms t;(x). 

The EP fixed points are in one-to-one correspondence with 
stationary points of the objective 

min max (n- 1) logl p(x) cxp(L /j(x)vj)dx 
v A X . 

J 

-I)og 1 t;(x)p(x)exp(LIJ(x)A;j)dx (13) 
i=l X j 

such that (n - l)vj = L A;J (14) 

Note that min-max cannot be exchanged with max�min in 
this objective. By taking derivatives we get the stationary 
conditions fx /j (x)q(x)dx = fx /j (x)p(x), where p(x) is 
defined by (4). This is an EP fixed point. In reverse, given 
an EP fixed point we can recover v and ,\ from q ( x) and 
q\i (x) to obtain a stationary point of (13). 

Assume all terms are bounded: t;(x) :=:; c. Then the ob­
jective is bounded from below, because for any v we can 
choose >..;1 = n � 1vj, and then the second part of ( 13) is at 
least 

-nlog fx cp(x)exp(LIJ(x)vj) n;' dx 
J 

> -n log c- ( n - 1) log 1 p(x) exp(L /j (x)vj )dx 
J 

by the concavity of the function y n;;' . Therefore there 
must be stationary points. Sometimes there are multiple 
fixed points of EP, in which case we can define the 'best' 
fixed point as the one with minimum energy (13). When 
canonical EP does not converge, we can minimize ( 13) by 
some other scheme, such as gradient descent. In practice, it 
is found that when canonical EP does not converge, it is for 
a good reason, namely the approximating family is a poor 
match to the exact posterior. This happened in the previous 
example. So before considering alternate ways to carry out 
EP, one should reconsider the approximating family. 

4 LOOPY BELIEF PROPAGATION 

Expectation Propagation and assumed-density filtering can 
be used to approximate a belief network by a simpler net-

work with fewer edges. This section shows that if the ap­
proximation is completely disconnected, then ADF yields 
the algorithm of Boyen & Koller ( 1998) and EP yields 
loopy belief propagation. 

Let the hidden variables be x1, .. . , XK and collect the ob-
served variables into D = {y1, ... , YN }. A completely dis-
connected distribution for x has the form 

K 
q(x)::::: TI qk(xk) (15) 

k=l 

When we minimize the KL-divergence D(p(x)llq(x)), we 
will simply preserve the marginals of jj(x). This cor­
responds to an expectation constraint Eq[S(xk - v)] = 

Ep[S(xk- v)] for all values v of Xk. From this we arrive at 
the ADF algoritiun of Boyen & Koller (1998): 

I. Initialize qk (x,.) == 1 

2. For each term t; (x) in turn, set qk to the kth marginal 
ofp: 

where Z; 

L p(x) = �i L t;(x)q\i(x) 
x\xk x\xk 

l:t;(x)q\i(x) 
X 

For dynamic Bayesian networks, Boyen & Koller set t; to 
the product of all of the conditional probability tables for 
timeslice i. Now let's turn this into an EP algorithm. From 
the ratio qj q\i, we see that the approximate terms t;(x) are 
completely disconnected. The EP algorithm is thus: 

1. f;(x) = flk l;k(xk)· Initialize t;(x)::::: 1. 

2. qk(xk) oc f1; l;k(xk) 
3. Until all i1 converge: 

(a) Choose a i; to refine 

(b) Remove i; from the posterior. For all k: 

(c) Recompute q(x) from q\i (x) as in AD F. 
(d) 
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To make this equivalent to belief propagation, the original 
terms t; should correspond to the conditional probability 
tables of a directed belief network. That is, we should break 
the joint distribution p(D, x) into 

k j 

where pa( X) is the set of parents of node X. The network 
has observed nodes Yi and hidden nodes xk. The parents of 
an observed node might be hidden, and vice versa. For an 
undirected network, the terms are the clique potentials. The 
quantities in EP now have the following interpretations: 

• qk(xk) is the belief state of node xk, i.e. the product 
of all messages into xk. 

• The 'old' posterior q�i (xk) for a particular term i is a 
partial belief state, i.e. the product of messages into 
Xk except for those originating from term i. 

• When i f. k, the function i;k ( x k) is the message that 
node i (either hidden or observed) sends to its par­
ent xk in belief propagation. For example, suppose 
node i is hidden and t;(x) = p(xiJpa(x;)). The other 
parents send their partial belief states, which the child 
combines with its partial belief state: 

iik(Y) = L p(x;Jpa(xi))qhx;) II qji(xj) 
x\xk parents j# 

<············ . ... 

• When node i is hidden, the function iii ( x, ) is a com­
bination of messages sent to node i from its parents in 
belief propagation. Each parent sends it partial belief 
state, and the child combines them according to 

Unlike Pearl's derivation of belief propagation in terms of 
A and 1r messages, this derivation is symmetric with respect 
to parents and children. In fact, it is the form used in in fac­
tor graphs (Kschischang et a!., 2000). All of the nodes that 
participate in a conditional probability table p(XJpa(X)) 
send messages to each other based on their partial belief 
states. 

Loopy belief propagation does not always converge, but 
from section 3.3 we know how we could find a fixed point. 
For an undirected network with pairwise potentials, the EP 
energy function (13) is a dual representation of the Bethe 
free energy given by Yedidia et al. (2000). 

Alternatively, we can fit an approximate network which is 
not completely disconnected, such as a tree-structured net­
work. This was done in the ADF context by Frey et al. 
(2000). A general algorithm for tree-structured approxima­
tion using EP is given by Minka (200 1 ). 

5 BAY ES POINT MACHINE 

This section applies Expectation Propagation to inference 
in the Bayes Point Machine (Herbrich et al., 1999). The 
Bayes Point Machine (BPM) is a Bayesian approach to 
linear classification. A linear classifier classifies a point 
x according to y = sign(w T x) for some parameter vec­
tor w (the two classes are y = ±1). Given a training set 
D = {(x1,yl), ... ,(xn,Yn)},the likelihood forwcan be 
written 

p(Diw) 

rfl(z) 

y·wTx· Ilp(y;[x;,w)=IT<P(' < ')(17) 
i i 

(18) 

By using </; instead of a step function, this likelihood tol­
erates small errors. The allowed 'slack' is controlled by c:. 

To avoid estimating c:, which is tangential to this paper, the 
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experiments all use t --+ 0, where cp becomes a step func­
tion. The BPM is a hybrid belief network, with w and x; 
pointing to Yi· Under the Bayesian approach, we also have 
a prior distribution on w, which is taken to be N(O, I). 
Given this model, the optimal way to classify a new data 
point x is to vote all classifiers according to their poste­
rior probability: E[ sign( w T x) I D). As an approximation 
to this, the BPM uses the output of the average classifier: 
sign(E[w]Tx). 

Using EP, we can make a multivariate Gaussian approx­
imation to the posterior over w and use its mean as the 
estimated Bayes point. The resulting algorithm is similar 
to that for the clutter problem. To save notation, y;x;j t is 
written simply as x;. 

1. t;(w) = s; exp(- 2�, (w T x;- m;)2). Initialize with 
v; = oo, m; = 0, s; = 1. 

2. q ( w) = N ( mw , V w). Initialize with the prior: 
mw = O,Vw =I. 

3. Until ail ( m; , v1 ) converge (changes are less than 
10�4): 

loop i = 1, ... , n: 
(a) Remove i; from the posterior to get an 'old' pos­

terior: 

y\i w 

(b) Recompute ( mw , V w) from ( m�i, V �i), using 
ADF: 

z; 
}x'[VJ;x; + 1 

1 N(zi; 0, 1) 

vx'[v':tx; + 1 cp(z;) 
m\i +v\•a·x· w w : 1 

= V�1- (V�1xi) (a�x{�w) (V�'x;)T 
X; VwXi 

m· ' T \" T \" X· m '+ (v· +x· V 'x·)a· 1 w � :: w i t 

This algorithm processes each data point in 0 ( d2) time. 
Assuming the number of. iterations is constant, which 
seems to be true in practice, computing the Bayes point 
therefore takes O(nd2) time. This algorithm can be ex­
tended to use an arbitrary inner product function, just as 
in Gaussian process classifiers and the Support Vector Ma­
chine, which changes the running time to O(n3), regard­
less of dimensionality. This extension can be found in 
Minka (200 1 ). Interestingly, Opper & Winther (2000) have 
derived an equivalent algorithm using statistical physics 
methods. However, the EP updates tend to be faster than 
theirs and do not require a step size parameter. 

5.1 RESULTS 

Figure 3(a) demonstrates the Bayes point classifier vs. the 
SVM classifier on 3 training points. Besides the two di­
mensions shown here, each point had a third dimension set 
at 1. This provides a 'bias' coefficient w3 so that the de­
cision boundary doesn't have to pass through (0, 0). The 
Bayes point classifier approximates a vote between all lin­
ear separators, ranging from an angle of 0° to 135 o. The 
Bayes point is an angle in the middle of this range. 

Figure 3(b) plots cost vs. error for EP versus three other 
algorithms for estimating the Bayes point: the billiard al­
gorithm of Herbrich et al. (1999), the TAP algorithm of 
Opper & Winther (2000), and the mean-field (MF) algo­
rithm of Opper & Winther (2000). The error is measured 
by Euclidean distance to the exact solution found by im­
portance sampling. The error in using the SVM solution is 
also plotted for reference. Its unusually long running time 
is due to Matlab's quadprog solver. TAP and MF were 
slower to converge than EP, even with a large initial step 
size of 0.5. As expected, EP and TAP converge to the same 
solution. 

Figure 4 compares the error rate of EP, Billiard, and SVM 
on four datasets from the UCI repository (Blake & Merz, 
1998). Each dataset was randomly split 40 times into a 
training set and test set, in the ratio 60%:40%. In each trial, 
the features were normalized to have zero mean and unit 
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SVM 
Bayas 

0 

0 \ 
,, 
EP TM' 

Figure 3: (left) Bayes point machine vs. Support Vec­
tor Machine on a simple data set. The Bayes point more 

closely approximates a vote between all linear separators 
of the data. (right) Cost vs. error in estimating the poste­
rior mean. ADF is the first 'x' on the EP curve. 

Dataset EP Billiard SVM 

Heart .203 ± .069 .207 ± .069 .232 ± .069 

Thyroid .037 ± .037 .037 ± .038 .053 ± .035 

Ionosphere .099 ± .057 .113 ± .064 .115 ± .066 

Sonar .140 ± .077 .147 ± .072 .129± .075 

Figure 4: Test error rate for the Bayes Point Machine (using 

EP or the Billiard algorithm) compared to the Support Vec­

tor Machine. Reported is the mean over 40 train-test splits 
± two standard deviations. These results are for a Gaussian 

kernel with(]'= 3, and will differ with other kernels. 

variance in the training set. The classifiers used zero slack 

and a Gaussian inner product with standard deviation 3. 
Billiard was run for 500 iterations. The thyroid dataset 

was made into a binary classification problem by merging 

the different classes into normal vs. abnormal. Except for 

sonar, EP has lower average error than the SVM (with 
99% probability), and in all cases EP is at least as good as 
Billiard. Billiard has the highest running time because it is 

initialized at the SVM solution. 

6 SUMMARY 

This paper presented a generalization of belief propagation 
which is appropriate for hybrid belief networks. Its supe­
rior speed and accuracy were demonstrated on a Gaussian 
mixture network and the Bayes Point Machine. Hopefully 
it will prove useful for other networks as well. The Ex­
pectation Propagation iterations always have a fixed point, 
which can be found by minimizing an energy function. 
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