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Abstract

Bayesian inference is now widely established as one of iheipal foundations for machine learn-
ing. In practice, exact inference is rarely possible, and sariety of approximation techniques
have been developed, one of the most widely used being andatstic framework called varia-
tional inference. In this paper we introduce Variationaldgi@gge Passing (VMP), a general purpose
algorithm for applying variational inference to BayesiaaetiNorks. Like belief propagation, VMP
proceeds by sending messages between nodes in the netwbtpdating posterior beliefs us-
ing local operations at each node. Each such update insredseer bound on the log evidence
(unless already at a local maximum). In contrast to belieppgation, VMP can be applied to a
very general class of conjugate-exponential models bedauses a factorised variational approx-
imation. Furthermore, by introducing additional variatib parameters, VMP can be applied to
models containing non-conjugate distributions. The VMirfework also allows the lower bound
to be evaluated, and this can be used both for model compaaishfor detection of convergence.
Variational message passing has been implemented in timedba general purpose inference en-
gine called VIBES ('Variational Inference for BayEsian wetkS’) which allows models to be
specified graphically and then solved variationally withi@course to coding.

Keywords: Bayesian networks, variational inference, message [assin

1. Introduction

Variational inference methods (Neal and Hinton, 1998; Jordan et &8)1%ave been used suc-
cessfully for a wide range of models, and new applications are constagitly bxplored. In each
previous application, the equations for optimising the variational approximba#ea been worked
out by hand, a process which is both time consuming and error pronesefreral other inference
methods, general purpose algorithms have been developed which appllesl to large classes of
probabilistic models. For examplbelief propagatiorcan be applied to any acyclic discrete net-
work (Pearl, 1986) or mixed-Gaussian network (Lauritzen, 1992),the Monte Carlo algorithm
described in Thomas et al. (1992) can perform Gibbs sampling in almodBaygsian network.
Similarly, expectation propagatioMinka, 2001) has been successfully applied to a wide range of
models. Each of these algorithms relies on being able to decompose the demuirputation into
calculations that are local to each node in the graph and which requiren@siyages passed along
the edges connected to that node.
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However, Monte Carlo methods are computationally very intensive, andsafter from dif-
ficulties in diagnosing convergence, while belief propagation is only gieed to converge for
tree-structured graphs. Expectation propagation is limited to certain clafaseslel for which the
required expectations can be evaluated, is also not guaranteed togsoimvgeneral, and is prone
to finding poor solutions in the case of multi-modal distributions. For thesemsake framework
of variational inference has received much attention.

In this paper, the variational message passing algorithm is developedh agtimises a varia-
tional bound using a set of local computations for each node, togetheawichanism for pass-
ing messages between the nodes. VMP allows variational inference topbedaputomatically
to a large class of Bayesian networks, without the need to derive appliegiicific update equa-
tions. In VMP, the messages are exponential family distributions, summarikedl®y their natural
parameter vector (for child-to-parent messages) or by a vector of msifienparent-to-child mes-
sages). These messages are defined so that the optimal variationalititigtribr a node can be
found by summing the messages from its children together with a function of theagees from its
parents, where this function depends on the conditional distribution fordte.

The VMP framework applies to models described by directed acyclic giaphsich the con-
ditional distributions at each node are members of the exponential familyhuhecefore includes
discrete, Gaussian, Poisson, gamma, and many other common distributigpeciat cases. For
example, VMP can handle a general DAG of discrete nodes, or of llBaassian nodes, or an ar-
bitrary combination of the two provided there are no links going from contisuo discrete nodes.
This last restriction can be lifted by introducing further variational bouadsve shall discuss. Fur-
thermore, the marginal distribution of observed data represented byaple igrnot restricted to be
from the exponential family, but can come from a very broad class ofilaisions built up from
exponential family building blocks. The framework therefore includes nveely known machine
learning algorithms such as hidden Markov models, probabilistic PCA, faotysis and Kalman
filters, as well as mixtures and hierarchical mixtures of these.

Note that, since we work in a fully Bayesian framework, latent variablegpanaimeters appear
on an equal footing (they are all unobserved stochastic variables atgeharginalised out to make
predictions). If desired, however, point estimates for parametersecarade simply by maximising
the same bound as used for variational inference.

As anillustration of the power of the message passing viewpoint, we use itfiiha& software
tool called VIBES (Variational Inference in BayEsian networkS) whiltbves a model to be speci-
fied by drawing its graph using a graphical interface, and which thdonpes variational inference
automatically on this graph.

The paper is organised as follows. Section 2 gives a brief review @fti@ral inference meth-
ods. Section 3 contains the derivation of the variational message paggnighan, along with an
example of its use. In Section 4 the class of models which can be handled algthighm is de-
fined, while Section 5 describes the VIBES software. Some extensions &igibithm are given
in Section 6, and Section 7 concludes with an overall discussion andstigygpefor future research
directions.

2. Variational Inference

In this section, variational inference will be reviewed briefly with particédaus on the case where
the variational distribution has a factorised form. The random variables imtdel will be denoted
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by X = (V,H) whereV are the visible (observed) variables atdre the hidden (latent) variables.
We assume that the model has the form of a Bayesian network and so thdigtiitiution P(X)
can be expressed in terms of the conditional distributions at eachinode

P(X) = [1P(X |pa) (1)

where padenotes the set of variables corresponding to the parents ofirenttX; denotes the
variable or group of variables associated with node

Ideally, we would like to perform exact inference within this model to findt@asr marginal
distributions over individual latent variables. Unfortunately, exactrariee algorithms, such as the
junction tree algorithm (Cowell et al., 1999), are typically only applied to discor linear-Gaussian
models and are computationally intractable for all but the simplest models. dpnsteanust turn
to approximate inference methods. Here, we consider the deterministicxapation method of
variational inference.

The goal in variational inference is to find a tractable variational distribufigt) that closely
approximates the true posterior distributi®(H | V). To do this we note the following decomposi-
tion of the log marginal probability of the observed data, which holds forcamjce of distribution:

Q(H)

InP(V) = L(Q) +KL(Q[[P). 2)
Here P(H.V)
£Q) = yOHIn Gy 3)
KLQIP) = —3 QHin

and the sums are replaced by integrals in the case of continuous varidelesKL(Q||P) is the
Kullback-Leibler divergence between the true postefigsl | V) and the variational approximation
Q(H). Since this satisfies KIQ||P) > 0 it follows from (2) that the quantity’(Q) forms a lower
bound on IP(V).

We now choose some family of distributions to represgfit ) and then seek a member of that
family that maximises the lower bound Q) and hence minimises the Kullback-Leibler divergence
KL (Q[|P). If we allow Q(H) to have complete flexibility then we see that the maximum of the
lower bound occurs when the Kullback-Leibler divergence is zerothi case, the variational
posterior distribution equals the true posterior ati@) = InP(V). However, working with the
true posterior distribution is computationally intractable (otherwise we woulgi'tesorting to
variational methods). We must therefore consider a more restricted fan@ihdttributions which
has the property that the lower bound (3) can be evaluated and optimigéehélfy and yet which
is still sufficiently flexible as to give a good approximation to the true postersriloution.

This method leads to minimisation of ‘exclusive’ divergence(Rl P) rather than the ‘inclu-
sive’ divergence KI(P||Q). Minimising the exclusive divergence can lead t@avhich ignores
modes ofP. However, minimising the inclusive divergence can lea@tassigning posterior mass
to regions wherd® has vanishing density. If the latter behaviour is preferred, then theralar
ternative approximation techniques for minimising the inclusive diverganclkiding expectation
propagation (Minka, 2001).
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2.1 Factorised Variational Distributions

We wish to choose a variational distributi@{H) with a simpler structure than that of the model,
so as to make calculation of the lower boua(Q) tractable. One way to simplify the dependency
structure is by choosing a variational distribution where disjoint grouparidbles are independent.
This is equivalent to choosing to have a factorised form

H) = [1Q(Hi), (4)

where{H;} are the disjoint groups of variables. This approximation has been sficliesised
in many applications of variational methods (Attias, 2000; Ghahramani aatj B@01; Bishop,
1999). Substituting (4) into (3) gives

ZHQ. ) INP(H,V) — Z;Q. ) InQi(H;).

We now separate out all terms in one fad@y
L(Q) = ;QJ ){InP(H V)> Q(H j)-l-H(Qj)-i-ZH(Qi)
%]

= —KL(Qj||Q})+terms not inQ; 5)
whereH denotes entropy and we have introduced a new distrib@igulefined by
INQj(H;) = (INP(H,V)) .qn)) +const (©)

and(-) .qH;) denotes an expectation with respect to all factors exQefitij). The bound is max-
imised with respect t®@; when the KL divergence in (5) is zero, which occurs wign= Q;.
Therefore, we can maximise the bound by set@gqual toQj. Taking exponentials of both sides
we obtain

Qj(H)) = 5 expinP(H.V)) g, @

whereZ is the normalisation factor needed to m&Kea valid probability distribution. Note that the
equations for all of the factors are coupled since the solution for € ;) depends on expec-
tations with respect to the other factdps.;. The variational optimisation proceeds by initialising
each of theQ;(H;) and then cycling through each factor in turn replacing the current distibu
with a revised estimate given by (7).

3. Variational Message Passing

In this section, the variational message passing algorithm will be derivéedlamwn to optimise
a factorised variational distribution using a message passing procenlargraphical model. For
the initial derivation, it will be assumed that the variational distribution is fagtorwith respect to
each hidden variabld; and so can be written

H)=[]QH
|
From (6), the optimised form of thth factor is given by
INQj(Hj) = (INP(H,V)).qun;) + const

664



VARIATIONAL MESSAGEPASSING

CpK = pa\H;j

I

Figure 1: A key observation is that the variational update equation fodalHpdepends only on
expectations over variables in the Markov blanket of that node (shbadesl), defined
as the set of parents, children and co-parents of that node.

We now substitute in the form of the joint probability distribution of a Bayesidwokk, as given
in (1),

InQj(Hj) = z INP(X|pa)) ~o(H;) +const

Any terms in the sum overthat do not depend oH; will be constant under the expectation and
can be subsumed into the constant term. This leaves only the condiigtglpg) together with
the conditionals for all the children &f;, as these havd; in their parent set,

INQj(H}) = (INP(H; |pg))~qr)) + ¥ eer, INP(X|Pa)) ~qer;) + const ®)

where ch are the children of nodg in the graph. Thus, the expectations required to evalQ@ate
involve only those variables lying in the Markov blankethf, consisting of its parents, children

and co—parenﬂscg((”. This is illustrated in the form of a directed graphical model in Figure 1. Note
that we use the notatioKy to denote both a random variable and the corresponding node in the
graph. The optimisation d@; can therefore be expressed as a local computation at theHyode
This computation involves the sum of a term involving the parent nodes, alithgne term from
each of the child nodes. These terms can be thought of as ‘messagesh& corresponding nodes.
Hence, we can decompose the overall optimisation into a set of local compstttat depend only

on messages from neighbouring (i.e. parent and child) nodes in thie.grap

3.1 Conjugate-Exponential Models

The exact form of the messages in (8) will depend on the functional &rime conditional distri-
butions in the model. It has been noted (Attias, 2000; Ghahramani andZ2B€dl) that important
simplifications to the variational update equations occur when the distributioasiables, condi-

1. The co-parents of a nodeare all the nodes with at least one child which is also a child ¢xcludingX itself).
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tioned on their parents, are drawn from the exponential family and ajegaie® with respect to
the distributions over these parent variables. A model where both of tbesé&aints hold is known
as aconjugate-exponentiahodel.

A conditional distribution is in the exponential family if it can be written in the form

P(X|Y) = expl@(Y)Tu(X) + f(X) +9(Y)] (9)

whereg(Y) is called thenatural parameterector andi(X) is called thenatural statisticvector. The
termg(Y) acts as a normalisation function that ensures the distribution integrates to amémgyf
given setting of the paramete¥s The exponential family contains many common distributions,
including the Gaussian, gamma, Dirichlet, Poisson and discrete distributidresadvantages of
exponential family distributions are that expectations of their logarithms artabla to compute
and their state can be summarised completely by the natural parameter vaetaselof conjugate
distributions means that the posterior for each factor has the same form @sahand so learning
changes only the values of the parameters, rather than the functiomabfohe distribution.

If we know the natural parameter vectpfY ) for an exponential family distribution, then we
can find the expectation of the natural statistic vector with respect to the digiribRewriting (9)
and definingy as a reparameterisation @fn terms of gives,

P(X|¢) = expl@u(X) + f (X) +3(9)]-
We integrate with respect ¥,
[ expigTu(x)+ £(x) + 5@ dX = [ P(X|9)dx = 1
X X

and then differentiate with respect¢o
d -
[ oAU + F(X)+G@)dX = (1) = 0
x ag
d@(cp)}
/XP(X|cp)[u(X)+ do | O

And so the expectation of the natural statistic vector is given by

UXDpx @ = 55 (10)

We will see later that the factors of oQrdistribution will also be in the exponential family and will
have the same natural statistic vector as the corresponding fad®ottEnce, the expectation af
under theQ distribution can also be found using (10).

3.2 Optimisation of Q in Conjugate-Exponential Models

We will now demonstrate how the optimisation of the variational distribution caralied out,
given that the model is conjugate-exponential. We consider the gems@bt optimising a factor

2. A parentdistributiofP(X | Y) is said to beconjugateto a child distributioP(W | X) if P(X|Y) has the same functional
form, with respect tX, asP(W | X).
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Figure 2: Part of a graphical model showing a nddehe parents and children ¥f and the co-
parents ofY with respect to a child nods.

Q(Y) corresponding to a nodé whose children includ¥, as illustrated in Figure 2. From (9), the
log conditional probability of the variablM given its parents can be written

INP(Y |pay) = @, (pa,) Tuy (Y) + fy(Y) + v (pay). (11)

The subscripty on each of the functiong,,uy, fy,gy is required as these functions differ for
different members of the exponential family and so need to be definecaselydor each node.

Consider a nod¥ € chy which is a child ofY. The conditional probability aX given its parents
will also be in the exponential family and so can be written in the form

INP(X|Y,cpy) = @ (Y,cpy) "ux (X) + fx (X) +gx (Y, cpy) (12)

where cR are the co-parents 8fwith respect toX, in other words, the set of parentsXexcluding
Y itself. The quantityP(Y |pa,) in(11) can be thought of as a prior ovéy andP(X|Y,cp,) as a
(contribution to) the likelihood oY'.

If X is Gaussian distributed with meahand precisiorB, it follows that the co-parent set ¢p

é contains onlyB, and the log conditional foX is
3 BY 17[ X
InP(X|Y,B) = [ B2 } [ 2 ]+g(|nB—BY2—|n2n). (13)

Conjugacy requires that the conditionals of (11) and (12) have the samgdnal form with
respect tor, and so the latter can be rewritten in termsiefY) by defining functionsp,, andA as
follows

INP(X|Y,cpy) = Gy (X, cpy) Tuy (Y) +A (X, cpy). (14)
It may appear from this expression that the functigqy depends on the form of the parent con-
ditional P(Y |pa,) and so cannot be determined locallyXat This is not the case, because the

conjugacy constraint dictates (Y) for any parent’ of X, implying thatgy, can be found directly
from the form of the conditiond®(X | pax).
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Continuing the above example, we can fipg, by rewriting the log conditional in terms of to
give

Example

BX
-B/2

which lets us defingy, and dictate whatly (Y) must be to enforce conjugacy,

InP(X|Y,B):[ T[ Jz ]+%(InB—BX2—In2n),

aaxp | B[ won=] 2] (15)

From (12) and (14), it can be seen thaP[iX | Y,cp,) is linear inux (X) anduy (Y) respectively.
Conjugacy also dictates that this log conditional will be lineau(Z) for each co-parert < cp .
Hence, IrP(X|Y,cp,) must be a multi-linedrfunction of the natural statistic functiomsof X and
its parents. This result is general, for any variaBlén a conjugate-exponential model, the log
conditional INP(A|paa) must be a multi-linear function of the natural statistic functiond ahd its
parents.

The log conditional IfP(X|Y,B) in (13) is multi-linear in each of the vectors,

Example

w00 =[ o | wen=[ g2 |- wer=| B ]

Returning to the variational update equation (8) for a nodiefollows that all the expectations
on the right hand side can be calculated in terms of thdor each node in the Markov blanket of
Y. Substituting for these expectations, we get

INQL(Y) = (@ (pay) uv(Y)+fr(Y)+av(Pa)) o
+ 3 (B (%P Ty (Y) +A (X, €A )y T CONSE

kec

which can be rearranged to give

N
INQY(Y) = [{@®(Pay)) gy + <(pr(kaCﬂ<)>~Q(Y)] Uy (Y)

kec!
+fy(Y) 4+ const (16)

It follows that Q¥ is an exponential family distribution of the same formR{¥ |pay) but with a
natural parameter vectgt, such that

(o (pay)) + ZW (@y (X, cpy)) (17)

kecl

o

where all expectations are with respecQoAs explained above, the expectationsppfand each
@y are multi-linear functions of the expectations of the natural statistic vectorsspmnding to
their dependent variables. It is therefore possible to reparameterssefthrections in terms of these

3. A function f is a multi-linear function of variablea,b... if it varies linearly with respect to each variable, for
example,f(a,b) = ab+ 3b is multi-linear ina andb. Although, strictly, this function igffinein a because of the
constant term, we follow common usage and refer to it as linear.
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expectations

o ({(U)iepa,) = (@ (pay))
U, {(Uj) een) = (Bxy(XiCRO)) -

The final step is to show that we can compute the expectations of the naditisticsvectoral under

Q. From (16) any variablé has a factoQa with the same exponential family form &A|paa).
Hence, the expectations af can be found from the natural parameter vector of that distribution
using (10). In the case whefds observed, the expectation is irrelevant and we can simply calculate
ua(A) directly.

v (¢

In (15), we definedpy (X, B) = { _%);2 } We now reparameterise it as

Example

v (). () | 500 |

where(ux)o and(ug)o are the first elements of the vectdisc) and (ug) respectively (and so are

equal to(X) and(B)). As required, we have reparameterisggd into a functionf[)XY which is a
multi-linear function of natural statistic vectors.

3.3 Definition of the Variational Message Passing Algorithm

We have now reached the point where we can specify exactly what tfeermessages between
nodes must take and so define the variational message passing algoritemme$hage from a
parent nodé& to a child nodeX is just the expectation und€r of the natural statistic vector

My_x = (Uy). (18)
The message from a child nodeto a parent nod¥ is
Mx .y :?p)(Y (<UX>7{mi—>X}i€pr) (19)

which relies onX having received messages previously from all the co-parents. lhadgA is
observed then the messages are as defined above byuwjitreplaced byua.

If X is Gaussian distributed with conditior{X|Y, ), the messages to its pareltandp are

_[ ®x) —3((X%) =2(X) (1) +(Y?))
mH[—@/z}’ :

Example

Mx_.p = [

and the message froKto any child node is{ <<)>((2>> } .

When a nodé& has received messages from all parents and children, we can fingslé&ted
posterior distributionQy by finding its updated natural parameter veafpr This vectorg; is
computed from all the messages received at a node using

O = O ({Misvlicpa)+ mj_y, (20)

jec

669



WINN AND BISHOP

which follows from (17). The new expectation of the natural statistic ve@ofq, can then be
found, as it is a deterministic function @§.

The variational message passing algorithm uses these messages to optivésatiomal dis-
tribution iteratively, as described in Algorithm 1 below. This algorithm requiteat the lower
bound£(Q) be evaluated, which will be discussed in Section 3.6.

Algorithm 1 The variational message passing algorithm

1. Initialise each factor distributioi®; by initialising the corresponding moment vector
(uj (X))

2. For each nod; in turn,

¢ Retrieve messages from all parent and child nodes, as defined im@8)®). This will
require child nodes to retrieve messages from the co-pareits of
e Compute updated natural parameter vegfousing (20).

e Compute updated moment vectar (X;)) given the new setting of the parameter vector.
3. Calculate the new value of the lower boua@) (if required).

4. If the increase in the bound is negligible or a specified number of iterdiembeen reached,
stop. Otherwise repeat from step 2.

3.4 Example: the Univariate Gaussian Model

To illustrate how variational message passing works, let us apply it to a mdueh represents a
set of observed one-dimensional dé%a}N_; with a univariate Gaussian distribution of mgaand
precisiony,

N
P(x|H) = |j|19\l(xn\u,v_1)-

We wish to infer the posterior distribution over the paramegeasdy. In this simple model the
exact solution is tractable, which will allow us to compare the approximate parstgth the true
posterior. Of course, for any practical application of VMP, the exastgrior would not be tractable
otherwise we would not be using approximate inference methods.

In this model, the conditional distribution of each data peajnis a univariate Gaussian, which
is in the exponential family and so its logarithm can be expressed in starutaré$

mPOaly ) = | %, ]T 33 ]+ Sny-we - mam

and saux(Xn) = [¥n,X2]T. This conditional can also be written so as to separate out the deperglencie

onpandy
-

Y } [u

2

NP0y ™) = [_y/z

} +%(Iny—yxﬁ—ln2n) (21)
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{mMy—y}

(d)

Figure 3: (a)-(d) Message passing procedure for variationalanter in a univariate Gaussian
model. The box around the node denotes plate, which indicates that the contained
node and its connected edges are duplichtdines. The braces around the messages
leaving the plate indicate that a setistinct messages are being sent.

1 21T
_ [E(X"l“) ] [IV ]_mzn (22)
2 ny

which shows that, for conjugacyy, (1) must be[p, u?]T andu,(y) must bely,Iny]T or linear trans-
forms of thesé. If we use a separate conjugate prior for each parametegithrerst have a Gaussian
prior andy a gamma prior since these are the exponential family distributions with thesalnatur
statistic vectors. Alternatively, we could have chosen a normal-gamma peaototh parameters
which leads to a slightly more complicated message passing procedure. We tthefiparameter
priors to have hyper-parameters3, a andb, so that

INP(Wmp) = [_%TZ]T[&]+;(InB—BmZ—In2n)

InP(y|a,b) = [ a_—bl T[ Ir:/y } +alnb—InT(a).

3.4.1 VARIATIONAL MESSAGEPASSING IN THE UNIVARIATE GAUSSIAN MODEL

We can now apply variational message passing to infer the distributiong @rety variationally.
The variational distribution is fully factorised and takes the form

QK Y) = Qu(Qy(Y)-

We start by initialisingQ,(1) andQy(y) and find initial values ofuy(p)) and(uy(y)). Letus
choose to updat®,(p) first, in which case variational message passing will proceed as follows
(illustrated in Figure 3a-d).

(a) As we wish to updat®,(p), we must first ensure that messages have been sent to the children
of p by any co-parents. Thus, messaggs.x, are sent frony to each of the observed nodes
X,. These messages are the same, and are just eqUaj() = [(y), (Iny)]T, where the
expectation are with respect to the initial settind}f

4. To prevent the need for linear transformation of messages, afiseth form of natural statistic vectors will always
be used, for examplgy, 12]" or [y, Iny]".
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(b) Eachx, node has now received messages from all co-paremtsnfl so can send a message
to pwhich is the expectation of the natural parameter vector in (21),

Mha—u= [ —%;72 ] '

(c) Nodephas now received its full complement of incoming messages and can updettuiisl

parameter vector,
N

b= e |+ Zm

The new expectatiofu, (1)) can then be computed under the updated distribu@iprand
sent to eaclx, as the message,.x, = [(W), (12)]".

(d) Finally, eachx, node sends a message back which is

—%(Xﬁ—2x§<u> +(12)) }

My, —y = [ 1
2

andy can update its variational posterior
b N
n=1

As the expectation ofi,(y) has changed, we can now go back to step (a) and send an updated
message to eacly, node and so on. Hence, in variational message passing, the messsigg pas
procedure is repeated again and again until convergence (unlike ifgrelgagation on a junction
tree where the exact posterior is available after a message passingisaelfonce). Each round
of message passing is equivalent to one iteration of the update equatidlasdiarsl variational
inference.

Figure 4 gives an indication of the accuracy of the variational approximatiahis model,
showing plots of both the true and variational posterior distributions for @xaynple. The differ-
ence in shape between the two distributions is due to the requireme beafactorised. Because
KL (Q||P) has been minimised, the optim@lis the factorised distribution which lies slighilyside
P.

3.5 Initialisation and Message Passing Schedule

The variational message passing algorithm is guaranteed to convergectd minimum of the KL
divergence. As with many approximate inference algorithms, including &apen-Maximisation
and Expectation Propagation, it is important to have a good initialisation toestisair the local
minimum that is found is sufficiently close to the global minimum. What makes a goodigdtian
will depend on the model. In some cases, initialising each factor to a broaithatistin will suffice,
whilst in others it may be necessary to use a heuristic, such as using ksmadaitialise a mixture
model.

The variational distribution in the example of Section 3.4 contained only tworkaatal so mes-
sages were passed back-and-forth so as to update these alterndtaliy. unlike belief propagation,
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Variational posterior True posterior

157

@

Figure 4: Contour plots of the variational and true posterior over the mesrd precisiory of
a Gaussian distribution, given four samples frad{x|5,1). The parameter priors are
P(n) = A(0,1000 andP(y) = Gammd0.001, 0.001).

messages in VMP can be passed according to a very flexible schedaley point, any factor can
be selected and it can be updated locally using only messages from its oiglaimd co-parents.
There is no requirement that factors be updated in any particular ¢tderever, changing the up-
date order can change which stationary point the algorithm convergegeto|f the initialisation is
unchanged.

Another constraint on belief propagation is that it is only exact for gsaphich are trees and
suffers from double-counting if loops are included. VMP does noelthis restriction and can be
applied to graphs of general form.

3.6 Calculation of the Lower Bound L(Q)

The variational message passing algorithm makes use of the lower Eg@)das a diagnostic of
convergence. Evaluating the lower bound is also useful for performingel selection, or model
averaging, because it provides an estimate of the log evidence for thé. mode

The lower bound can also play a useful role in helping to check the coesboth of the ana-
Iytical derivation of the update equations and of their software implementatiaply by evaluating
the bound after updating each factor in the variational posterior distribatidrchecking that the
value of the bound does not decrease. This can be taken a stage [@rshep and Sverin, 2003)
by using numerical differentiation applied to the lower bound. After eadatg the gradient of the
bound is evaluated in the subspace corresponding to the parametersipéittied factor, to check
that it is zero (within numerical tolerances). This requires that the diffexton take account of
any constraints on the parameters (for instance that they be positive trdfidum to one). These
checks, of course, provide necessary but not sufficient condifmmcorrectness. Also, they add
computational cost so would typically only be employed whilst debugging the megaitation.

In previous applications of variational inference, however, the etialuaf the lower bound
has typically been done using separate code from that used to implememidae equations.
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Although the correctness tests discussed above also provide a chduk mitual consistency of
the two bodies of code, it would clearly be more elegant if their evaluatiold dmuunified.

This is achieved naturally in the variational message passing framewonlobigling a way to
calculate the bound automatically, as will now be described. To recap, tiee bmund on the log
evidence is defined to be

L(Q) = (InP(H,V)) —(InQ(H)),

where the expectations are with respedtdn a Bayesian network, with a factoris@distribution,
the bound becomes

LQ) = Z<lnP(Xa!pa)>—_; (INQi(Hi))
def S L

where it has been decomposed into contributions from the individualsrodé. For a particular
latent variable nodelj, the contribution is

L= (InP(Hj|pg)) — (InQ;(Hj)).

Given that the model is conjugate-exponential, we can substitute in the stdada for the expo-
nential family

Li = (¢;(pg)")(uj(Hp)) +(fi(H})) +(g;(pa))
— [ @ i) + (i (HD) + G (@)

where the functioj is a reparameterisation gf so as to make it a function of the natural parameter
vector rather than the parent variables. This expression simplifies to

Li = (9;(pa)) — @) (uj(H))) +(9;(P3)) — §j(@))- (23)

Three of these terms are already calculated during the variational mexsesaieg algorithm(g; (p3))
andg; when finding the posterior distribution ovel; in (20), and(uj(H;)) when calculating out-
going messages frofdj. Thus, considerable saving in computation are made compared to when
the bound is calculated separately.

Each observed variablé also makes a contribution to the bound

Ly = (InP(Vk|pa))
(@ (pac)) Tuk(Vio) + fic(Vio) + Gk ((@(P&))) -

Again, computation can be saved by computingVi) during the initialisation of the message
passing algorithm.

Example 1 Calculation of the Bound for the Univariate Gaussian Model
In the univariate Gaussian model, the bound contribution from each obdemvde xis

L = [<<>y<>/>2] [ﬁg]+§(<Inv>—<v><u2>—ln2n)
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and the contributions from the parameter nodes | pace

L = { Bm—p'm ]T{ (W }Jr%(lnB—Bmz—InB’JrB’mz)

—B/2+p/2 (2)
;AT
oo { _abj_al/) } [ <|<ny>y> ]+a|nb_|nr(a)—a/|nb’_|_|nr(a/).

The bound for this univariate Gaussian model is given by the sum of theledigns from the p
andy nodes and all xnodes.

4. Allowable Models

The variational message passing algorithm can be applied to a wide classlefmehich will be
characterised in this section.

4.1 Conjugacy Constraints

The main constraint on the model is that each parent—child edge must saéisfprhbtraint of
conjugacy. Conjugacy allows a Gaussian variable to have a Gaussint farits mean and we
can extend this hierarchy to any number of levels. Each Gaussian nse@deganma parent as the
distribution over its precision. Furthermore, each gamma distributed variahlbave a gamma
distributed scale parametierand again this hierarchy can be extended to multiple levels.

A discrete variable can have multiple discrete parents with a Dirichlet priar theeentries
in the conditional probability table. This allows for an arbitrary graph of rdisc variables. A
variable with an Exponential or Poisson distribution can have a gamma pgoitescale or mean
respectively, although, as these distributions do not lead to hierar¢h@smay be of limited
interest.

These constraints are listed in Table 1. This table can be encoded in implenrentdtihe
variational message passing algorithm and used during initialisation to cteecknjugacy of the
supplied model.

4.1.1 TRUNCATED DISTRIBUTIONS

The conjugacy constraint does not put any restrictions orf,t) term in the exponential family
distribution. If we choosdy to be a step function

0 : X>0
fX(X):{—oo . X<0

then we end up with a rectified distribution, so tiR&X |6) = 0 for X < 0. The choice of such a
truncated distribution will change the form of messages to parent noddldgy normalisation

function will also be different) but will not change the form of messages &ne passed to child
nodes. However, truncation will affect how the moments of the distributiencatculated from
the updated parameters, which will lead to different values of child messdge example, the
moments of a rectified Gaussian distribution are expressed in terms of tharstéerd’ function.

Similarly, we can consider doubly truncated distributions which are nom-ady over some finite
interval, as long as the calculation of the moments and parent messages reawaide. One
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| Distribution || 1%'parent | Conjugate dist. || 2" parent | Conjugate dist. |
Gaussian meany Gaussian precisiony gamma
gamma shapea None scaleb gamma
discrete probabilitiesp Dirichlet parents{x; } discrete
Dirichlet pseudo-counta None
Exponential scalea gamma
Poisson meani gamma

Table 1: Distributions for each parameter of a number of exponential farityilmitions if the
model is to satisfy conjugacy constraints. Conjugacy also holds if the distnilsutice
replaced by their multivariate counterparts e.g. the distribution conjugate prebision
matrix of a multivariate Gaussian is a Wishart distribution. Where “None” isifipd, no
standard distribution satisfies conjugacy.

potential problem with the use of a truncated distribution is that no standaribbdigns may exist
which are conjugate for each distribution parameter.

4.2 Deterministic Functions

We can considerably enlarge the class of tractable models if variableBoavedto be defined as
deterministic functions of the states of their parent variables. This is achivadding determin-
istic nodes into the graph, as have been used to similar effect in the BUG&=s®{see Section 5).

Consider a deterministic nodewhich has stochastic parerts= {Yi,...,Yu} and which has
a stochastic child nodg. The state oiX is given by a deterministic functioh of the state of its
parents, so that = f(Y). If X were stochastic, the conjugacy constraint vdttvould require that
P(X]Y) must have the same functional form, with respecKtcasP(Z|X). This in turn would
dictate the form of the natural statistic vectgr of X, whose expectatiofux (X))o would be the
message fronx to Z.

Returning to the case whebk€is deterministic, it is still necessary to provide a message to
of the form (ux (X))o where the functiomy is dictated by the conjugacy constraint. This message
can be evaluated only if it can be expressed as a function of the me$sagdke parent variables,
which are the expectations of their natural statistics functigos (Y;))o}. In other words, there
must exist a vector functiogy such that

(ux(f(Y)))q = Wx((Uvi(Y1))Qs -+ (U (Y))Q)-

As was discussed in Section 3.2, this constraig&f (Y)) to be a multi-linear function of the set of
functions{uy (Y;)}.

A deterministic node can be viewed as a having a conditional distribution whicte#ta func-
tion, so thaP(X|Y) = &(X — f(Y)). If X is discrete, this is the distribution that assigns probability
one to the stat¥ = f(Y) and zero to all other states.Xfis continuous, this is the distribution with
the property thaf g(X) 6(X — f(Y))dX =g(f(Y)). The contribution to the lower bound from a
deterministic node is zero.
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Example 2 Using a Deterministic Function asthe Mean of a Gaussian

Consider a model where a deterministic node X is to be used as the meabhilaf &aussian distri-
butionA((Z|X,B~1) and where X equals a function f of Gaussian-distributed variables X Yy.
The natural statistic vectors of X (as dictated by conjugacy with Z) and thioge. .., Yy are

ux (X) = [ ;(2 }, uy, (Y) = [ ;’2} fori=1...M

The constraint on f is thatyx (f) must be multi-linear iuy, (Y;)} and so both f and ¥ must be
multi-linear in {Y;} and {Y?}. Hence, f can be any multi-linear function of,Y..,Yy. In other
words, the mean of a Gaussian can be the sum of products of othesi@aulistributed variables.

Example 3 Using a Deterministic Function as the Precision of a Gaussian

As another example, consider a model where X is to be used as thegeanfi® child Gaussian
distribution A’(Z |, X 1) and where X is a function f of gamma-distributed variables Y, Yy.
The natural statistic vectors of X andl,Y..,Yy are

ux (X) = [ Ir:(X } uy, (Vi) = [ I:IY. ] fori=1...M.

and so both f andh f must be multi-linear iY;} and {InY;}. This restricts f to be proportional

to a product of the variablesyY..., Yy as the logarithm of a product can be found in terms of the
logarithms of terms in that product. Hence=fc[7];Y; where c is a constant. A function containing

a summation, such as= 5;Y;, would not be valid as the logarithm of the sum cannot be expressed
as a multi-linear function of;YandInY;.

4.2.1 \ALIDATING CHAINS OF DETERMINISTIC FUNCTIONS

The validity of a deterministic function for a nodeis dependent on the form of the stochastic nodes
it is connected to, as these dictate the functisnand{uy, (Y;) }. For example, if the function was a
summationf = 3, it would be valid for the first of the above examples but not for the sg.clin
addition, it is possible for deterministic functions to be chained together tofoone complicated
expressions. For example, the expressioa Y; + Y2Y3 can be achieved by having a deterministic
product nodeA with parentsy, andYs and a deterministic sum nodéwith parentsy; andA. In

this case, the form of the functiam is not determined directly by its immediate neighbours, but
instead is constrained by the requirement of consistency for the codraimtrministic subgraph.

In a software implementation of variational message passing, the validity ofiaytar deter-
ministic structure can most easily be checked by requiring that the funegjdre specified explic-
itly for each deterministic nods, thereby allowing the existing mechanism for checking conjugacy
to be applied uniformly across both stochastic and deterministic nodes.

4.2.2 DETERMINISTIC NODE MESSAGES

To examine message passing for deterministic nodes, we must considenénal gase where the
deterministic nodeX has multiple childre{Z;}. The message from the nodeto any childZ; is
simply

mX—>ZJ' = <uX(f(Y))>Q
= Px(My,—x,...,My,—x).
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For a particular pareni, the functionux (f(Y)) is linear with respect taly, (Yc) and so it can be
written as

ux (f(Y)) = Wxx ({uy; (Y) Fizk) - Uy (Yic) + A({uy; (Y5) isz)

whereWy y, is a matrix function of the natural statistics vectors of the co-parenfs dihe message
from a deterministic node to a pareftis then

Wx v ({Myi—x fizk)

J

which relies on having received messages from all the child nodes amcaf the co-parents. The
sum of child messages can be computed and stored locally at the nodesdrid egaluate all child-
to-parent messages. In this sense, it can be viewed as the naturakparaector of a distribution
which acts as a kind of pseudo-posterior over the valué. of

4.3 Mixture Distributions

So far, only distributions from the exponential family have been congideddten it is desirable
to use richer distributions that better capture the structure of the systemethatated the data.
Mixture distributions, such as mixtures of Gaussians, provide one commywfiaeating richer
probability densities. A mixture distribution over a variaas a weighted sum of a number of
component distributions

K
POX| {14, {8) = Y TRA(X|69

where eachP is a component distribution with paramet®sand a corresponding mixing coeffi-
cient Ty indicating the weight of the distribution in the weighted sum. Rhenixing coefficients
must be non-negative and sum to one.

A mixture distribution is not in the exponential family and therefore cannotdssl wirectly
as a conditional distribution within a conjugate-exponential model. Insteadiaw introduce an
additional discrete latent variabldewhich indicates from which component distribution each data
point was drawn, and write the distribution as

K

P(X |\, {6) = [ Pe(X |8,

k=1

Conditioned on this new variable, the distribution is now in the exponential farmroljiged that all
of the component distributions are also in the exponential family. In this tasdéog conditional
probability of X given all the parents (including) can be written as

INP(X[A, {6}) = Z S(A, k) [@c(81) "u(X) + fi(X) + gi(Bic)]

If X has a childz, then conjugacy will require that all the component distributions have time sa

natural statistic vector, which we can then aallso: u1(X) = ua(X) = ... = ug(X) def ux(X). In

addition, we may choose to specify, as part of the model, that all these diigine have exactly

678



VARIATIONAL MESSAGEPASSING

the same form (thatify = fo = ... = fk def fx), although this is not required by conjugacy. In this
case, where all the distributions are the same, the log conditional becomes

T

INP(X|A, {6}) = ux (X) + fx (X)

25(7\7 K) @ (6k)
+ Z S(A, K) gk (6k)

= @A {8) Tux (X) + fx (X) + Gx (% (A, {8k}))

where we have definegl, = 5 8(A, k)@ (6x) to be the natural parameter vector of this mixture
distribution and the functiogy is a reparameterisation gk to make it a function ofp, (as in
Section 3.6). The conditional is therefore in the same exponential familydsreach of the com-
ponents.

We can now apply variational message passing. The message from ¥ nocny child is
(ux (X)) as calculated from the mixture parameter vegofA, {6x}). Similarly, the message from
X to a parenby is the message that would be sent by the corresponding component ikitnaer
in a mixture, scaled by the variational posterior over the indicator var@ble= k). Finally, the
message fronX to A is the vector of siz& whosekth element igInP(X | 6k)).

4.4 Multivariate Distributions

Until now, only scalar variables have been considered. It is also pedsibandle vector variables
in this framework (or to handle scalar variables which have been graapzd vector to capture
posterior dependencies between the variables). In each case, a riatéiicanditional distribution

is defined in the overall joint distributidA and the corresponding factor in the variational posterior
Q will also be multivariate, rather than factorised with respect to the elements ofetttor. To
understand how multivariate distributions are handled, considat-thimensional Gaussian distri-
bution with mearu and precision matrikA:

POIIA ) = [ migexp(-1x-TA (x- 1),

This distribution can be written in exponential family form

| AL = a7 X L(In|A| — WTAp—dIn2
XA = | s || ey |+ H0IA- AR dinm

where ve¢-) is a function that re-arranges the elements of a matrix into a column vector in some
consistent fashion, such as by concatenating the columns of the matriraitiral statistic function

for a multivariate distribution therefore depends on both the type of the distiband its dimen-
sionalityd. As a result, the conjugacy constraint between a parent node and anctédwill also
constrain the dimensionality of the corresponding vector-valued varitdlee the same. Multi-
variate conditional distributions can therefore be handled by VMP like #rer@xponential family
distribution, which extends the class of allowed distributions to include multieaGaussian and
Wishart distributions.

5. The precision matrix of a multivariate Gaussian is the inverse of its i matrix.
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A group of scalar variables can act as a single parent of a vectoedalede. This is achieved
using a deterministiconcatenatiorfunction which simply concatenates a number of scalar values
into a vector. In order for this to be a valid function, the scalar distributionst still be conjugate
to the multivariate distribution. For example, a setlafnivariate Gaussian distributed variables can
be concatenated to act as the mean @fdimensional multivariate Gaussian distribution.

4.4.1 NORMAL-GAMMA DISTRIBUTION

The mearu and precisiory parameters of a Gaussian distribution can be grouped together into a
single bivariate variable= {,y}. The conjugate distribution for this variable is the normal-gamma
distribution, which is written

mA Ky
—3A Wy |,
InP(c|m,A,a,b) = b AR v +i(InA—=In2m) +alnb—InT (a).
2
a—1} Iny

This distribution therefore lies in the exponential family and can be used witM® Yhstead of
separate Gaussian and gamma distributions. In general, grouping thiesdegatogether will im-
prove the approximation and so increase the lower bound. The multivariateof this distribution,
the normal-Wishart distribution, is handled as described above.

4.5 Summary of Allowable Models

In summary, the variational message passing algorithm can handle prdimhiliglels with the
following very general architecture: arbitrary directed acyclic subiggeof multinomial discrete
variables (each having Dirichlet priors) together with arbitrary subdggag univariate and mul-
tivariate linear Gaussian nodes (having gamma and Wishart priors), \bitinagdy mixture nodes
providing connections from the discrete to the continuous subgraphaddition, deterministic
nodes can be included to allow parameters of child distributions to be determfoistitons of
parent variables. Finally, any of the continuous distributions can be sorghpubly truncated to
restrict the range of allowable values, provided that the appropriate ntsmeder the truncated
distribution can be calculated along with any necessary parent messages.

This architecture includes as special cases models such as hiddenviiaokiels, Kalman
filters, factor analysers, principal component analysers and indepecomponent analysers, as
well as mixtures and hierarchical mixtures of these.

5. VIBES: An Implementation of Variational Message Passing

The variational message passing algorithm has been implemented in a sqitchege called
VIBES (Variational Inference in BayEsian networkS), first desatibg Bishop et al. (2002). In-
spired by WinBUGS (a graphical user interface for BUGS by Lunn et28i00), VIBES allows
for models to be specified graphically, simply by constructing the Bayestaroriefor the model.
This involves drawing the graph for the network (using operations similardsettin a drawing
package) and then assigning properties to each node such as its nafuecttomal form of the
conditional distribution, its dimensionality and its parents. As an example, Fystgows the
Bayesian network for the univariate Gaussian model along with a s¢reienisthe same model in
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Figure 5: (a) Bayesian network for the univariate Gaussian model.cfeeBshot of VIBES show-
ing how the same model appears as it is being edited. The x@&iselected and the
panel to the left shows that it has a Gaussian conditional distribution with pn@aad
precisiony. The plate surrounding shows that it is duplicatetl times and the heavy
border indicates that it is observed (according to the currently attactedile).

VIBES. Models can also be specified in a text file, which contains XML &ding to a pre-defined
model definition schema. VIBES is written in Java and so can be used on Wéndmux or any
operating system with a Java 1.3 virtual machine.

As in WinBUGS, the convention of making deterministic nodes explicit in the gcaphep-
resentation has been adopted, as this greatly simplifies the specificationenpdeitation of the
model. VIBES also uses the plate notation of a box surrounding one or mdes o denote that
those nodes are replicated some number of times, specified by the parantbgbattom right
hand corner of the box.

Once the model is specified, data can be attached from a separate dathidhecantains
observed values for some of the nodes, along with sizes for some otladl pfates. The model can
then beinitialised which involves: (i) checking that the model is valid by ensuring that comjyga
and dimensionality constraints are satisfied and that all parameters aifeeglp€ic) checking that
the observed data is of the correct dimensionality; (iii) allocating memory fomathents and
messages; (iv) initialisation of the individual distributid@s

Following a successful initialisation, inference can begin immediately. Asdnéer proceeds,
the current state of the distributidpy for any node can be inspected using a range of diagnostics
including tables of values and Hinton diagrams. If desired, the lower bag@)j can be monitored
(at the expense of slightly increased computation), in which case the optimisaiiobe set to
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terminate automatically when the change in the bound during one iteration detipg & small
value. Alternatively, the optimisation can be stopped after a fixed numberrafides.

The VIBES software can be downloaded frdwrt p: / / vi bes. sour cef or ge. net . This soft-
ware was written by one of the authors (John Winn) whilst a Ph.D. studaghedJniversity of
Cambridge and is free and open source. Appendix A contains a tutariapfidying VIBES to an
example problem involving a Gaussian Mixture model. The VIBES web site algainis an online
version of this tutorial.

6. Extensions to Variational Message Passing

In this section, three extensions to the variational message passing algwiithme described.

These extensions are intended to illustrate how the algorithm can be modifiedaopalternative

inference calculations and to show how the conjugate-exponential abristan be overcome in
certain circumstances.

6.1 Further Variational Approximations: The Logistic Sigmoid Function

As it stands, the VMP algorithm requires that the model be conjugate-erfiah However, it
is possible to sidestep the conjugacy requirement by introducing additiariational parameters
and approximating non-conjugate conditional distributions by valid conjumadés. We will now
illustrate how this can be achieved using the example of a conditional distribadEma binary
variablex € 0,1 of the form

P(x|a) = o(a)[1—o(a)]*™
= &¥o(-a)
where 1
¥ reda)

is the logistic sigmoid function.
We take the approach of Jaakkola and Jordan (1996) and use a valibtioind for the logistic
sigmoid function defined as

o(a) > F(af) = o(&)expl(a—g)/2+A(E)(@ &)
whereA(§) = [1/2—g(§)]/2¢ and¢ is a variational parameter. For any given valueaafie can
make this bound exact by settidg§ = a®. The bound is illustrated in Figure 6 in which the solid
curve shows the logistic sigmoid functioria) and the dashed curve shows the lower bokifa &)
for& =2.

We use this result to define a new lower bouadl £ by replacing each expectation of the
form (In[e”o(—a)]) with its lower bound(In[e®*F (—a,§)]). The effect of this transformation is
to replace the logistic sigmoid function with an exponential, therefore restodnfigacy to the
model. Optimisation of each parameter is achieved by maximising this new boﬁmdbading to
the re-estimation equation

EZ — <a2>Q.

It is important to note that, as the quantj?fyinvolves expectations of lR(—a,§), it is no longer
guaranteed to be exact for any value,of
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Figure 6: The logistic sigmoid functiom(a) and variational boun# (a,§).

It follows from (8) that the factor i corresponding t®(x|a) is updated using

INQx(x) = (IN(€*F(-a))) g+ Y (INPXpa)).qx +const

kecl
= (@) gt (biX) ., (x) + CONSt
kecl
= a'x-+const

wherea* = (a) + Y (bx) and the{by} arise from the child terms which must be in the fofbax +
const) due to conjugacy. Therefore, the variational poste@igix) takes the form

Qu(x) = o(@)[1—a(a)"™

6.1.1 WSING THELOGISTICAPPROXIMATION WITHIN VMP

We will now explain how this additional variational approximation can be usitdimthe VMP
framework. The lower bound contains terms likéIn(e®*F(—a,§))) which need to be evaluated
and so we must be able to evaluata) (a®)]". The conjugacy constraint aais therefore that
its distribution must have a natural statistic veaigfa) = [a &]. Hence it could, for example, be
Gaussian.

For consistency with general discrete distributions, we write the boundeologhconditional
InP(x|a) as

)
INP(x|a) > L‘” [g&:%]+(—a—E)/2+)\(§)(a2_52)_|_|n0(E)

_ { e H 2 ] —E/2- ME)E+InolE).

The message from nodego nodea is therefore

mea= 5 ]

and all other messages are as in standard VMP. The update of varifictoas can then be carried
out as normal except that eaglparameter must also be re-estimated during optimisation. This
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can be carried out, for example, just before sending a messagexftora. The only remaining
modification is to the calculation of the lower bound in (23), where the (gﬁpq)} is replaced
by the expectation of its bound,

(9i(Pg)) > (— (@) —&)/2+A(E)((a%) — &) +Ina(g).

This extension to VMP enables discrete nodes to have continuous pduettiey enlarging the
class of allowable models. In general, the introduction of additional vareltiperameters enor-
mously extends the class of models to which VMP can be applied, as the autrtbiad the model

distributions must be conjugate no longer applies.

6.2 Finding a Maximum A Posteriori Solution

The advantage of using a variational distribution is that it provides a postistribution over
latent variables. It is, however, also possible to use VMP to find a Maximupogteriori (MAP)
solution, in which values of each latent variable are found that maximise sierpr probability.
Consider choosing a variational distribution which is a delta function

QUAP(H) = 8(H — H")
whereH* is the MAP solution. From (3), the lower bound is

L(Q) = (InP(H,V))—(InQ(H))
= INP(H*,V)+hs

wherehg is the differential entropy of the delta function. By considering the difféad entropy of
a Gaussian in the limit as the variance goes to 0, we can sebgthaloga,a — 0. Thushg does
not depend oH* and so maximising_(Q) is equivalent to finding the MAP solution. However,
since the entrophs tends to—o, so does(Q) and so, whilst it is still trivially a lower bound on
the log evidence, it is not an informative one. In other words, knowingtbkability density of the
posterior at a point is uninformative about the posterior mass.

The variational distribution can be written in factorised form as

Q" (H) =1 Qi(Hy).
J

with Qj(Hj) = 8(Hj —Hj"). The KL divergence between the approximating distribution and the true
posterior is minimised if KKQj | Qj) is minimised, wher&); is the standard variational solution
given by (6). NormallyQj is unconstrained so we can simply set itQ). However, in this case,
Qj is a delta function and so we have to find the valuéipfthat minimises KL&(H; —HJ) [| Qj).
Unsurprisingly, this is simply the value &f; that maximise®j(H;).

In the message passing framework, a MAP solution can be obtained foticufza latent vari-
ableH;j directly from the updated natural statistic veafusing

rduj(Hj)

For example, ifQj is Gaussian with meap thenHj = p or if Qj is gamma with parameteesb,
thenH; = (a—1)/b.
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Given that the variational posterior is now a delta function, the expectafi@amy function
(f(Hj)) under the variational posterior is justH;). Therefore, in any outgoing messagesg(H;))
is replaced byij(H"). Since all surrounding nodes can process these messages as ndviA&!, a
solution may be obtained for any chosen subset of variables (suchitesifaa hyper-parameters),
whilst a full posterior distribution is retained for all other variables.

6.3 Learning Non-conjugate Priors by Sampling

For some exponential family distribution parameters, there is no standavedhplity distribution
which can act as a conjugate prior. For example, there is no standaiduistr which can act as
a conjugate prior for the shape parametef the gamma distribution. This implies that we cannot
learn a posterior distribution over a gamma shape parameter within the basicfrdMBwork.
As discussed above, we can sometimes introduce conjugate approximatiaddibg variational
parameters, but this may not always be possible.

The purpose of the conjugacy constraint is two-fold. First, it means teapadisterior distri-
bution of each variable, conditioned on its neighbours, has the same $ottme @rior distribution.
Hence, the updated variational distribution factor for that variable hasame form and inference
involves just updating the parameters of that distribution. Second, cayjugaults in variational
distributions being in standard exponential family form allowing their moments tcalmilated
analytically.

If we ignore the conjugacy constraint, we get non-standard postesimibdtions and we must
resort to using sampling or other methods to determine the moments of these tiistsburhe
disadvantages of using sampling include computational expense, inabilitictdata an analytical
lower bound and the fact that inference is no longer deterministic for engmitialisation and
ordering. The use of sampling methods will now be illustrated by an exampleirgindow to
sample from the posterior over the shape parameter of a gamma distribution.

Example 4 Learning a Gamma Shape Parameter
Let us assume that there is a latent variable a which is to be used as the phegameter of K
gamma distributed variable§«; ... xx }. We choose a to haversn-conjugaterior of an inverse-
gamma distribution:
—B

P(ala,B) O a“lexp<a> .

The form of the gamma distribution means that messages sent to the ncelevitharespect to a
natural statistic vector
a
Ha = [ Inr(a) ]

which means that the updated factor distributiofi@as the form

.
InQ3(a) = [iimmﬁa] [ Inra(a) ]Jr(al)lnangconst

This density is not of standard form, but it can be shown thdtr@) is log-concave, so we can
generate independent samples from the distributiofrfarusing Adaptive Rejection Sampling from
Gilks and Wild (1992). These samples are then transformed to get saofiglésom (a), which
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is used to estimate the expectati@R(a)). This expectation is then sent as the outgoing message to
each of the child nodes.

Each factor distribution is normally updated during every iteration and soisicdise, a number
of independent samples fro@ would have to be drawn during every iteration. If this proved too
computationally expensive, then the distribution need only be updated intertigitten

It is worth noting that, as in this example, BUGS also uses Adaptive RejectimplBa for
sampling when the posterior distribution is log-concave but non-conjugdiiést also providing
techniques for sampling when the posterior is not log-concave. Thiestgthat non-conjugate
parts of a general graphical model could be handled within a BUGS-sgyigefvork whilst varia-
tional message passing is used for the rest of the model. The resultirid agbational/sampling
framework would, to a certain extent, capture the advantages of botHqaekn

7. Discussion

The variational message passing algorithm allows approximate infereimge aufactorised vari-
ational distribution in any conjugate-exponential model, and in a rangeretanjugate models.
As a demonstration of its utility, this algorithm has already been used to sollséeprs in the do-
main of machine vision and bioinformatics (see Winn, 2003; Bishop and WD(10)2 In general,
variational message passing dramatically simplifies the construction and tefstieyy variational

models and readily allows a range of alternative models to be tested on ggoeem.

The general form of VMP also allows the inclusion of arbitrary nodes ingtiaghical model
provided that each node is able to receive and generate approprigtages the required form,
whether or not the model remains conjugate-exponential. The extensioriddRocwncerning the
logistic function and sampling illustrate this flexibility.

One limitation of the current algorithm is that it uses a variational distributionikitactorised
across nodes, giving an approximate posterior which is separable sjtbateto individual (scalar
or vector) variables. In general, an improved approximation will be aeliéva posterior distri-
bution is used which retains some dependency structure. Whilst WiegeZfoR) has presented a
general framework for such structured variational inference, les dot provide a general-purpose
algorithm for applying this framework. Winn (2003) and Bishop and WirB0@ have therefore
proposed an extended version of variational message passing whigh fidtastructured variational
distributions. VIBES has been extended to implement a limited version of thisitalgothat can
only be applied to a constrained set of models. However, a complete implememtati@valuation
of this extended algorithm has yet to be undertaken.

The VIBES software is free and open source and can be downloadedtiie VIBES web
site atht t p: // vi bes. sour cef orge. net. The web site also contains a tutorial that provides an
introduction to using VIBES.
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Appendix A. VIBES Tutorial

In this appendix, we demonstrate the application of VIBES to an example prdbielving a
Gaussian Mixture model. We then demonstrate the flexibility of VIBES by charge model to
fit the data better, using the lower bound as an estimate of the log evideneactormodel. An
online version of this tutorial is available latt p: / / vi bes. sour cef orge. net/tutorial .

The data used in this tutorial is two-dimensional and consists of nine clustethiiee-by-three
grid, as illustrated in Figure 7.

3

_l,
P e : i
¥
3 -2 -1 0 1 2 3
Xl

Figure 7: The two-dimensional data set used in the tutorial, which consistmefclusters in a
three-by-three grid.

A.1l Loading Matlab Data into VIBES

The first step is to load the data set into VIBES. This is achieved by creatingeawith the name
x which corresponds to a matrikin a Matlab. mat file. As the data matrix is two dimensional, the
node is placed inside two platiisandd and the data filename (in this cddexGaussi anDat a2D. mat )
is entered. Selecting | e—Load dat a loads the data into the node and also sets the size & the
andd plates to 500 and 2 respectively. The node is marked as observedh(shtiwa bold edge)
and the observed data can be inspected by double-clicking the node wittotise. At this point,
the display is as shown in Figure 8.

A.2 Creating and Learning a Gaussian Model

The nodex has been marked as Gaussian by default and so the model is invalid as theitimean
nor the precision of the Gaussian have been set (attempting to initialise the bygolessing the
I nit. button will give an error message to this effect). We can specify lateighlas for these

687



WINN AND BISHOP

£ vIBES

File Help

7 .
Model netwark J & E @ [ | Inference Wint. W Start M oo

Data filename :
|MixGaussianDataZD.maﬂ | :

Random seed :
K |

Resulis filename

O

DataOnhy.xmil

Figure 8: A VIBES model with a single observed nodehich has attached data.

parameters by creating a nogdor the mean parameter and a nodéor the precision parame-
ter. These nodes are created within thplate to give a model which is separable over each data
dimension. These are then set aslthan andPr eci si on properties ok, as shown in Figure 9.

File Help

Model node

Hame :
Iix |
Distribution—————————————— |
Type :
| Gaussian node - |

g E @ [ | inference W init ® Start M oo |

o

~Parentedges
Mean :
|u =)

Precision
v =i

|Piates :
[ I|é

Gaussian2D.xml

Figure 9: A two-dimensional Gaussian model, showing that the varigldesly are being used as
the mean and precision parameters of the conditional distributionxover

The model is still invalid as the parametersuodindy are unspecified. In this case, rather than
create further latent variables, these parameters will be set to fixedsvalgere appropriate priors
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(for example settingt to have mear- 0 and precision= 0.3 andy to havea = 10 andb = 1). The
network now corresponds to a two-dimensional Gaussian model andiaaaiainference can be
performed automatically by pressing tBiear t button (which also performs initialisation). For this
data set, inference converges after four iterations and gives a lmdunt984 nats. At this point,
the expected values of each latent variable under the fully-facto@iskstribution can be displayed
or graphed by double-clicking on the corresponding node.

A.3 Extending the Gaussian model to a Gaussian Mixture Model

Our aim is to create a Gaussian mixture model and so we must extend our sinysiEa@amnodel
to be a mixture wittK Gaussian components. As there will nowKsets of the latent variablgs
andy, these are placed in a new plate, calkedvhose size is set to 20. We modify the conditional
distribution for thex node to be a mixture of dimensidf, with each component being Gaussian.
The display is then as shown in Figure 10.

File Help

Distribution
Type

| Mixture node

Array dimension

I

Component
Type

| Gaussian node

Parent edges
Index

Mean

|u

Precision

v

=l

kel Y @ @ [ | inference M0 Init W Stat B |

ol

| MixtureofGaussians2D.xmi |

Figure 10: An incomplete model which shows tixés now a mixture oK Gaussians. There are

now K sets of parameters and p@andy have been placed in a plate The model is
incomplete as théndex parent ofx has not been specified.

The model is currently incomplete as makixg mixture requires a new discrdtedex parent
to indicate which component distribution each data point was drawn from. \Betharefore create
a new node\, sitting in theN plate, to represent this new discrete latent variable. We also create a
nodettwith a Dirichlet distribution which provides a prior over The completed mixture model is
shown in Figure 11.
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File Help
[T | & [%7] © [ | inference ®1init. ® Start M (oo ‘
Name
] |
-Distribution '
Type

|Discrete node - |
Dimension :
[ -
~Parent edges

A :
m =l
|Plates :
X |

MixtureOfGaussians2D.zml

Figure 11: The completed Gaussian mixture model showing the discrete indical\.

A.4 Inference Using the Gaussian Mixture Model

With the model complete, inference can once again proceed automaticallgssimy thest ar t
button. A Hinton diagram of the expected valueroéan be displayed by double-clicking on tie
node, giving the result shown in Figure 12. As can be seen, nine of geyvwomponents have
been retained.

|—Hintun diagram

Figure 12: A Hinton diagram showing the expected val
learned mixture consists of only nine components.

The means of the retained components can be inspected by double-clickirepmode, giving
the Hinton diagram of Figure 13. These learned means correspond tentiesof each of the data
clusters.

[Hinton diagram = | Dims [,

(3] 10

Figure 13: A Hinton diagram whose columns give the expected two-dimeaisialue of the mean
K for each mixture component. The mean of each of the eleven unused centgon
is just the expected value under the prior whict{@s0). Column 4 corresponds to a
retained component whose mean is rougol0).
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A graph of the evolution of the bound can be displayed by clicking on thedbe@alue and
is shown in Figure 14. The converged lower bound of this new modell819 nats, which is
significantly higher than that of the single Gaussian model, showing that iheneich greater
evidence for this model. This is unsurprising since a mixture of 20 Gaudsersignificantly more
parameters than a single Gaussian and hence can give a much closerfidédathNote, however,
that the model automatically chooses only to exploit 9 of these components, witlertrainder
being suppressed (by virtue of their mixing coefficients going to zero)s pitovides an elegant
example of automatic model complexity selection within a Bayesian setting.

# Lower bound @@B|

-500

-1000 )y —

-1500 i
-2000
-2500 //

30007 4

Eound

00 25 50 75 100 125 150 175 200 225 250 275 300
Iteration

Figure 14: A graph of the evolution of the lower bound during inference.

A.5 Moadifying the Mixture Model

The rapidity with which models can be constructed using VIBES allows new ismitalee quickly
developed and compared. For example, we can take our existing mixtur@ugtians model and
modify it to try and find a more probable model.

First, we may hypothesise that each of the clusters has similar size and soahé&e modelled
by a mixture of Gaussian components having a common variance in each dime@saphically,
this corresponds to shrinking th€ plate so that it no longer contains tgenode, as shown in
Figure 15a. The converged lower bound for this new model87 nats showing that this modified
model is better at explaining this data set than the standard mixture of Gaussidel. Note that
the increase in model probability does not arise from an improved fit to tlzae slace this model
and the previous one both contain 20 Gaussian components and in b9 cdgleese components
contribute to the data fit. Rather, the constrained model having a single caf@nameter can
achieve almost as good a data fit as the unconstrained model yet withvEargarameters. Since
a Bayesian approach automatically penalises complexity, the simpler (coaedjrainodel has the
higher probability as indicated by the higher value for the variational lowang.

We may further hypothesise that the data set is separable with respect to itsntensions
(i.e. the two dimensions are independent). Graphically this consists of moNingdes inside
thed plate (so we effectively have two copies of a one-dimensional mixture of&aus model
with common variance). A VIBES screenshot of this further modification asvshin Figure 15b.
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File Help File Help

| d|
}[8] % @ L[| mference w11 » Sl M Reset Bound=-236.5675 )| 2] % @ L mference »1 1 » Sl W Resel Bound=-8755100
| g

H £ =
| d
aa =] o

(a) | MixtureOfGaussians2D.xml (b) MixtureOrGaussians2D.xml

Figure 15: (a) Mixture of Gaussians model with shared precision paramétiee y node is no
longer inside th& plate). (b) Model with independent data dimensions, each a univari-
ate Gaussian mixture with common variance.

Performing variational inference on this separable model leads to eacHimensional mixture
having three retained mixture components and gives an improved bou8dthats.

We will consider one final model. In this model both theand they nodes are common to
both data dimensions, as shown in Figure 16. This change correspotidsassumption that the
mixture coefficients are the same for each of the two mixtures and that the nenmtpariances
are the same for all components in both mixtures. Inference leads to a finaviedpbound of
—856 nats. Whilst this tutorial has been on a toy data set, the principles of roodstruction,
modification and comparison can be applied just as readily to real data sets.

 viBES FEX

File Help

4
VB % © [J| mference #1 1+ Gl W Reset Bound=056.4737:

MixtureOfGaussians2D.xml

Figure 16: Further modified mixture model where thandy nodes are now common to all data
dimensions.
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