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Recall the Stein variational descent algorithm:

1. Choose a target density f , and a collection of points
{x0

i
}n
i=1.

2. Let ϕ̂∗
ℓ
(x) = 1

n

∑n
j=1 γ(x

ℓ
j
,x)∇xℓj log f (x

ℓ
j
) + ∇xℓj γ(x

ℓ
j
,x).

3. Define recursively xℓ+1
i = xℓ

i
+ ϵℓϕ̂∗ℓ (x

ℓ
i
).
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We can think about this as a discrete time-step
approximation of an interacting particle system, where
ϕ∗(xk) is the momentum of xk. Passing to continuous
time, we can define an interacting particle system by

d

dt
xγ(t) = ϕγ(t),

where ϕk(t) = ϕ∗(xk(t)).
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Let Lk be a function such that given X = (x1, . . .xn)

quantiles of a distribution with PDF f , Lk(X) ≈ (log f )′(xk).

Consider a dynamical system defined by the
Hamiltonian

H =
1

n

∑ 1

2
p2
k
+ (log f )′(xk)

2 + L2
k
.

Hamiltonian dynamical systems obey the equations of
motion

dxk

dt
=

∂H

∂pk
= pk and

dpk

dt
= −

∂H

∂xk
.
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We can then relate the particle systems. If they
simultaneously govern the same system, the equality

−
∂H

∂xk
=
dpk

dt
=
dϕk

dt

must be satisfied.
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The derivative

dϕk

dt
=

1

n

∑ d

dt

�

γ(xj,xk)
�

(log f )′(xj)

+ γ(xj,xk)(log f )
′′(xj)ϕ(xj) +

d

dt
∂1γ(xj,xk)

Taking the partial derivative of H,

∂H

∂xk
=

1

n
2(log f )′(xk)(log f )′′(xk) +

1

n

∑ ∂

∂xk
L2
j
.
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Thus we wish to choose a function L and kernel γ
satisfying

−2(log f )′(xk)(log f )′′(xk)−
∑ ∂

∂xk
L2
j

=
∑ d

dt

�

γ(xj,xk)
�

(log f )′(xj)

+ γ(xj,xk)(log f )
′′(xj)ϕ(xj) +

d

dt
∂1γ(xj,xk),

for every k.
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This will perhaps be more manageable if we pick a
distribution whose PDF has a simple log derivative, and
then attempt to generalize later. If we work with the
normal distribution, then (log f )′(x) = −x, and so the
previous equation can be rewritten as

2xk +
∑ ∂

∂xk
L2
j
=
∑ d

dt

�

γ(xj,xk)
�

xj

+ γ(xj,xk)ϕ(xj)−
d

dt
∂1γ(xj,xk).

I have had no success in finding L, γ satisfying this.

7



We could choose instead (log f )′(x) = −1, and so the
previous equation would be rewritten as

∑ ∂

∂xk
L2
j
=
∑ d

dt

�

γ(xj,xk)
�

−
d

dt
∂1γ(xj,xk).

Restricting n = 2 and choosing γ(x,y) = e−
1
2 (y−x)

2
, we

can search for an Lk that will satisfy this.
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After a lot of arithmetic, we derive that

L2
x
+ L2

y
= (y− x)(y− x− 1)γ(x,y)2

+

p
π

2
erf(y− x) + g(x)

L2
x
+ L2

y
= (y− x)(y− x+ 1)γ(x,y)2

−
p
π

2
erf(y − x) + h(y),

for some functions g, h. Subtracting one from the other,

h(y)− g(x) =
p
π erf(y− x)− 2(y− x)γ(x,y)2,

which may not be satisfiable.
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However,

p
π erf(y − x)− 2(y− x)γ(x,y)2 = O((y − x)3)

near x = y, so we’ll approximate h(y) = g(x) = 0 and see
if that leads to anything useful. Adding the two
equations for L2

x
+ L2

y
,

L2
x
+ L2

y
=

1

2
(y − x)2γ(y,x)2.

From the physical interpretation of L, we should have
that Lx = −Ly, so

Ly =
1

2
(y− x)γ(y,x).
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Using the physical interpretation of L again, we will
extend this to more than two particles by

Lk =
1

n

n
∑

j=1

(xk − xj)e−
1
2 (xk−xj)

2
.
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To see whether this is a meaningful choice, we can try
to verify that

• the function Lk satisfies the desired approximation
property, Lk ≈ (log f )′(xk),

• the same choice can be justified for other target
distributions,

• the stable states of the Hamiltonian systems
behave like expected, and

• the SVGD algorithm with the given kernel
converges to a low energy state of the Hamiltonian
system.
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Repeating the derivation with the uniform distribution
as the target yeilds

Ly =
i
p

2
(y− x)γ(y,x),

which hopefully indicates a dropped factor of −2. This
demonstrates the biggest roadblock so far with this
approach: there is a lot of involved arithmetic where it
is very easy to make difficult to find errors.
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