Progress Report

Alex Loomis
December 7, 2022

Recall the Stein variational descent algorithm:

1. Choose a target density f, and a collection of points $\left\{x_{i}^{0}\right\}_{i=1}^{n}$.
2. Let $\hat{\phi}_{\ell}^{*}(x)=\frac{1}{n} \sum_{j=1}^{n} \gamma\left(x_{j}^{\ell}, x\right) \nabla_{x_{j}^{\ell}} \log f\left(x_{j}^{\ell}\right)+\nabla_{x_{j}^{\ell}} \gamma\left(x_{j}^{\ell}, x\right)$.
3. Define recursively $x_{i}^{\ell+1}=x_{i}^{\ell}+\varepsilon_{\ell} \hat{\phi}_{\ell}^{*}\left(x_{i}^{\ell}\right)$.

We can think about this as a discrete time-step approximation of an interacting particle system, where $\phi^{*}\left(x_{k}\right)$ is the momentum of x_{k}. Passing to continuous time, we can define an interacting particle system by

$$
\frac{d}{d t} x_{\gamma}(t)=\phi_{\gamma}(t),
$$

where $\phi_{k}(t)=\phi^{*}\left(x_{k}(t)\right)$.

Let L_{k} be a function such that given $X=\left(x_{1}, \ldots x_{n}\right)$ quantiles of a distribution with PDF $f, L_{k}(X) \approx(\log f)^{\prime}\left(x_{k}\right)$.
Consider a dynamical system defined by the Hamiltonian

$$
H=\frac{1}{n} \sum \frac{1}{2} p_{k}^{2}+(\log f)^{\prime}\left(x_{k}\right)^{2}+L_{k}^{2}
$$

Hamiltonian dynamical systems obey the equations of motion

$$
\frac{d x_{k}}{d t}=\frac{\partial H}{\partial p_{k}}=p_{k} \quad \text { and } \quad \frac{d p_{k}}{d t}=-\frac{\partial H}{\partial x_{k}}
$$

We can then relate the particle systems. If they simultaneously govern the same system, the equality

$$
-\frac{\partial H}{\partial x_{k}}=\frac{d p_{k}}{d t}=\frac{d \phi_{k}}{d t}
$$

must be satisfied.

The derivative

$$
\begin{aligned}
\frac{d \phi_{k}}{d t}= & \frac{1}{n} \sum \frac{d}{d t}\left[\gamma\left(x_{j}, x_{k}\right)\right](\log f)^{\prime}\left(x_{j}\right) \\
& +\gamma\left(x_{j}, x_{k}\right)(\log f)^{\prime \prime}\left(x_{j}\right) \phi\left(x_{j}\right)+\frac{d}{d t} \partial_{1} \gamma\left(x_{j}, x_{k}\right)
\end{aligned}
$$

Taking the partial derivative of H,

$$
\frac{\partial H}{\partial x_{k}}=\frac{1}{n} 2(\log f)^{\prime}\left(x_{k}\right)(\log f)^{\prime \prime}\left(x_{k}\right)+\frac{1}{n} \sum \frac{\partial}{\partial x_{k}} L_{j}^{2} .
$$

Thus we wish to choose a function L and kernel γ satisfying

$$
\begin{aligned}
& -2(\log f)^{\prime}\left(x_{k}\right)(\log f)^{\prime \prime}\left(x_{k}\right)-\sum \frac{\partial}{\partial x_{k}} L_{j}^{2} \\
& = \\
& =\sum \frac{d}{d t}\left[\gamma\left(x_{j}, x_{k}\right)\right](\log f)^{\prime}\left(x_{j}\right) \\
& \quad+\gamma\left(x_{j}, x_{k}\right)(\log f)^{\prime \prime}\left(x_{j}\right) \phi\left(x_{j}\right)+\frac{d}{d t} \partial_{1} \gamma\left(x_{j}, x_{k}\right),
\end{aligned}
$$

for every k.

This will perhaps be more manageable if we pick a distribution whose PDF has a simple log derivative, and then attempt to generalize later. If we work with the normal distribution, then $(\log f)^{\prime}(x)=-x$, and so the previous equation can be rewritten as

$$
\begin{aligned}
2 x_{k}+\sum \frac{\partial}{\partial x_{k}} L_{j}^{2}= & \sum \frac{d}{d t}\left[\gamma\left(x_{j}, x_{k}\right)\right] x_{j} \\
& +\gamma\left(x_{j}, x_{k}\right) \phi\left(x_{j}\right)-\frac{d}{d t} \partial_{1} \gamma\left(x_{j}, x_{k}\right) .
\end{aligned}
$$

I have had no success in finding L, γ satisfying this.

We could choose instead $(\log f)^{\prime}(x)=-1$, and so the previous equation would be rewritten as

$$
\sum \frac{\partial}{\partial x_{k}} L_{j}^{2}=\sum \frac{d}{d t}\left[\gamma\left(x_{j}, x_{k}\right)\right]-\frac{d}{d t} \partial_{1} \gamma\left(x_{j}, x_{k}\right) .
$$

Restricting $n=2$ and choosing $\gamma(x, y)=e^{-\frac{1}{2}(y-x)^{2}}$, we can search for an L_{k} that will satisfy this.

After a lot of arithmetic, we derive that

$$
\begin{aligned}
L_{x}^{2}+L_{y}^{2}= & (y-x)(y-x-1) \gamma(x, y)^{2} \\
& +\frac{\sqrt{\pi}}{2} \operatorname{erf}(y-x)+g(x) \\
L_{x}^{2}+L_{y}^{2}= & (y-x)(y-x+1) \gamma(x, y)^{2} \\
& -\frac{\sqrt{\pi}}{2} \operatorname{erf}(y-x)+h(y),
\end{aligned}
$$

for some functions g, h. Subtracting one from the other,

$$
h(y)-g(x)=\sqrt{\pi} \operatorname{erf}(y-x)-2(y-x) \gamma(x, y)^{2},
$$

which may not be satisfiable.

However,

$$
\sqrt{\pi} \operatorname{erf}(y-x)-2(y-x) \gamma(x, y)^{2}=O\left((y-x)^{3}\right)
$$

near $x=y$, so we'll approximate $h(y)=g(x)=0$ and see if that leads to anything useful. Adding the two equations for $L_{x}^{2}+L_{y}^{2}$,

$$
L_{x}^{2}+L_{y}^{2}=\frac{1}{2}(y-x)^{2} \gamma(y, x)^{2}
$$

From the physical interpretation of L, we should have that $L_{x}=-L_{y}$, so

$$
L_{y}=\frac{1}{2}(y-x) \gamma(y, x)
$$

Using the physical interpretation of L again, we will extend this to more than two particles by

$$
L_{k}=\frac{1}{n} \sum_{j=1}^{n}\left(x_{k}-x_{j}\right) e^{-\frac{1}{2}\left(x_{k}-x_{j}\right)^{2}}
$$

To see whether this is a meaningful choice, we can try to verify that

- the function L_{k} satisfies the desired approximation property, $L_{k} \approx(\log f)^{\prime}\left(x_{k}\right)$,
- the same choice can be justified for other target distributions,
- the stable states of the Hamiltonian systems behave like expected, and
- the SVGD algorithm with the given kernel converges to a low energy state of the Hamiltonian system.

Repeating the derivation with the uniform distribution as the target yeilds

$$
L_{y}=\frac{i}{\sqrt{2}}(y-x) \gamma(y, x),
$$

which hopefully indicates a dropped factor of -2 . This demonstrates the biggest roadblock so far with this approach: there is a lot of involved arithmetic where it is very easy to make difficult to find errors.

References i

Qiang Liu and Dilin Wang. "Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm". In: Advances in Neural Information Processing Systems. Ed. by D. Lee et al. Vol. 29. Curran Associates, Inc., 2016. URL: https:
//proceedings.neurips.cc/paper/2016/
file/b3ba8f1bee1238a2f37603d90b58898dPaper.pdf.

