Link Prediction In Institutional Knowledge Graph

Sammi Abida Salma

Problem

[publications, grants, patents, research interest ...]

Problem: Predict links for "T Ryan"

Link Prediction

Approach

Link Prediction using Graph Auto-encoder

Graph Neural Network (GNN)

- V Vertex (or node) attributes
 - e.g., node identity, number of neighbors
- E Edge (or link) attributes and directions
 - e.g., edge identity, edge weight
- U Global (or master node) attributes
 - e.g., number of nodes, longest path

A single layer of a simple GNN. A graph is the input, and each component (V,E,U) gets updated by a MLP to produce a new graph. Each function subscript indicates a separate function for a different graph attribute at the n-th layer of a GNN model.

update function $f = \underbrace{\hspace{1cm}}_{\hspace{1cm}}$, ...

Doc2Vec

- **c**an predict the document's words based on its filename
- knows which words go together in a document
- uses the word similarities learned during training to construct a vector

Distributed Bag-Of-Words Model

Evaluation

AUC - ROC Curve Receiver Operator Characteristic (ROC)

Confusion Matrix

ACTUAL VALUES

POSITIVE NEGATIVE

TP FP

TN

TN

TN

ROC plots the TPR against FPR at various threshold values

AUC measures the ability of a classifier to distinguish between classes

Higher is better

$$FPR = \frac{FP}{TN + FP}$$

Case Study

Remove edges from the graph for case node

Estimate edges for that node

Compare with true edges

Experiment

Data Collection

Graph: collected in pickle format

Document (Titles of publications): Collected publication titles from api

Preprocess data -> networkx graph data

Experiment Result

AUC ROC score = **0.9536788116320705**

Estimated # positive edges = 1040229

TP= 12399 FP= 1027830

FN= 60 TN= 3701217

TPR = 0.9951842041897424

FPR = 0.21734400186760672

Confusion Matrix

	True Positive	True negative
Estimated positive	TP= 12,399	FP= 1,027,830
Estimated negative	FN= 60	TN= 3,701,217

Actual # positive edges = 12,459 Actual # positive edges = 4,729,047

Experiment Result

# Layer	AUROC score	TP	FP
2	0.9536788116320705	12,399	1,027,830
3	0.9436318769052112	12,361	1,036,530
4	0.9559136142965436	12,371	1,020,674

Actual # positive edges = 12,459

Relation between # of layers and performance is undefined

Impact of Ratio = |Negative edges| : |Positive edges|

Ratio	Test performance (100 epoc)	
1	0.9596	
2	0.9576	
3	0.9552	
4	0.9564	
5	0.9552	
8	0.9524	
10	0.9404	
15	0.9394	
20	0.9374	

```
Actual # of positive edges = 12,459
# of negative edges = 2178*2177 - 12459
= 4,729,047
```

```
Ratio = 4729047/12459 ~ 380
```

Case Study

	actual	Estimated (With actual edges)	Estimated (Without actual edges)
kobourov	39	39	26
msurdeanu	37	37	15
janebambauer	26	26	5

Suggestions? to deal high false positive

General