Link Prediction In

Institutional Knowledge Graph

Sammi Abida Salma

Problem
[publications, grants, patents,
research interest ...]

[publications, grants, patents, research interest ...]
[publications, grants, patents, research interest ...]

Problem:

Predict links for "T Ryan"

Link Prediction

[publications, grants, patents, research interest ...]

[publications, grants, patents, research interest ...]
[publications, grants, patents, research interest ...]
[publications, grants, patents, research interest ...]

New faculty
/ Candidate
[publications, grants, patents, research interest ...]

Problem:
Predict links for "T Ryan"

Approach

Link Prediction using Graph Auto-encoder

Layer 0
Layer 1
Layer 2
Layer 3

Graph Neural Network (GNN)

V Vertex (or node) attributes
e.g., node identity, number of neighbors

E Edge (or link) attributes and directions
e.g., edge identity, edge weight

U Global (or master node) attributes
e.g., number of nodes, longest path

A single layer of a simple GNN. A graph is the input, and each component ($\mathrm{V}, \mathrm{E}, \mathrm{U}$) gets updated by a MLP to produce a new graph. Each function subscript indicates a separate function for a different graph attribute at the n-th layer of a GNN model.

Doc2Vec

- can predict the document's words based on its filename
- knows which words go together in a document
- uses the word similarities learned during training to construct a vector

Distributed Bag-Of-Words Model

Evaluation

AUC - ROC Curve

Receiver Operator Characteristic (ROC)

Confusion Matrix

ACTUAL VALUES
POSITIVE
negative

$$
\text { TPR /Recall / Sensitivity }=\frac{\text { TP }}{T P+F N}
$$

ROC plots the TPR against FPR at various threshold values
AUC measures the ability of a classifier to distinguish between classes Higher is better

Case Study

Remove edges from the graph for case node

Estimate edges for that node

Compare with true edges

Experiment

Data Collection

Graph : collected in pickle format

Document (Titles of publications) : Collected publication titles from api

Preprocess data -> networkx graph data

Experiment Result

AUC ROC score $=\mathbf{0 . 9 5 3 6 7 8 8 1 1 6 3 2 0 7 0 5}$
Estimated \# positive edges = 1040229
TP= 12399 FP= 1027830
$\mathrm{FN}=60 \mathrm{TN}=3701217$
TPR = 0.9951842041897424
$F P R=0.21734400186760672$

Confusion Matrix

	True Positive	True negative
Estimated positive	$\mathrm{TP}=12,399$	$\mathrm{FP}=1,027,830$
Estimated negative	$\mathrm{FN}=60$	$\mathrm{TN}=3,701,217$

Actual \# positive edges $=12,459$
Actual \# positive edges $=4,729,047$

Experiment Result

\# Layer	AUROC score	TP	FP
2	0.9536788116320705	12,399	$1,027,830$
3	0.9436318769052112	12,361	$1,036,530$
4	0.9559136142965436	12,371	$1,020,674$

Actual \# positive edges $=12,459$

Relation between \# of layers and performance is undefined

Impact of Ratio = |Negative edges| : |Positive edges|

Ratio	Test performance (100 epoc)
1	0.9596
2	0.9576
3	0.9552
4	0.9564
5	0.9552
8	0.9524
10	0.9404
15	0.9394
20	0.9374

```
Actual # of positive edges = 12,459
# of negative edges = 2178*2177 - 12459
    = 4,729,047
Ratio = 4729047/12459 ~ 380
```


Case Study

	actual	Estimated (With actual edges)	Estimated (Without actual edges)
kobourov	39	39	26
msurdeanu	37	37	15
janebambauer	26	26	5

Suggestions?

to deal high false positive
General

