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Linear Regression

Regression Learn a function that 
predicts outputs from inputs,

Linear Regression As the name 
suggests, uses a linear function:

Outputs y are real-valued
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We will add noise later…



Linear Regression

Where is linear regression useful?

Trendlines Stock Prediction Climate Models

Used anywhere a linear relationship is assumed 
between continuous inputs / outputs

Massie and Rose (1997)



Linear Regression

For D-dimensional input vector              the 
plane equation,

Often we simplify this by including the intercept 
into the weight vector,

Since:

[ Image: Murphy, K. (2012) ]



Linear Regression

Input-output mapping is not exact, so we will add 
zero-mean Gaussian noise,
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where

Multivariate Normal
(uncorrelated)

This is equivalent to the likelihood function,

Because Adding a constant to a Normal RV is still a Normal RV,

In the case of linear regression           and  



Least Squares Regression
The distance from each point to 

the line is the residual

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/

Find a line that minimizes the 
sum of squared residuals

Over training all the data,

Need to estimate regression 
weights…

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/


Maximum Likelihood Estimate = Least Squares
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Recall that the likelihood is Gaussian:

Given training data                     likelihood function is,

MLE maximizes the log-likelihood over data,

Maximume Likelihood 
Estimation of regression 

weights w is least 
squares solution



Least Squares in Higher Dimensions

Things are a bit more complicated in higher 
dimensions and involve more linear algebra,

[ Image: Murphy, K. (2012) ]

Can write regression over all training data more compactly…

Design Matrix
( each training input on a column )

Vector of
Training labels

Incorporate bias term into weights



Least Squares in Higher Dimensions

Least squares can also be written more 
compactly,

[ Image: Murphy, K. (2012) ]

Taking vector gradients, setting to zero, and 
solving tive the solution:

Ordinary Least Squares (OLS) solution

Derivation a bit advanced for this class, but…
• We know it has a closed-form and why
• We can evaluate it
• Generally know where it comes from



Linear Regression Summary
1. Definition of linear regression model,

where

2. For N iid training data fit using least squares,

3. Equivalent to maximum likelihood estimate with closed form :

Design Matrix
( each training input on a column )

Vector of
Training labels QUESTIONS?



Outliers in Linear Regression

Y

X

Ordinary least squares regression is sensitive to outliers…

Quadratic regularizer reduces sensitivity:

https://www.jmp.com/en_us/statistics-knowledge-portal/what-is-multiple-regression/mlr-residual-analysis-and-outliers.html

Quadratic Quadratic

Quadratic objective / closed-form solution:

(called “ridge regression” in statistics)

https://www.jmp.com/en_us/statistics-knowledge-portal/what-is-multiple-regression/mlr-residual-analysis-and-outliers.html


Bayesian Interpretation
Weights are RVs with Gaussian prior and joint probability: 

Given training data                    the posterior is given by Bayes’ rule:

Taking the natural log and dropping constants we have:

L2 Regularized Least Squares = Bayesian MAP Estimate w/ Gaussian Prior



Source: Chris Bishop, PRML



Posterior concentrates on true weights as more data observed

Likelihood outweighs prior in the limit (converges to MLE)

Source: Chris Bishop, PRML

Likelihood Posterior Data Space



Linear vs. Nonlinear Models

Linear Regression Fit a linear 
function to the data, What if our data are not

well-described by a linear 
function?
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[ Image: Murphy, K. (2012) ]



Example: Earthquake Prediction 

Suppose that we want to predict the number of earthquakes 
that occur of a certain magnitude.  Our data are given by,

Fitting a linear regression
is not very helpful

[ Source: Silver, N. (2012) ]

But plotting outputs on
a logarithmic scale reveals

a strong linear relationship…

Fit linear regression to
log of data:



Basis Functions

• A basis function can be any function of the input features X
• Define a set of m basis functions
• Fit a linear regression model in terms of basis functions,

• Regression model is linear in the basis transformations 
• Regression model is nonlinear in the original features X

Can we fit a regression in the same way?  Is there a Bayesian Interpretation?

YES and YES



Linear Regression
Recall the ordinary least squares solution is given by,

Design Matrix
( each training input on a column )

Vector of
Training labels

Can similarly solve in terms of basis functions,



Posterior Distribution is Gaussian

In general we can have an arbitrary prior covariance,

Weight posterior is Gaussian (yay for Gaussian-Gaussian conjugacy),

Where posterior covariance is,

This is slightly more general than standard L2-regularized Regression

MAP Estimate



Posterior Predictive

Often we don’t care about weights…we just want to predict the function 
value      at some new point      :

• To make predictions we need to invert
• For N training data this is an NxN matrix and takes time
• With a little algebra we can reduce this to for features 
• Beneficial when N < m (obviously)



Kernel Trick

Change notation to emphasize that we are predicting a function value:

Define an NxN kernel matrix as,

Our original posterior predictive, Inversion of mXm matrix

After algebra…posterior predictive is equivalent to:

Inversion of NxN matrix Shorthand for 



Kernel Trick

Our “kernelized” posterior predictive:

Notice that basis functions always enter in one of three forms:

or

Define kernel function that expresses all of these for any pair (x,x’):

Since      is positive semidefinite we can express as inner product:

where



Features vs. Basis vs. Kernels
Features X
• Provided as N-dimensional inputs, requires inversion of NxN matrix
• May not be appropriate for linear model

Basis 
• m-dimensional transformation of features
• Requires inversion of mXm matrix
• Can be made more appropriate for linear model

Kernel
• Basis representation doesn’t need to be made explicit
• Requires inversion of NxN matrix
• Often easier to define kernel on pairs of features than basis functions



Kernel Functions

Example Gaussian kernel models similarity according to an 
unnormalized Gaussian distribution,

Also called a radial basis function (RBF)

Note Despite the name,
this is not a Gaussian
probability density.  It is 
unnormalized.

Corresponding basis is 
infinite-dimensional 
vector!

Example The linear basis                 produces the kernel,

It is often easier to directly specify the kernel rather than the 
basis function…



Kernel Functions

Given any set of data              a necessary and sufficient 
condition of a valid kernel function is that the NxN gram matrix, 

Is a symmetric positive semidefinite matrix.



Function-Space View

Recall posterior predictive function is a Gaussian over function values,

• So, we can predict the function at any input
• And, we can do this at many inputs
• So, we have a predictive distribution over a class of functions
• Note that this explicitly marginalizes out regression weights (w)
• We call this a Gaussian Process



Gaussian Process

The Gaussian Process (GP) is completely specified by it mean and 
covariance functions:

We say that a function f(x) is distributed as a GP with the notation,

• Every draw from the GP is a function f(x)
• In practice, we draw f(x) evaluated at a set of points as a vector with 

Gaussian distribution (per GP Definition)



Gaussian Process  Bayesian Linear Regression

Returning to our Bayesian linear regression we have GP moments,

By definition of a GP any vector of function values is jointly Gaussian

This allows us to draw random functions from a GP prior

Kernel matrix evaluated at
points



Posterior Inference

Consider joint over f training points                    and query points f*:

Gaussians are closed under conditioning, so posterior is:

• Given training set, can predict function values at any query points
• Gaussian distribution quantifies uncertainty over predictions
• Marginalizes out regression parameters (w)



Example

Covariance Kernel = Gaussian (Radial Basis Function)

Prior Posterior



Predicting with Noisy Function Evaluations

Previous example assumed that we directly observe function, y=f(x), but 
it is more realistic to receive noisy function evaluations,

where

Simple adjustment to the covariance kernel,

Posterior predictive distribution is,



Kernel Choice
The choice of kernel controls the support of a GP…

• Stationary kernels are functions of a distance metric:
• Nonstationary kernels vary based on location of inputs x and x’ 
• Periodic kernels achieved by mapping to 



[ Source: Bishop, C. ]



Summary: Bayesian Linear Regression

• Good old linear regression that we know and love…
• L2 regularized least squares = Bayesian linear regression with 

gaussian prior on weights w
• More generally: any regularizer corresponds to some prior
• Bayesian perspective allows us to integrate out weights
• Predictive distribution p(y* | x*,X,y) predicts function at new points x*
• Everything is closed-form Gaussian and O(N^3) complexity
• Can map features X to basis functions for better linear fits
• Can do some algebra to reduce computation to O(m^3)



Summary: Gaussian Processes

• Basis functions show up as inner products in posterior predictive
• Define kernel function                                   and work in kernel space
• This is known as the kernel trick
• Avoids explicit definition of basis functions (back to O(N^3) complexity)
• Defines prior distribution on functions called Gaussian Process (GP)
• GP = Bayesian Linear Regression for specific kernel choice
• GP defines prior over space of functions
• Function evaluated at any finite set of points is Gaussian distributed
• Prediction / inference closed-form based on Gaussian manipulation
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