Progress Report

Alex Loomis
October 19, 2022

Recall the Stein variational descent algorithm:

1. Choose a target density f, and a collection of points $\left\{x_{i}^{0}\right\}_{i=1}^{n}$.
2. Let $\hat{\phi}_{\ell}^{*}(x)=\frac{1}{n} \sum_{j=1}^{n} k\left(x_{j}^{\ell}, x\right) \nabla_{x_{j}^{\ell}} \log f\left(x_{j}^{\ell}\right)+\nabla_{x_{j}^{\ell}} k\left(x_{j}^{\ell}, x\right)$.
3. Define recursively $x_{i}^{\ell+1}=x_{i}^{\ell}+\varepsilon_{\ell} \hat{\phi}_{\ell}^{*}\left(x_{i}^{\ell}\right)$.

Let L_{k} be a function such that given $X=\left(x_{1}, \ldots x_{n}\right) N$ IID samples from a distribution with PDF f,
$L_{k}(X) \approx(\log f)^{\prime}\left(x_{k}\right)$.
In my research, I study dynamical systems defined by the Hamiltonian

$$
H=\sum \frac{1}{2} p_{k}^{2}+\sum(\log f)^{\prime}\left(x_{k}\right)^{2}+\sum L_{k}(X)
$$

Thinking about this as a discrete time-step approximation of an interacting particle system, $\phi^{*}\left(x_{k}\right)$ is the momentum of x_{k}. To relate this to a Hamiltonian dynamical system, we can recall that

$$
\frac{d p_{k}}{d t}=-\frac{\partial H}{\partial x_{k}}
$$

Treating $x_{k}(t)$ as a continuous function of t, we will take its derivative. Note that since ϕ is a function of all of x_{1}, \ldots, x_{n}, we can't take

$$
\frac{d \phi\left(x_{k}(t)\right)}{d t}=\phi^{\prime}\left(x_{k}\right) x_{k}^{\prime}(t)=\phi^{\prime}\left(x_{k}\right) \phi\left(x_{k}\right) .
$$

The correct derivative

$$
\begin{aligned}
\frac{d \phi\left(x_{k}(t)\right)}{d t}= & \frac{1}{n} \sum \frac{d}{d t}\left[k\left(x_{j}, x_{k}\right)\right](\log f)^{\prime}\left(x_{j}\right) \\
& +k\left(x_{j}, x_{k}\right)(\log f)^{\prime \prime}\left(x_{j}\right) \phi\left(x_{j}\right)+\frac{d}{d t} \partial_{1} k\left(x_{j}, x_{k}\right)
\end{aligned}
$$

Taking the partial derivative of H,

$$
\frac{\partial H}{\partial x_{k}}=2(\log f)^{\prime}\left(x_{k}\right)(\log f)^{\prime \prime}\left(x_{k}\right)+\sum \frac{\partial}{\partial x_{k}} L_{j}(X) .
$$

If I could find k, L so that $\frac{d \phi\left(x_{k}(t)\right)}{d t}=\frac{\partial H}{\partial x_{k}}$, I'd be able to apply the results of my research to this, and vice versa.

Rate of convergence ($1 / N$) for an infinite particle system are given in A Non-Asymptotic Analysis for Stein Variational Gradient Descent [Korba et al], under several assumptions. The paper also discusses finite particle systems, and gives a reason why this would be difficult to find.

References i

Qiang Liu and Dilin Wang. "Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm". In: Advances in Neural Information Processing Systems. Ed. by D. Lee et al. Vol. 29. Curran Associates, Inc., 2016. URL: https:
//proceedings.neurips.cc/paper/2016/
file/b3ba8f1bee1238a2f37603d90b58898dPaper.pdf.

