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A Similar problem: Parts of Speech Tagging

Protein Secondary Structure Prediction Parts of Speech Tagqing
Input: A sequence of Amino Acids Input: Sequence of Words
(eg:

NISQHQCVKKQCPQNSGCFRHLDEREEC...) (eg: “Reality is probabilistic...”)

Output: For each position, a label (from one of 3 Qutput: For each word, a parts of
or 8 chars) speech tag

(eg: HETHECGCE....)) (eg: <Noun> <Verb> <Adjective> ...)

Q3: {helix (H), strand (E), and coil (C)} or

Q8: {helix (G), a-helix (H), Tr-helix (1), B-stand (E),
bridge (B), turn (T), bend (S), and others (C)}



HMM

z(t —1) ®(T)

Some limitations: (1) Fixed transition and emission probabilities, (2) Emission probabilities depend only
on one hidden state.

https://en.wikipedia.org/wiki/Hidden_Markov_model



Conditional Random Field ( ) [esp: linear-chain]

a. Hence, good to infer conditional
independence structure.

b.  But complication in factorizing the join
probability distribution.

c. Marginal (P(Y)) can be computec
- P(Y|X)

Compared to HMM:
a. Transition probabilities

depend on position value: i

Similarities with Logistic Regression

Conditional Random Field structure

https://towardsdatascience.com/conditional-random-fields-explained-e5b8256da776



Feature Functions in a CRF

1. The set of input vectors, X
2. The position i of the data point we are predicting

3. The label of data pointi-1in X
(These functions can be

4. The label of data pointiin X
defined/motivated from domain knowledge.

We define the feature function as;  /nguistic for the POST taks

(or, structural biology in the PSSP task)

f(x\’, I li—] . ll' )

Feature Function



Py, X, ) = Z(IX e.rp{Z Z/\jfi(xs i, Yi-1,Yi) }

Where: Z(z) = S‘YYA fil X, 4,94, 97)

y'ey =1

Probability Distribution for Conditional Random Fields

L(y, X, \) ——log{HP (=%, \)}

i 1 . m - - -
- E log[Z( exp{ E E A fi(X™ 4,05 1, 05)]
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Negative Log Liklihood of the CRF Probability Distribution



()L(/(\) Y, /\) ZF(y k)+2p(y|l‘ )\)F (y I )

n
Where: Fj(y,z) = Z filX, 4, yio1, 4i)

Partial Derivative w.r.t. lambda

A =A+alYFiyka¥) + Y plyla®, N F;(y, 7))
k=1 k=1

Gradient Descent Update Equation for CRF



https://medium.com/ml2vec/overview-of-conditional-random-fields-68a2a20fa541

Label Prediction

1. During training, for each input point (x, y), the log-partition
function Z has to be recalculated
2. During testing
a. Global:
i. Most Probable Sequence:
1. argmax_{y} P(Y | X) (eg: with Viterbi Algorithm)
b. Local:
i. Marginal Probability:
1. P(y_{i} | X): (eg: using sum-product algorithm in factor
graph)
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Figure 1: The amino acid sequence and its corresponding 3-
state secondary structure of PDB 154L with UniProtKB ac-
cession number (PO0718), which consists of 185 residues.



Existing Work

Capturing

a. Local Pattern
I. Convolutional Architecture (CNN)
b. Global Pattern
I. Recurrent Neural Network (RNN)
ii. Conditional Random Field (CRF)
iii. Or, both!
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Fig. 1 Overview of DeepACLSTM structure
A

DeepACLSTM (Guo et al., 2019)



(c) CNN-BIiLSTM-CRF

Protein secondary structure
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Motivation

1. The input sequence are created in such a way
that it encodes long range dependency
relationships

2. However, the linear-chain CRF model has weaker

assumptions that output at position “i" depends
only on position “i-1”



Proposal

1. Data Pre-processing Focused:
a. Using a different encoding for the inputs (based on some heuristic found in
existing papers)

2. PGM focused:

a. information into the CRF model formulation by
(ie: considering long range edges)
i. Something like General CRF (but maybe simpler).

b. Evaluating how the inference complexity rises as edges are added.

c. Finding scope for optimization in the Forward-Backward (ie: Sum-Product)
Algorithm. Eg: finding out whether the existing tools doing exact or approximate
computation.

d. Being ambitious and propose a full Generative Model
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Fig. 2.3 Diagram of the relationship between naive Bayes, logistic regression, HMMs, linear-
chain CRFs, generative models, and general CRFs. (Sutton & McCallum, n.d.)



Evaluation

Existing Codebases:

Tool: biRNN-CRF

a.

https://qithub.com/alrojo/biRNN-C
RF

e Tool: CNN+BIiLSTM+CRF

a.

https://qithub.com/ehsanasgari/De
epPrime2Sec

Existing Tools:

Tool: Training General CRF

O

https://mallet.cs.umass.edu/grmm/

general crfs.php

DataSet and Benchmarks:

1. Publicly available (eg: PDB
(Protein Database))

2. Pre-processed Train-Test
dataset from existing
prediction tools.

3. Benchmark Dataset: CASP10


https://github.com/alrojo/biRNN-CRF
https://github.com/alrojo/biRNN-CRF
https://github.com/ehsanasgari/DeepPrime2Sec
https://github.com/ehsanasgari/DeepPrime2Sec
https://mallet.cs.umass.edu/grmm/general_crfs.php
https://mallet.cs.umass.edu/grmm/general_crfs.php
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