Project Status

Sammi Abida Salma

- > Previous work
- Proposed approach
- Evaluation Methodology

- > Previous work
- Proposed approach
- Evaluation Methodology

Problem : Infer Future Collaboration

Link Prediction

Link Prediction : In Social Network

Link Prediction : Recommend Friend

Link Prediction : Infer Protein-protein interaction

> Previous work

- Proposed approach
- Evaluation Methodology

The generic link prediction framework

- Similarity-based approach (topological feature)
- Learning-based approach (topological feature + latent feature)

Table 1: Popular Heuristics for Link Prediction

Similarity- based approach	Name	Formula	Order
	common neighbors	$ \Gamma(x) \cap \Gamma(y) $	first
	Jaccard	$rac{ \Gamma(x)\cap\Gamma(y) }{ \Gamma(x)\cup\Gamma(y) }$	first
	preferential attachment	$ \Gamma(x) \cdot \Gamma(y) $	first
	Adamic-Adar	$\sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log \Gamma(z) }$	second
	resource allocation	$\sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{ \Gamma(z) }$	second
	Katz	$\sum_{l=1}^{\infty} \beta^l \text{path}(x, y) = l $	high
	PageRank	$q_{xy} + q_{yx}$	high
	SimRank	$\gamma \frac{\sum_{a \in \Gamma(x)} \sum_{b \in \Gamma(y)} \operatorname{score}(a, b)}{ \Gamma(x) \cdot \Gamma(y) }$	high
	resistance distance	$\frac{1}{l_{xx}^+ + l_{yy}^+ - 2l_{xy}^+}$	high

Similarity-based approach

- → account (only) topological feature
 - degree of nodes
 - path information
- → works well (*metric common neighbor*)
 - social network
- → works poorly (*metric common neighbor*)
 - protein-protein interaction network
- → Limitation
 - Non-universal
 - Different domains need different metrics
 - Fails to predict link where
 - similarity scores do not capture the network's latent formation mechanisms.

Learning-based approach

- → Probabilistic Graphical Model
 - Ranking Method
 - Stochastic Block Model
- → Matrix factorization
- → Deep Learning
 - CNN (Convolution Neural Network)
 - GINN (Graph Neural Network)

> Previous work

Proposed approach

Evaluation Methodology

Proposed approach

- Extract an enclosing subgraph of each target link
- Label the subgraphs using WL algorithm
- Encode the subgraph as an adjacency matrix
- Encode the features to vector
 - Publication title to a vector using word2vec transformation
- Split edges into train, validation, test set
- Feed the adjacency matrices along with feature vector to the graph neural network (GNN)
- Test and evaluate accuracy
- Python -> pytorch-geometric

Proposed approach

Data Encoding

- Encodes the subgraph as an adjacency matrix
- Encode **publication titles** (text data) to feature vector using word2vec

Each node has the following attributes

- publications
- patents
- grants
- research interests
- weight
- kmapld

Fetching Data

KMAP Data			
People			
GET	/api/v0/people/{kmap_id} Returns information about a person.		
GET	/api/v0/people/{kmap_id}/publications Returns list of publications of a person.		
GET	/api/v0/people/{kmap_id}/grants Returns list of Grants of a person		
GET	/api/v0/people/{kmap_id}/technologies Returns list of technologies of a person. by the kmapld		
GET	/api/v0/people/{kmap_id}/patents Returns list of patents of a person. by the kmapId		

Data Cleaning

Oit [00:00, ?it/s]{'kmapId': 'palmerjo', 'titles': "}

1it [00:00, 8.39it/s]{'kmapId': 'cwesterl', 'titles': "The Judicial Common Space 1 # All Along the Watchtower: Acculturation, Fear, Anti-Latino Affect, and Immigration # Strategic Defiance in the US Courts of Appeals # Strategic Defiance in the US Courts of Appeals # Legislators in Robes?......"}

{'kmapId': 'lumbee', 'titles': "}

3it [00:00, 10.78it/s]{'kmapId': 'skaib', 'titles': 'Exploring Perceived Medical Student Mistreatment from Interdisciplinary Perspectives # Survey Information to Improve Competitiveness'}

{'kmapId': 'witte', 'titles': 'Congenital chylothorax: Current evidence-based prenatal and post-natal diagnosis and management #'}

5it [00:00, 11.21it/s]{'kmapld': 'shonad', 'titles': 'Comprehensive Lifestyle Improvement Program for Prostate Cancer (CLIPP): Protocol for a Feasibility and Exploratory Efficacy Study in Men on Androgen Deprivation Therapy (Preprint) #'}

```
{'kmapId': 'dcorso', 'titles': "}
7it [00:00, 11.66it/s]{'kmapId': 'ghuck', 'titles': "}
{'kmapId': 'macmccallum', 'titles': "}
9it [00:00, 11.84it/s]{'kmapId': 'adriannah', 'titles': "}
10it [00:00, 11.58it/s]
```

Data Cleaning

nodes : 4,884
edges/links : 19,241
Average degree : 7.8792

Remove nodes with empty publication data

- > Previous work
- Proposed approach
- Evaluation Methodology

Calculate correctness

given network G = (V, E)

- ★ Take positive samples by selecting all edges $(x,y) \in E$.
- ★ Take negative samples by randomly selecting α |E| pairs of x,y ∈ V such that (x,y) ∈/ E.
- Split both positive and negative samples to
 - ➢ 90% training set
 - ➤ 10% testing set
- Train GNN with training set
- Evaluate correctness using test set

Compare Performance

- Calculate accuracy using Stochastic Block Model
- Compare correctness

