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Stein’s Method



Stein’s Lemma for Normal Distributions

Lemma
Given X ~ N (u, 0?),

E[(X — 1)p(X)] = 0E[¢’ (X)]

for every g for which both sides exist. The converse
holds as well; if X satisfies the relation for all ¢, then
X ~ N(u, 0%).

This is proven in [Ste86].



Stein Operators

Fix P a probability distribution. An operator A is a Stein
operator for P, if for all ¢,

E[(A)(X)] =0 ifand only if X ~P.

Example
A Stein operator for the standard normal distribution is

(Ap)(x) = ¢’ (x) — x¢(X).



Stein’s Equation

Given a function h, choose a function ¢ satisfying

(Adn)(x) = h(x)— E[h(X)],
where X ~ P. This is the Stein equation for the Stein
operator A.

Example
The Stein equation for the given operator for the

standard normal distribution is
¢1,(X) = xPn(x) = h(x) — E[h(X)].
This can be solved explicitly for the Stein solution ¢4,

Pn(x) = e%xzf e~2% (h(t) — E[h(X)]) dt.
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Absolutely Continuous Densities

Example
A distribution with an absolutely continuous density f

has a Stein operator

(Ag)(x) = ¢"(x) + (log F)’ (X)¢(x)

f (¢"(x) + (log F)’ (x)(x)) F(x) dx = f (f$)’(x) dx =0.



Absolutely Continuous Densities (cont.)

This Stein operator has Stein equation

¢7,(x) + (log )/ (x)pn(x) = h(x) — E[h(X)].

and Stein solution



Difference in Expectations

Suppose P is a distribution we wish to approximate by
the distribution Q. Let X ~ P and Y ~ Q. Plugging in

X =Y into the Stein equation for P, and taking the
expectation of both sides yeilds

E[h(Y)] = E[h(X)] = E[(Apn)(Y)]-



By restricting h to different classes of functions, we
derive an expression for various metrics.

Example
If H is the set of half-line indicator functions on R,

diol(P, Q) = sup E[h(Y)]—E[h(X)] = sup E[(An)(Y)]-



By restricting h to different classes of functions, we
derive an expression for various metrics.

Example
If H is the set of indicator functions on R,

drv(P, Q) = sup E[h(Y)] = E[h(X)] = sup E[(A¢n)(Y)]-



By restricting h to different classes of functions, we
derive an expression for various metrics.

Example
If H is the set of 1-Lipschitz functions on R,

dwas(P, Q) = sup E[A(Y)] = E[h(X)] = sup E[(Agn)(Y)I-



Choices



Choice of Stein Operator

Let p be a C! density on a subset of R?. We will choose

Ap®(x) = Vx log p(x)$(X)" + Vxp()

as our Stein operator. If d =1, this is the choice

(Ag)(x) = ¢"(x) + (log F)’ (X)¢(x)

mentioned earlier.



Choice of Metric

In order for the optimization algorithm to have a closed
form solution, we will choose

d(p, @) = max (E[TH(Ap@(Y)] ] I19lls < 1,

where #? is a reproducing kernel Hilbert space with
kernel k(, -).



Reproducing Kernel Hilbert Space

Given a positive definite kernel k: A x A - R, the
reproducing kernel Hilbert space H of k is the closure of
the span of k, along with a certain inner product:

Span(k) = {Z aik(-, x,-)}
=il

H = Span(k)

<f,g>y = Za;bjk(x,-, X;).
iJ
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Results



Summary of Result

Variational inference approximates a target distribution
p using a distribution g from a set Q of simpler
distributions that minimizes the KL divergence KL(q | p).

We will choose Q to be the set of distributions of
random variables T(Y) where T is a smooth injection,
and Y ~ q for some known tractable q.

We will present an algorithm which performs an analog
to gradient descent to iteratively choose
transformations T that make g more similar to p.

11



Computing d(-, )

For fixed p, q, the distance
d(p. q) = max {E[Tr(Ap@(Y))] | l|pllpe < 1}
per?

95,00

16; Ta’ where

is attained by ¢(x) =

¢ p(X) = E[Apk(Y, X)],

a.p

giving that d(p, q) = 19 ,lle
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KL Divergence

Theorem
Let T(x) = x +€¢(x) and qr) be the density of T(Y). We
have that

Ve KL(qm | P) le=o=—E[Tr(Ap®(Y))].

This means that in order to minimize the KL divergence
between a target distribution p and a chosen
distribution q, we want to move in the direction of ¢;p.
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Working Pointwise

Instead of working with g directly, we can sample
points from g, and apply our transformation to those
points. This works because givenY, Y; ~q,

$q,p(X) o< E[ApK(Y, X)]
= E[Vylog p(x)k(Y, x)T + Vxk(Y, x)]

1 n
~ = > k(Yj, X)Vy, log p(Y}) + Vy,k(Y}, X).

n =

This gives an update function that does not rely on q,
except through the choice of points.
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An Algorithm

This idea results in the following algorithm.

1. Choose a target density p, and a collection of points
{xP31 ..
2. Let ) (x Z, Lk( xf X)Vy |ogp(xf) +ijek(xf,x).

3. Define recursively x[Jrl =xl+ &) (xh).
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