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Stein’s Method



Stein’s Lemma for Normal Distributions

Lemma
Given X ∼ N (μ, σ2),

E[(X − μ)ϕ(X)] = σ2E[ϕ′(X)]

for every g for which both sides exist. The converse

holds as well; if X satisfies the relation for all ϕ, then

X ∼ N (μ, σ2).

This is proven in [Ste86].
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Stein Operators

Fix P a probability distribution. An operator A is a Stein
operator for P, if for all ϕ,

E[(Aϕ)(X)] = 0 if and only if X ∼ P.

Example
A Stein operator for the standard normal distribution is
(Aϕ)(x) = ϕ′(x)− xϕ(x).
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Stein’s Equation

Given a function h, choose a function ϕh satisfying

(Aϕh)(x) = h(x)− E[h(X)],

where X ∼ P. This is the Stein equation for the Stein
operator A.

Example
The Stein equation for the given operator for the
standard normal distribution is

ϕ′
h
(x)− xϕh(x) = h(x)− E[h(X)].

This can be solved explicitly for the Stein solution ϕh,

ϕh(x) = e
1
2 x2

∫ x

−∞
e−

1
2 t2

(h(t)− E[h(X)]) dt.
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Absolutely Continuous Densities

Example
A distribution with an absolutely continuous density f

has a Stein operator

(Aϕ)(x) = ϕ′(x) + (log f )′(x)ϕ(x)

since
∫ ∞

−∞

�

ϕ′(x) + (log f )′(x)ϕ(x)
�

f (x) dx =

∫ ∞

−∞
(fϕ)′(x) dx = 0.
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Absolutely Continuous Densities (cont.)

This Stein operator has Stein equation

ϕ′
h
(x) + (log f )′(x)ϕh(x) = h(x)− E[h(X)].

and Stein solution

ϕh(x) =
1

f (x)

∫ x

−∞
f (t)(h(t)− E[h(X)]) dt.
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Difference in Expectations

Suppose P is a distribution we wish to approximate by
the distribution Q. Let X ∼ P and Y ∼ Q. Plugging in
x = Y into the Stein equation for P, and taking the
expectation of both sides yeilds

E[h(Y)]− E[h(X)] = E[(Aϕh)(Y)].
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Metrics

By restricting h to different classes of functions, we
derive an expression for various metrics.

Example
If H is the set of half-line indicator functions on R,

dKol(P,Q) = sup
h∈H

E[h(Y)]− E[h(X)] = sup
h∈H

E[(Aϕh)(Y)].
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Metrics

By restricting h to different classes of functions, we
derive an expression for various metrics.

Example
If H is the set of indicator functions on R,

dTV(P,Q) = sup
h∈H

E[h(Y)]− E[h(X)] = sup
h∈H

E[(Aϕh)(Y)].
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Metrics

By restricting h to different classes of functions, we
derive an expression for various metrics.

Example
If H is the set of 1-Lipschitz functions on R,

dWas(P,Q) = sup
h∈H

E[h(Y)]− E[h(X)] = sup
h∈H

E[(Aϕh)(Y)].

7



Choices



Choice of Stein Operator

Let p be a C1 density on a subset of Rd. We will choose

Apϕ(x) = ∇x logp(x)ϕ(x)T + ∇xϕ(x)

as our Stein operator. If d = 1, this is the choice

(Aϕ)(x) = ϕ′(x) + (log f )′(x)ϕ(x)

mentioned earlier.
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Choice of Metric

In order for the optimization algorithm to have a closed
form solution, we will choose

d(p,q) = max
ϕ∈Hd

�

E[Tr(Apϕ(Y))] | ‖ϕ‖Hd ≤ 1
	

,

where Hd is a reproducing kernel Hilbert space with
kernel k(·, ·).
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Reproducing Kernel Hilbert Space

Given a positive definite kernel k : A× A→ R, the
reproducing kernel Hilbert space H of k is the closure of
the span of k, along with a certain inner product:

Span(k) =

¨

n
∑

i=1

aik(·, xi)

«

H = Span(k)

<f ,g>H =
∑

i,j

aibjk(xi, xj).
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Results



Summary of Result

Variational inference approximates a target distribution
p using a distribution q from a set Q of simpler
distributions that minimizes the KL divergence KL(q | p).

We will choose Q to be the set of distributions of
random variables T(Y) where T is a smooth injection,
and Y ∼ q for some known tractable q.

We will present an algorithm which performs an analog
to gradient descent to iteratively choose
transformations T that make q more similar to p.
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Computing d(·, ·)

For fixed p, q, the distance

d(p,q) = max
ϕ∈Hd

�

E[Tr(Apϕ(Y))] | ‖ϕ‖Hd ≤ 1
	

is attained by ϕ(x) =
ϕ∗

q,p
(x)

‖ϕ∗
q,p
‖Hd

, where

ϕ∗
q,p

(x) = E[Apk(Y, x)],

giving that d(p,q) = ‖ϕ∗
q,p
‖Hd
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KL Divergence

Theorem
Let T(x) = x+ ϵϕ(x) and q[T] be the density of T(Y). We

have that

∇ϵKL(q[T] | p) |ϵ=0= −E[Tr(Apϕ(Y))].

This means that in order to minimize the KL divergence
between a target distribution p and a chosen
distribution q, we want to move in the direction of ϕ∗

q,p
.
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Working Pointwise

Instead of working with q directly, we can sample
points from q, and apply our transformation to those
points. This works because given Y, Yj ∼ q,

ϕq,p(x) ∝ E[Apk(Y, x)]

= E
�

∇x logp(x)k(Y, x)T + ∇xk(Y, x)
�

≈
1

n

n
∑

j=1

k(Yj, x)∇Yj logp(Yj) + ∇Yjk(Yj, x).

This gives an update function that does not rely on q,
except through the choice of points.
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An Algorithm

This idea results in the following algorithm.

1. Choose a target density p, and a collection of points
{x0

i
}n

i=1.

2. Let ϕ̂∗
ℓ
(x) = 1

n

∑n
j=1 k(xℓ

j
, x)∇xℓj

logp(xℓ
j
) + ∇xℓj

k(xℓ
j
, x).

3. Define recursively xℓ+1
i = xℓ

i
+ ϵℓϕ̂∗ℓ (x

ℓ
i
).
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