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Bayesian Experimental Design

Key idea: better experiments lead to better data. Hence, we want
to choose decisions that maximize the amount of information.

ξ: controllable aspect (design).

y : experiment’s outcome.

θ: the quantity we aim to gather information about.

p(θ): prior

p(y |θ, ξ): simulator.
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InfoGainθ(ξ, y) = H(p(θ))− H(p(θ|y , ξ))

where p(θ|y , ξ) ∝ p(θ)p(y |θ, ξ).

EIGθ(ξ) = Ep(y |ξ)[InfoGainθ(ξ, y)]

= Ep(θ)p(y |ξ,θ)[log p(θ|y , ξ)− log p(θ)]

= Ep(θ)p(y |ξ,θ)[log p(y |θ, ξ)− log p(y |ξ)]
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Bayesian Adaptive Design

BED can be extended to adaptive settings by iteratively
incorporating information — referred as Bayesian adaptive design
(BAD). The designs and outcomes can be broken down into a
ξ = {ξ1, ..., ξT} and y = {y1, ..., yT}. Then the incremental EIG is
defined as:

EIGθ(ξt |ht−1) = Ep(θ|ht−1)p(yt |θ,ξt ,ht−1)

[
log

p(yt |θ, ξt , ht−1)

p(yt |ξt , ht−1)

]
where ht−1 = {(ξk , yk)}t−1

k=1.
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Nested estimation

We will assume for now that our model is explicit — we can
evaluate the densities p(θ) and p(y |θ, ξ).
First idea, estimate EIG using a MC estimator:

EIGθ(ξ) ≈
1

N

N∑
n=1

log p(yn|θn, ξ)− log p(yn|ξ),

where θn, yn ∼ p(θ)p(y |θ, ξ).
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Another option is to use a Rao-Blackwellized estimator:

µ̂N =
∑
y∈Y

1

N

N∑
n=1

p(y |θn, ξ) log p(y |θn, ξ)− p̂(y |ξ) log p̂(y |ξ),

where p̂(y |ξ) = 1
N

∑N
n=1 p(y |θn, ξ).
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Nested MC estimator:

µ̂N,M =
1

N

N∑
n=1

log
p(yn|θn, ξ)

1
M

∑M
m=1 p(yn|θ′m, ξ)

.

Can be improved by importance sampling:

µ̂N,M,q =
1

N

N∑
n=1

log
p(yn|θn, ξ)

1
M

∑M
m=1

p(θ′m)p(yn|θ′m,ξ)
q(θ′m|yn,ξ)

.
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Debiasing Schemes

EIGθ(ξ) = E[log
p(y1|θn, ξ)

limm→∞
1
M

∑M
m=1

p(θ′m)p(y1|θ′m,ξ)
q(θ′m|y1,ξ)

] = E[
∞∑
l=0

∆l ]

= E[
∆l

r(l)
]

Tom Rainforth, Adam Foster, Desi R. Ivanova and Freddie Bickford SmithModern Bayesian Experimental Design



Variational Approaches

Nested MC is very inefficient:

µ̂N,M,q =
1

N

N∑
n=1

log
p(yn|θn, ξ)

1
M

∑M
m=1

p(θ′m)p(yn|θ′m,ξ)
q(θ′m|yn,ξ)

.

Use samples instead to learn q(y |ξ) ≈ p(y |ξ).
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We have discussed these bounds in previous presentations:

EIGθ(ξ) ≤ Ep(θ)p(y |ξ,θ)[log p(y |θ, ξ)− log q(y |ξ)]

EIGθ(ξ) ≥ Ep(θ)p(y |ξ,θ)[log q(θ|y , ξ)− log p(θ)]

EIGθ(ξ) ≤ Ep(θ)p(y |ξ,θ)[µ̂1,M,q].

Implicit models: estimate ratio p(y |θ,ξ)
p(y |ξ) , use variational bounds, and

ABC techniques.
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Optimization methods

We have learned a few ways to evaluate EIGθ(ξ), but our main
goal is to select the design that maximizes information. We can
attempt to do this directly by using ∇ξEIGθ(ξ).

Gradients on Nested-MC.

Gradients nested laplace approximations.

Gradient optimization w.r.t. contrastive bound.
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Policies methods

Despite these innovations, BAD can still be a prohibitively
expensive challenge. Traditional BAD methods make greedy
actions that failed to account future steps. One solution to this
problem is to learn a policy rather than optimizing designs directly.
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Linking with Related Areas/ Future directions

Bayesian active learning: can deal with high-dimensional
datasets, but is constrained to classifications problems.

Reinforcement learning: exploration is underpinned by the idea
of information gain.

Model Misspecification: analysis is limited on both theoretical
and empirical implications.

Model improvements: improvements in implicit models have
significant potential given that it is often easier to define an
accurate simulator.
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