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Contributions

e Present an algorithm (and in the supplemental, techniques) for training energy
based models (EBMs) on high dimensional data

e Present empirical results on compositionality, decorruption, inpainting

e Show that EBMs are useful in a wide variety of domains like out of distribution
detection, adversarially robust classification, trajectory prediction, online
learning



Energy Based Models

Use a deep neural network (parameterized by 0) to learn an energy function:
Ee( x) €ER

This energy function defines a probability distribution function via the Boltzmann
distribution: exp[_ E ,(x) ] exp[_ E ,(x) ]
p(x) = = 200
exp[— E ,(x) ]dx

Here, Z(0) is the partition function and is intractable.



Sampling

Generating samples from this distribution is challenging. Previous methods used
MCMC methods like random walk and Gibbs sampling, which both suffer from
long mixing times especially for high-dimensional data like images.

We can speed this up using Langevin dynamics, which uses the gradient of the
energy function.
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This sampling procedure defines a distribution g, xK ~ dg-



Sampling

drift diffusion
A
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Welling and Teh use Langevin dynamics to sample from the true posterior
distribution while performing stochastic gradient descent.

They proved thatas K — < andA — 0, g, — p, .

They note that without the added noise, this would collapse to the nearest MAP
solution.



Stochastic Gradient Descent

Welling and Teh: Bayesian Learning via Stochastic Gradient Langevin Dynamics


http://www.youtube.com/watch?v=HvLJUsEc6dw

Stochastic Gradient Langevin Sampling
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Welling and Teh: Bayesian Learning via Stochastic Gradient Langevin Dynamics


http://www.youtube.com/watch?v=qBf5EBdEw7Q

Energy Based Models: Two Views

1. Defines a probability distribution over the data

exp[— Ee( X) ]
Z(0)

py(x) =

2. Defines an implicit generator

wk~ N(0,A)



Maximum Likelihood Training

We want to push the distribution defined by our energy function E to model the data distribution:

(0 =E _, [=logpy(x) |=E, _, [E,(x) ~log Z(0) |

Turner 2005 derives the gradient of this loss function:

VegML=[Ex+NpD_v0E9(x+)_— [Ex_Npg_VeEg(x_)_
~ [Ex+~pD:V HEQ(X+) — [Ex_Nqa:V gEe(x_):
Minimize the energy of positive Maximize the energy of negative

samples from the data (hallucinated) generated samples



Sample Replay Buffer

Sample replay buffer 8 holds
previously generated samples. These
can be used to initialize the Langevin
dynamics procedure. With 95%
probability, pick a sample from the
replay buffer, else use uniform noise.

Because the sampling procedure is a
Markov chain, this gives us a headstart
on mixing time and reduces training
time.
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Regularization

Arbitrary energy functions can have very
sharp changes in the gradient that make
Langevin dynamics unstable, and thus makes
training and generation difficult.

Constraining the Lipschitz constant of the
energy function helps these issues, which
they do by adding spectral normalization to all
layers of the energy model.

They also add weak L2 regularization of
energy magnitudes.
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Algorithm

Algorithm 1 Energy training algorithm
Input: data dist. pp(x), step size A, number of steps
K
B+ @
while not converged do
x; ~ pp
x! ~ B with 95% probability and I/ otherwise

© Generate sample from qg via Langevin dynamics:
for sample step £ = 1 to K do
% &~ % - VeE(E D) +w, w o~
N(0,0)
end for
x; = Q(x})
& Optimize objective oLy + Ly wrt 0:
A0 Vox 3o, a(Eo(xf) + Eo(x7)?) +
Bo(x;) — Eo(x;)
Update 6 based on A using Adam optimizer

B« BUxXxi
end while




Image Generation

(a) GLOW Model (b) EBM

Figure 3: Comparison of image generation techniques on unconditional CIFAR-10 dataset.



Image Generation

Model Inception*  FID
CIFAR-10 Unconditional

PixelCNN [Van Oord et al., 2016] 4.60 65.93
PixellQN [Ostrovski et al., 2018] 5.29 49.46
EBM (single) 6.02 40.58
DCGAN [Radford et al., 2016] 6.40 37.11
WGAN + GP [Gulrajani et al., 2017] 6.50 36.4
EBM (10 historical ensemble) 6.78 38.2
SNGAN [Miyato et al., 2018] 8.22 21.7
CIFAR-10 Conditional

Improved GAN 8.09 -
EBM (single) 8.30 379
Spectral Normalization GAN 8.59 25.5
ImageNet 32x32 Conditional

PixelCNN 833 33.27
PixelIQN 10.18 22.99
EBM (single) 18.22 14.31
ImageNet 128x128 Conditional

ACGAN [Odena et al., 2017] 28.5 -
EBM* (single) 28.6 43.7
SNGAN 36.8 27.62

Figure 4: Table of Inception and FID scores for ImageNet32x32
and CIFAR-10. Quantitative numbers for ImageNet32x32 from
[Ostrovski et al., 2018]. (*) We use Inception Score (from original

OpenAl repo) to compare with legacy models, but strongly encour-

age future work to compare soley with FID score, since Langevin
Dynamics converges to minima that artificially inflate Inception
Score. (**) conditional EBM models for 128x128 are smaller than

those in SNGAN.



Denoising and Inpainting

Salt and Ground Truth

Pepper (0.1) Inpainting Initialization
Figure 5: EBM image restoration
on images in the test set via MCMC.
The right column shows failure (ap-
prox. 10% objects change with ground
truth initialization and 30% of objects
change in salt/pepper corruption or in-
painting. Bottom two rows shows worst
case of change.)



Mode Coverage
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Figure 6: Illustration of cross-class implicit sam-
pling on a conditional EBM. The EBM is condi-
tioned on a particular class but is initialized with
an image from a separate class.
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Figure 7: Illustration of image completions on condi-
tional ImageNet model. Our models exhibit diversity in
inpainting.




Out-of-Distribution Detection

Model PixelCNN++ Glow EBM (ours)
SVHN 0.32 0.24 0.63
Textures VR Gt et Textures 0.33 0.27 0.48
5 : Constant Uniform 0.0 0.0 0.30
Uniform 1.0 1.0 1.0
S CIFARI10 Interpolation 0.71 0.59 0.70
“Uniform CIFAR10 Mix CIFAR10 Average 0.47 0.42 0.62
Figure 9: Illustration of im- Figure 10: AUROC scores of out of distribution classification on differ-

ages from each of the out of ent datasets. Only our model gets better than chance classification.
distribution dataset.



Out-of-Distribution Generalization
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Figure 11: Histogram of relative likelihoods for various datasets for Glow, PixelCNN++ and EBM models



Adversarial Robustness
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Figure 8: e plots under L, and Lo attacks of condi-
tional EBMs as compared to PGD trained models in

[Madry et al., 2017] and a baseline Wide ResNet18.



Trajectory Modeling
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Figure 12: Views of hand manipulation trajec-
tories generated unconditionally from the same
state(1st frame).

Figure 13: Conditional and Unconditional Mod-
eling of Hand Manipulation through Frechet Dis-
tance



Online Learning

Method Accuracy
EWC [Kirkpatrick et al., 2017]  19.80 (0.05)
SI [Zenke et al., 2017] 19.67 (0.09)

NAS [Schwarz et al., 2018] 19.52 (0.29)
LwkF [Li and Snavely, 2018] 24.17 (0.33)
VAE 40.04 (1.31)
EBM (ours) 64.99 (4.27)

Table 1: Comparison of various continual learning
benchmarks. Values averaged acrossed 10 seeds reported
as mean (standard deviation).



Compositional Generation

We can compose different EBMs through summation.

energy A energy 8 energy A + 8

Figure 14: A 2D example of combining EBMs through
summation and the resulting sampling trajectories.



Compositional Generation

Sampling a joint distribution on multiple latents is equivalent to generation on a

sum of conditional EBMs.

Figure 15: Samples from joint distribution of
4 independent conditional EBMs on scale, posi-
tion, rotation and shape (left panel) with associated
ground truth rendering (right panel).

Figure 16: GT = Ground Truth. Images of cross
product generalization of size-position (left panel)
and shape-position (right panel).




