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Energy-Based Models (High-Level)

* Non-normalized probabilistic models that specify a probability density
or mass function up to an unknown normalization constant

* No restriction on the tractability of normalizing constant
* Allows for more flexibility and ability to model a broader family of probability
distributions

* Unknown normalization constant makes training difficult

* How do we train such models?
* Three major ways
1. Maximum Likelihood Training with MCMC sampling

2. Score Matching
3. Noise Contrastive Estimation



Energy-Based Models (EBMs)

Assume unconditional EBMs over a single dependent variable x. The density of
an EBM is given by

exp(—Fg(x))
Zg

pe(x) =

where Eg(x) (the energy) is a nonlinear regression function with parameters 6
and Zgy denotes the normalizing constant (partition function)

Zg = /oxp(—Eg(x)) dx

which is constant w.r.t. x but is a function of 8 which results in intractability for
evaluation and differentiation of log pg (x) w.r.t. its parameters.



Maximum Likelihood Training with MCMC

* Defacto standard for learning probabilistic models from i.i.d. data is MLE so
we start here.

* Let pg(x) be a probabilistic model parameterized by 8 and pg,t4(Xx) be the
underlying data distribution of a dataset.

* We fit pg (x) to pgata(X) by maximizing the expected log-likelihood over the
data distribution
EXdiata_(x) [lOg pPe (X)]

* Maximizing the likelihood is equivalent to minimizing the KL divergence
between pgata(X) and pg (x)

_Exw'pdata(x) [log pe (X)] = Dk, (pdata(x) || Pe (X)) - Exwpdam(x) [108‘ pdata(x)]
= Dx1(pdata(X) || pe(x)) — constant,



Maximum Likelihood Training with MCMC

* We cannot compute the likelihood of an EBM due to the intractability in the
normalizing constant Zy.

* We can estimate the gradient of the log-likelihood with MCMC allowing for
likelihood maximization with gradient ascent.

* The gradient of the log-probability of an EBM can be decomposed as two
sums

Vo logpe(x) = —VeEg(x) — Vg log Zg

* The first term is straight forward with modern auto-differentiation. We must
figure out how to approximate the second term which is intractable.

* We can rewrite this gradient as an expectation



Maximum Likelihood Training with MCMC
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Maximum Likelihood Training with MCMC

* Thus, we can obtain an unbiased one-sample Monte Carlo estimate of the
log-likelihood gradient by
Vglog Zg ~ —VgFEg(Xx),

where X~pg(x) is a random sample from the distribution over x given by the
EBM.

* As long as we can sample the model, we can estimate the log-likelihood
gradient allowing for easy optimization



Maximum Likelihood Training with MCMC

* Drawing samples is not trivial, so we focus on efficient MCMC sampling of
EBMs

* Langevin MCMC and Hamiltonian Monte Carlo both use the fact that the gradient of the
log-probability w.r.t. x (the score) is equal to the negative gradient of the energy

Vxlog pg(x) = —VxEp(x) — Vxlog Zg = —VxEg(x).
=0
* When usmg Langevin MCMC, to sample from pg(x), we first draw initial
sample x° from some simple prior and simulate an (overdamped) Langevin

diffusion process for K steps with step sizee > 0
2
xFtL o xk 4 % Vx logpg(xk) tezF, k=0,1,---, K —1.

"

=—VxFEg(x)

* When e — 0 and K — oo, xX is guaranteed to distribute as pg(x)



Score Matching

* We can additionally learn an EBM by approximately matching the first
derivatives of its log-PDF to the first derivatives to the log-PDF of the data
distribution.

* |f the derivatives match, then the EBM captures the data distribution exactly.
* We call the first order gradient of a log-PDF the score of that distribution.
Vxlogpg(x) = —VxFEg(x)

Score

* |[tis useful to use equivalence of scores because the score of an EBM does
not involve the typically intractable normalizing constant



Score Matching

* Let pyata(X) be the underlying data distribution, but we do not know its PDF.

* The score matching objective minimizes the discrepancy between two distribution called the Fisher
divergence 1 )
DF(pda.tz_t(X) H Pe (X)) — Epdam(x) [5 Hvx 1Og pdata(x) - Vx lOg Pe (X>H

* The expectation in this objective allows for unbiased Monte Carlo estimation using the empirical mean
of samples X~Pgata (X).

* The second term is generally intractable since it requires knowing the true gradient of the log-data
distribution.

* Rewrite the Fisher divergence using integration by parts
d . 2 )
1 0FEg(x) 0“Eg(x)
Dp(pdata(x) || Po(x)) = Epy... (%) [5 Z ( ox; > " (0x;)?

=

-+ constant

where d is dimensionality of x

* In general, computation of second derivatives is quadratic with d, thus it does not scale well with high-
dimensional data. Thus, this can only be applied to relatively simple energy function.



Denoising Score Matching (DSM)

* Previous score matching objective requires several regularity conditions
(continuously differentiable, finite everywhere), but these may not hold in practice

(e.g., images).

We can alleviate this issue by adding noise to each datapoint: X = x + €

* As long as p(€) is smooth, the resulting noise data distribution q(%) = [ q(X|x) pgata (x)dx is also
smooth and thus Dz (q(X)||pg (X)) is a proper objective

We still need second order derivatives if using the Fisher divergence, but we can
circumvent this by showing

- - 1 - .
Dr(q(x) || pe(x)) = Eq(x) [5 |Vxlog qg(x) — Vx logpg(x)Hg]
1
= Eq(x,5) [5 |Vx log q(x]x) — Vxlog ])9(5()||3] + constant,

Here we have avoided the unknown p 4,4 (x) and expensive second order
derivatives.



Denoising Score Matching (DSM)

* If paata(X) is already well-behaved (i.e., satisfies regularity constraints),
then Dp(q(X)||pg (X)) # Dr(Pgata(X)||lpe(x)) and DSM is not a consistent
objective.

 This inconsistency is non-negligible when g (X) significantly differs from pgata (X)

* We can attenuate this inconsistency if we choose g = pgata(Xx) (i.€., use a

small noise perturbation)
* This comes at the cost of significantly increasing the variance of the objective values



Denoising Score Matching (DSM): Example

Suppose q(¥|x) = N (%; x,02]) and o = 0. The corresponding DSM objective is

- - 1|z 2
Dr(q(%) || o(%) = Epy 0 Eamnorn [5 |2 + Vlog po(x + o2) HJ

1

* When o — 0, we can leverage Taylor series expansion to rewrite the Monte Carlo estimator

as 1 N 9

2]\"2 {—( YTV log pe( “Z H ]+Constant.
i=1

2 (0 2

+ Vi log pg(x(i) + az(i))
o

2

* When estimating with samples, the variance of summation terms will grow unbounded as
oc— 0

 We construct a variable that is, for small g, positively correlated with the DSM objective

2l d

2
co(x,2) = ;vax log pe(x) + 2 7

* If we subtract this from the DSM objective, we obtain an estimator with reduced variance for

DSM training Lo

1=1

2 . .
— co(x®, 2.
2

(4) . :
S v log pe(x') + oz"))




Sliced Score Matching (SSM)

* Recallthat DSM does not give a consistent estimator of the data distribution
* One cannot directly obtain an EBM that exactly matches the data distribution even with unlimited
data

* |Instead of minimizing the Fisher divergence between two vector-valued scores, randomly
sample a projection vector v, take the inner product between v and the two scores, and then
compare the resulting two scalars

* Sliced Score Matching (SSM) minimizes the sliced Fisher divergence
1
Dsp(pdata(x)||pe(x)) = Ep,... ) Epv) [§(VTVx10gpdata(X) TVXIOgPG(X))2]

where p(v) denotes a projection distribution such that E, ;) [vvT] is positive definite.

* Sliced Fisher divergence has an implicit form that does not involve the true log-likelihood

iven b
g y DS’F(pdata(X)Hpe( ))

1< [ OE( “
= Epgaa 0B {2;( ()eu ) +_.Z

ViV J -+ constant.



Sliced Score Matching (SSM)

* We still have second order derivative terms, but this can be computed efficiently with linear
cost in dimensionality d because

d

0" Ep(x L9 (KNOE(x)
ZZ ozx; ()11 Z()Il (Z Bz; l.,'7> Vi,

1=1+3=1 1=1 7=1
N

» Many choices of p(v) yield a partly closed form solution to the SSM objective leading to
lower variance. For example, when p(v) is a standard normal

d . 2 d ‘ 2
1 OFg(x) B 1 O0Eg(x)
2 Zl ( ()_I’L L'L) ] - ]Epdata(x) [2 Z ( (‘):Ij'i
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* Thus, we have
DS’F(pdata( )Hpe( ))

125 FEBE] 92 Eg(
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Score-Based Generative Models

* Goal: Use an EBMto create new
samples that are similar to training
data.

* Solution: Train an EBM with Score
Matching, and then sample from it
with MCMC approaches

* We only need a model for score when
training Score Matching and sampling
with score-based MCMC and do not
have to model the energy explicitly.

* Score models share weights and are

implemented with a single neural
network conditioned on noise scale Figure 1: Samples from a score-based generative model trained with multiple scales of noise

. .. erturbations (resolution 1024 x 1024). Image credit to Song et al. (2021).
(Noise-Conditional Score Network) p ( ) g g (2021)



Noise Contrastive Estimation (NCE)

* Learn an EBM by contrasting it with another distribution with known density

* Let pyata(x) be the data distribution and p,(x) be a chosen distribution with
know density, called the noise distribution.
* Usually pick p,(x) to be simple with known PDF, such as standard normal

* Let y be a binary variable with Bernoulli Distribution used to define a mixture
distribution of noise and data:
* Pndata(®) = p(y = 0) pn(x) + p(¥y = 1) Pdata(X)
* Given a sample x from this mixture, the posterior probability of y = 0 is

_ pl‘l,da,ta(x ‘ Yy = O)p(y = O) pn(x)

pn,data(x) B pn(X) + l/pdat.a(x)

pn,data(y =0 ’ X)

where v = p(y = 1)/p(y = 0)



Noise Contrastive Estimation (NCE)

* Suppose we define our EBM as previously.
* We will now treat Zg as a learnable (scalar) parameter

* Given this EBM, we define a mixture of noise and the model distribution
* Pno(x) =p(y = 0)pu(x) + p(y = Dpg(x)
* Similarly, the posterior of y = 0 from this mixture model is

Pn(X)
mely=0|x)=
Pas(y ) pu(x) + vpe(x)

* We indirectly fit pg(x) to pgata (X) by fitting pp g (¥|X) t0 Py qata (¥ |x) through conditional
maximum likelihood objective via SGD
0" = arg 6;nin Ep, a0 [PKL(Pndata(y | X) || Pno(y | x))]

= arg éllax ]Epn.data (x,y) [log ])Il,e (y | X)] ?

* When the model s sufficiently powerful, p,, g+ (¥]|x) will match py, gara (¥|x) at the optimum

Pn,6* (y =0 | X) = pn,data(?] =0 ‘ X)
ey Pn(X) - Pn(X)
Pu(X) + vpe« (X) ~ pu(X) + UPdata(X)

<— Peo* (X) = pdata(x)




Noise Contrastive Estimation (NCE)

* NCE provides the normalizing constant as a by-product of its training
procedure

* When the EBM is expressive (e.g., DNN) we can assume itis able to
approximate a normalized probability distribution and absorb Zg into the

parameters of Eg(x)

* The resulting EBM trained via NCE will be self-normalized (normalizing
constantis closeto 1)

* We must choose p,(x) correctly for success
* Works best when p,(x) is close to data distribution



Adversarial Training

* We can additionally sidestep expensive MCMC sampling by learning an auxiliary model
through adversarial training to allow for fast sampling

* We can rewrite the maximum likelihood objective by introducing a variational distribution

qp(x)
Epdata (X) [].Og ])0 (X)] = IEpdata(x) [_Ee (X)] - ]‘Og Ze

- IEpdata(X) [_EG (X)] - log /C—Eg(x)dx

@_EQ(X)
- IEpdata(x)[_Ee(x)] - log/q¢(x) (1¢(X) dX
(l) G—Ee X) )
< Eppon(x) [—Eo(x)] — /q¢(x) log 70 dx Jensen’s Inequality

=Ep o[ Eo(xX)] — Eg (x) [~ Eo(x)] — H(gg(x)),
* For training, we can first minimize this upper bound w.r.t. g4(x) so that it is closer to the
likelihood objective, and then maximize w.r.t. Eg(x) as a surrogate for maximizing likelihood

g min By 1) [Ep ()] = By, 0 [0 ()] — H(g()).

* This optimization is similar to GANs and can be achieved by adversarial training



