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Motivation

• Unsupervised representation learning for disentangled 
representations
• Unsupervised Learning – extracting value from unlabeled data
• Representation Learning – use unlabeled data to learn a representation 

that exposes semantic features as easily decodable factors
• i.e., discover information that highlights meaningful features that are easier to 

understand and process
• Disentangled Representation – explicit representation of the salient 

attributes of a data instance
• e.g., (For a dataset of faces) facial expressions, eye color, hairstyle, etc.

• Generative modeling should be able to synthesize the observed 
data via automatic learning of disentangled representations



Overview

• Modify GANs (Generative Adversarial Networks) to encourage the 
learning of interpretable and meaningful representations.
• Maximize the mutual information between a subset of a GAN’s 

noise variables and the observations



Background: GANs

• Goal: Learn a generator distribution 𝑃! 𝑥  that matches the real 
distribution of the data 𝑃"#$#(𝑥)



Background: GANs
Define a Generator network as Gθg and a discriminator network as Dθd

.

1. Define prior on input noise variable pz(z)

2. Define mapping from noise to dataspace as Gθg (z)

3. Generate samples as x ∼ PG by transforming a noise variable z ∼ Pnoise(z)
into generated sampled Gθg (z)

4. Train generator Gθg by maximizing the discriminator Dθd
that can dis-

tinguish between samples from Pdata and PG

(a) Train Dθd
to maximize the probability of assigning correct label to

both training examples and samples from Gθg

(b) Train Gθg to minimize log(1−Dθd
(Gθg (z)))

The full optimization procedure is then given by

min
Gθg

max
Dθd

V (Dθd
, Gθg ) = Ex∼Pdata

[logDθd
(x)] + Ez∼noise[log(1−Dθd

(Gθg (z)))]



Mutual Information for Inducing Latent Codes

• In GANs, there are no restrictions on the noise variable 𝑧, meaning that is is 
highly possible the generator will use 𝑧 in an entangled manner
• Ideally, the model should allocate some random variable to represent the 

categorical identity of the data and the sematic properties of the data in an 
unsupervised manner 
• To this end, we decompose 𝑧 into two parts

1. 𝑧, treated as source of incompressible noise
2. 𝑐, which is the latent code to target structured semantic features of data 
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Mutual Information for Inducing Latent Codes
• Denote the set of structured latent codes as {𝑐!, 𝑐", … , 𝑐#} and assume 

a factorized distribution
𝑃 𝑐!, 𝑐", … , 𝑐# =)

$%!

#

𝑃(𝑐$)

• Provide 𝐺,!with both 𝑧 and 𝑐 so 𝐺,!(𝑧) becomes 𝐺,!(𝑧, 𝑐) 
• In standard GANs, there is no restriction to the distribution the 

generator can learn so the GAN can choose to model 𝑃-(𝑥|𝑐) as 𝑃-(𝑥)
• I.e., the generator disregards the latent code

• To enforce the GAN to make use of the latent code we use an 
information theoretic regularization
• Idea: There should be high mutual information between 𝑐 and the generator 

distribution 𝐺"!(𝑧, 𝑐)



A Brief History of Information Theory
• Entropy

𝐻 𝑋 = −&
!

𝑝 𝑥 log 𝑝 𝑥 = 𝔼	[− log 𝑝(𝑥)]

• Conditional Entropy

𝐻 𝑌 𝑋 =	&
!,#

𝑝 𝑥, 𝑦 log 𝑝(𝑦|𝑥)

• Mutual Information
𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑌 𝑋 = 𝐻 𝑌 	− 𝐻 𝑌 𝑋

• 𝐼 𝑋; 𝑌  is the reduction of uncertainty in 𝑋 when 𝑌 is observed
• Equals 0 when 𝑋 and 𝑌 are independent
• If 𝑋 and 𝑌 are related by a deterministic, invertible function, then maximal mutual 

information is attained



Modified Cost Function

• Based upon mutual information intuition, for any given 𝑥 ∼ 𝑃!(𝑥), 
we want 𝑃!(𝑐|𝑥) to have small entropy
• I.e, the information in the latent code 𝑐 should not be made irrelevant 

during generation

• Thus, the GAN cost is reformulated as
min
Gθg

max
Dθd

VI(Dθd
, Gθg ) = V (Dθd

, Gθg )− λI(c;Gθg (x, c))



Mutual Information Maximization
• In practice, 𝐼(𝑐; 𝐺&!(𝑧, 𝑐)) is hard to maximize as we need access to the posterior p(𝑐|𝑥).
• We instead define an auxiliary distribution q(𝑐|𝑥) to approximate p(𝑐|𝑥)

• This technique of lower bounding mutual information is known as Variational Information 
Maximization

I(c;Gθg (z, c)) = H(c)−H(c|Gθg (z, c))

= H(c) +
∑

c,x∼Gθg (z,c)

p(c, x) log p(c|x)

= H(c) +
∑

c,x

p(x)p(c|x) log p(c|x)

= H(c) + Ex∼Gθg (z,c)

[

∑

c

p(c|x) log p(c|x)

]

= H(c) + Ex∼Gθg (z,c)
[Ec′∼p(c|x)[log p(c

′|x)]]

= H(c) + Ex∼Gθg (z,c)
[DKL(p(·|x)||q(·|x)) + Ec′∼p(c|x)[log q(c

′|x)]]

≥ H(c) + Ex∼Gθg (z,c)
[Ec′∼p(c|x)[log q(c

′|x)]]



Mutual Information Maximization

• In implementation we fix the latent code distribution so that 𝐻(𝑐) 
can be treated as a constant
• As can be seen, we no longer need to compute the posterior 
𝑝(𝑐|𝑥), but we must still sample from it which is bothersome.

I(c;Gθg (z, c)) ≥ H(c) + Ex∼Gθg (z,c)
[Ec′∼p(c|x)[log q(c

′|x)]]



Mutual Information Maximization

Using Lemma 5.1, we can now compute this bound without the need to
sample from the true posterior

LI(Gθg , q) = Ec∼p(c),x∼Gθg (z,c)
[log q(c|x)] +H(c)

= Ex∼Gθg (z,c)
[Ec′∼p(c|x)[log q(c

′|x)]] +H(c)

≤ I(c;Gθg (z, c))

• Thus, we can easily compute the bound by sampling from the prior on the latent codes
• Additionally, we can easily approximate 𝐿"  via MC simulation
• Note that 𝐿"  can be maximized w.r.t. the auxiliary distribution 𝑞(𝑐|𝑥) and w.r.t. generator 𝐺#!via the 

reparameterization trick, and can thus be added to GAN’s training procedure with no additional cost
• Lastly, the lower bound becomes tight when 𝑞(𝑐|𝑥) → 𝑝(𝑐|𝑥) and variational lower bound attains its 

maximum when 𝐿" 𝐺#! , 𝑞 = 𝐻(𝑐) 



Implementation Notes

• Parameterize the auxiliary distribution 𝑞 𝑐 𝑥  to be a neural 
network
• The auxiliary distribution and discriminator 𝐷 share convolutional 

layers
• Observed that 𝐿.(𝐺/! , 𝑞) always converges faster than normal 

GANs
• For categorical latent code 𝑐0  we use a softmax nonlinearity to 

represent 𝑞(𝑐0|𝑥)
• For continuous  latent code 𝑐1  we treat 𝑞(𝑐1|𝑥) as a factored 

Gaussian



Experiments

• Goal: Investigate if mutual information 
can be maximized efficiently
• Can we push lower bound to 𝐻(𝑐)?

• Train InfoGAN on MNIST with uniform 
categorical latent codes
• Train regular GAN with an auxiliary 

distribution 𝑞 where generator is not 
trained to maximize mutual information 
with latent codes
• Conclusion: In GAN, there is no 

guarantee that generator will use latent 
codes



Experiments

• Goal: Evaluate if InfoGAN can learn disentangled and 
interpretable representations
• MNIST
• Model latent codes with one categorical code to model discontinuous 

variation in data
• Two continuous codes to capture variations that are continuous in nature 

(style)





Experiments

• Goal: Evaluate if InfoGAN can learn disentangled and 
interpretable representations
• Faces 
• Continuous latent codes allow InfoGAN to learn a disentangles 

representation that recovers the azimuth (pose), elevation and lighting

• Chairs
• InfoGAN can continuously interpolate between similar chair types of 

different widths using a single continuous code







Experiments

• Goal: Evaluate if InfoGAN can learn disentangled and 
interpretable representations
• CelebA
• Model latent variation as 10 uniform categorical variables and still show 

that InfoGAN can recover azimuth without variance of poses within the 
dataset
• Can additionally disentangle other sematic feature such as 

presence/absence of glasses and varying hairstyles and emotions




