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Motivation

* Unsupervised representation learning for disentangled
representations

* Unsupervised Learning — extracting value from unlabeled data

* Representation Learning — use unlabeled data to learn a representation
that exposes semantic features as easily decodable factors

* i.e., discover information that highlights meaningful features that are easier to
understand and process

* Disentangled Representation — explicit representation of the salient
attributes of a data instance

* e.g., (For a dataset of faces) facial expressions, eye color, hairstyle, etc.

* Generative modeling should be able to synthesize the observed
data via automatic learning of disentangled representations



Overview

* Modify GANs (Generative Adversarial Networks) to encourage the
learning of interpretable and meaningful representations.

e Maximize the mutual information between a subset of a GAN'’s
noise variables and the observations



Background: GANs

* Goal: Learn a generator distribution P, (x) that matches the real
distribution of the data Py,¢ (X)
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Background: GANs

Define a Generator network as G, and a discriminator network as Dy, .

1. Define prior on input noise variable p.(z)
2. Define mapping from noise to dataspace as Gy, (2)

3. Generate samples as x ~ Pg by transforming a noise variable z ~ P, ,;5¢(2)
into generated sampled Gy, (2)

4. Train generator Gy, by maximizing the discriminator Dy, that can dis-
tinguish between samples from Fy,:, and Pg

(a) Train Dy, to maximize the probability of assigning correct label to
both training examples and samples from Gy,

(b) Train Gy, to minimize log(1l — Dy, (G, (2)))
The full optimization procedure is then given by

min max V(D@d, GQQ) = Exvpr,,.. [10g Dy, (x)] + E.noise [log(l — Do, (Geg (Z))>]

Go, Do,



Mutual Information for Inducing Latent Codes

* In GANSs, there are no restrictions on the noise variable z, meaning thatis is
highly possible the generator will use z in an entangled manner

* |deally, the model should allocate some random variable to represent the
categorical identity of the data and the sematic properties of the data in an
unsupervised manner

* To this end, we decompose z into two parts

1. z,treated as source of incompressible noise
Z. ¢, which is the latent code to target structured semantic features of data
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Mutual Information for Inducing Latent Codes

* Denote the set of structured latent codes as {cy, ¢, ..., ¢} and assume
a factorized distribution

L
P(Cli C2, '"'CL) — np(cl)
i=1

* Provide GggWith both z and ¢ so Ggg (z) becomes Ggg (z,¢)

* |n standard GANSs, there is no restriction to the distribution the
generator can learn so the GAN can choose to model P;(x|c) as Pg(x)

* |l.e., the generator disregards the latent code

* To enforce the GAN to make use of the latent code we use an
information theoretic regularization
* |dea: There should be high mutual information between ¢ and the generator
distribution Gg_(z,¢)



A Brief History of Information Theory

* Entropy
HOX) = = ) p()1ogp(x) = E [~ log p(x)]

* Conditional Entropy
HIYIX) = ) p(x,y) logp(y1)
X,y

* Mutual Information
I(X;Y)=HX)—H{I|X)=H(Y) —H(Y|X)
* I(X;Y)isthe reduction of uncertainty in X when Y is observed
 Equals O when X andY are independent

 |If X andY are related by a deterministic, invertible function, then maximal mutual
information is attained



Modified Cost Function

* Based upon mutual information intuition, for any given x ~ P;(x),
we want P; (c|x) to have small entropy

* |l.e, the information in the latent code ¢ should not be made irrelevant
during generation

 Thus, the GAN cost is reformulated as

min max Vi (De,, Gy, ) = V(Dg,,Ge,) — M (c; Gy, (x,c))
Go, Do,



Mutual Information Maximization

* In practice, I(c; Go, (z,c)) is hard to maximize as we need access to the posterior p(c|x).

* We instead define an auxiliary distribution q(c|x) to approximate p(c|x)

I(C; GQQ (Z, C)) - H(C) o H(C‘GQQ (Z7 C))
=H(c)+ > ple,x)logp(clz)

c,x~Go, (2,c)

)+ Zp p(c|z)log p(c|z)

S plel) 1ogp<c|:c>]
= H(¢) + Euncy, (2.0) Bermp(elr) l0g p(¢'|2)]]
= H(c) + Eznay, (2.0 [Drr(p(2)|1a(-]2)) + Eonp(efr [log g(c|2)]]
> H(C) + E:IJNGQQ (z,¢) [Ec’wp(clm) [lOg Q<C/|x>“

— H(C) -+ EmNGeg (2,¢)

* This technique of lower bounding mutual information is known as Variational Information
Maximization



Mutual Information Maximization

I<C; GQQ (Za C)) > H<C) + Ea}NGgg (z,c) [Ec’wp(c|a:) [lOg Q<Cl‘x)“

* Inimplementation we fix the latent code distribution so that H(c¢)
can be treated as a constant

* As can be seen, we no longer need to compute the posterior
p(c|x), but we must still sample from it which is bothersome.



Mutual Information Maximization

Lemma 5.1 For random variables X,Y and function f(x,y) under suitable regularity conditions:
Ea:NX,yNYh:[f(xa y)] — Ea:NX,yNY|a:,a:’~X|y[f($,7 y)]

Using Lemma 5.1, we can now compute this bound without the need to
sample from the true posterior

LI(GQQ ; Q) — ECNP(C),ZBNGGQ (z,c) [log q(C’x)] - H(C>
— Ea:NGgg (z,c) [Ec’wp(da:) [log Q(C/ |£C)]] + H(C)
< I(C; G@g (Z, C))

* Thus, we can easily compute the bound by sampling from the prior on the latent codes
* Additionally, we can easily approximate L; via MC simulation

* Note that L; can be maximized w.r.t. the auxiliary distribution g(c|x) and w.r.t. generator Gggvia the

reparameterization trick, and can thus be added to GAN'’s training procedure with no additional cost
« Lastly, the lower bound becomes tight when q(c|x) = p(c|x) and variational lower bound attains its

maximum when L; (Ggg, q) = H(c)



Implementation Notes

* Parameterize the auxiliary distribution g(c|x) to be a neural
network

* The auxiliary distribution and discriminator D share convolutional
layers

* Observed that L,(Ggg, q) always converges faster than normal
GANSs

* For categorical latent code ¢; we use a softmax nonlinearity to
represent q(c;|x)

* For continuous latent code c; we treat q(c;|x) as a factored
Gaussian



Experiments

2.5

* Goal: Investigate if mutual information
can be maximized efficiently
* Canwe push lower bound to H(c¢)?

* Train InfoGAN on MNIST with uniform
categorical latent codes

* Train regular GAN with an auxiliary
distribution g where generator is not
trained to maximize mutual information
with latent codes

 Conclusion: In GAN, thereis no
guarantee that generator will use latent : : : :
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Experiments

* Goal: Evaluate if InfoGAN can learn disentangled and
Interpretable representations

* MNIST

* Model latent codes with one categorical code to model discontinuous
variation in data

* Two continuous codes to capture variations that are continuous in nature
(style)
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(c) Varying c2 from —2 to 2 on InfoGAN (Rotation) (d) Varying c3 from —2 to 2 on InfoGAN (Width)

Figure 2: Manipulating latent codes on MNIST: In all figures of latent code manipulation, we will
use the convention that in each one latent code varies from left to right while the other latent codes
and noise are fixed. The different rows correspond to different random samples of fixed latent codes
and noise. For instance, in (a), one column contains five samples from the same category in c,, and a
row shows the generated images for 10 possible categories in c; with other noise fixed. In (a), each
category in c; largely corresponds to one digit type; in (b), varying c¢; on a GAN trained without
information regularization results in non-interpretable variations; in (c), a small value of ¢y denotes
left leaning digit whereas a high value corresponds to right leaning digit; in (d), ¢z smoothly controls
the width. We reorder (a) for visualization purpose, as the categorical code is inherently unordered.



Experiments

* Goal: Evaluate if InfoGAN can learn disentangled and
Interpretable representations

e Faces

* Continuous latent codes allow InfoGAN to learn a disentangles
representation that recovers the azimuth (pose), elevation and lighting

e Chairs

* InfoGAN can continuously interpolate between similar chair types of
different widths using a single continuous code
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Figure 3: Manipulating latent codes on 3D Faces: We show the effect of the learned continuous
latent factors on the outputs as their values vary from —1 to 1. In (a), we show that one of the
continuous latent codes consistently captures the azimuth of the face across different shapes; in (b),
the continuous code captures elevation; in (c), the continuous code captures the orientation of lighting;
and finally in (d), the continuous code learns to interpolate between wide and narrow faces while
preserving other visual features. For each factor, we present the representation that most resembles
prior supervised results [7] out of 5 random runs to provide direct comparison.
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(a) Rotation (b) Width

Figure 4: Manipulating latent codes on 3D Chairs: In (a), we show that the continuous code
captures the pose of the chair while preserving its shape, although the learned pose mapping varies
across different types; in (b), we show that the continuous code can alternatively learn to capture the
widths of different chair types, and smoothly interpolate between them. For each factor, we present
the representation that most resembles prior supervised results [7] out of 5 random runs to provide
direct comparison.



Experiments

* Goal: Evaluate if InfoGAN can learn disentangled and
Interpretable representations

e CelebA

* Model latent variation as 10 uniform categorical variables and still show
that InfoGAN can recover azimuth without variance of poses within the
dataset

 Can additionally disentangle other sematic feature such as
presence/absence of glasses and varying hairstyles and emotions



(c) Hair style (d) Emotion

Figure 6: Manipulating latent codes on CelebA: (a) shows that a categorical code can capture the
azimuth of face by discretizing this variation of continuous nature; in (b) a subset of the categorical
code is devoted to signal the presence of glasses; (c) shows variation in hair style, roughly ordered
from less hair to more hair; (d) shows change in emotion, roughly ordered from stern to happy.



