Deep Variational Information Bottleneck

Kayla Bennett

University of Arizona

February 26, 2024

Paper Contributions

» Variational approximation to Information Bottleneck objective function
» Apply Variational IB method to neural networks
» Objective is robust to adversarial attack

Background: Mutual Information

» Measures mutual dependence between variables

> Always non-negative

» Invariant to reparameterizations

> I(X;Y) = Dkr(P(X, Y)[|P(X) ® P(Y))

» In words: KL divergence between marginal distribution and product of distributions

Background: Information Bottleneck Method

Ris(0) = I(Z,Y;0) — BI(Z, X;)

» Learn informative encoding Z about target Y while ignoring input data X
» Intractable for most models
» Exceptions: All variables are discrete, or all are jointly gaussian
» 3 > 0 hyperparameter trades between objectives
» High [fails to learn anything
» Experiments further explore g3

Method: Overview

» Use variational approximations to compute lower-bound of IB objective
» Use local reparameterization trick & Monte Carlo sampling to estimate the gradient
» Optimize using SGD and train a deep neural network

Factoring the Joint

» Assume factorization:
p(X. Y. Z) = p(ZIX. Y)p(Y|X)p(X) = p(Z|X)p(Y|X)p(X)

» Markov chain: Y« X < 7
P> Representation Z can't depend directly on Y

First Term of IB Objective

IZ,Y) = [dy dz ply, 2)log jf5iily = [dy dz p(y z) log B3]

p(y|z) from Markov chain:

ply|z) = [dx p(x, y|z) = [dx p(y|x)p(x|z) = [dx Erx)etzkde()

Approximating the First Term

» p(y|z) is intractable
» define variational approximation g(y|z)
» g(y|z) is a second neural network with its own parameters

Lower Bound on /(Z,Y) using q(y|z)

KL Divergence is always nonnegative:
KL[p(Y|Z2),q(Y[Z2)] =2 0 = [dy p(y|z)log p(y|z) = [dy p(y|z)log a(y|z)

I(Z,Y) > [dydzp(y,z)logq(y|z) + H(Y)

Ignore H(Y') since it doesn't depend on the optimization.

Lower Bound on /(Z,Y') continued

Rewrite using Markov Chain assumption:
ply,z) = [dxp(x,y,z) = [dxp(x)p(y|x)p(z|x)
I(Z,Y) z [dxdy dz p(x)p(y|x)p(z|x)log q(y|2)

Above lower bound only requires samples from our data and stochastic encoder, as well
as tractable g(y|z)!

Approximating 51(Z, X)

I(Z,X) = [dzdx p(x, z)log %

= [dzdx p(x, z) log p(z|x) — [dz p(z) log p(z)
» Computing marginal p(z) could be difficult

» Define variational approximation r(z)
» Use nonnegativity of KL to get an upper bound:

I(Z,X) < [dx dz p(x)p(z|x) log 2F5)

Combining Terms and Approximating Empirically

(Z,Y) - BI(Z,X)
> [dxdy dz p(x)p(y|x)p(z|x) log q(y|2)
—B [dx dz p(x)p(z|x) log 2 z|>)<)
=1

» Approximate p(x, y) empirically:
P(x,¥) = 3 21 0, (X)6y,(¥)

Finally the Objective Function

> p(z]x) = N(z|fé'(x), £ (x))

» MLP encoder outputs K-dimensional x4 and o

» Apply Reparameterization trick: p(z|x)dz = p(e)de and z = f(x, €)
» Final objective function to minimize:

N
T3 = 3 O Berpte) [08yl f (2,)] + SKL p(Z]a), r(2)]. (a7)
n=1

As in Kingma & Welling (2014), this formulation allows us to directly backpropagate through a
single sample of our stochastic code and ensure that our gradient is an unbiased estimate of the true
expected gradientE

MNIST Experiments

Use existing MLP model and compare with other regularization methods
Stochastic encoder: p(z|x) = N(z|ff(x), fX(x))

fe: MLP w/ layers: 784 — 1024 — 1024 — 2K

Final layer: K means and K standard deviations

Try bottleneck sizes K = 256 and K =2

Decoder q(y|z) is a logistic regression model

r(z) is a K-dimensional spherical gaussian

VVVYyVYVYYVYY

MNIST: Comparison

Model | error
Baseline | 1.38%
Dropout | 1.34%
Dropout (Pereyra et al., 2017) | 1.40%
Confidence Penalty | 1.36%
Confidence Penalty (Pereyra et al., 2017) | 1.17%
Label Smoothing | 1.40%
Label Smoothing (Pereyra et al., 2017) | 1.23%
VIB (3=10"%) | 113%

Table 1: Test set misclassification rate on permutation-invariant MNIST using K = 256. We com-
pare our method (VIB) to an equivalent deterministic model using various forms of regularization.
The discrepancy between our results for confidence penalty and label smoothing and the numbers
reported in (Pereyra et al., 2017) are due to slightly different hyperparameters.

MNIST: 2D Embedding

P worse results than K=256 embedding, but same trends
» Mostly interesting for visualizations

MNIST: Error and MI statistics

000

00s
ois
oot

5 oao s om
P e enlshoren T o
oons == testavg cval = testavgeval
sl o e stroml
i ag ol i avg vl
0000 0.00
0 0t 07 0 00 0 100 03 01 @ 05 0t 07 00 00 Wl 00 0F 0 0 o
(a) (b)
33 train w train
s - -+
"
w
=3 =
3 S
M
o
2 ”
. -
w ” w o R AR
@0
©) (d)

Figure 1: Results of VIB model on MNIST. (a) Error rate vs § for K = 256 on train and test set.
“1 shot eval” means a single posterior sample of z, “avg eval” means 12 Monte Carlo samples. The
spike in the error rate at 3 ~ 10~2 corresponds to a model that is too highly regularized. Plotted
values are the average over 5 independent training runs at each 3. Error bars show the standard
deviation in the results. (b) Same as (a), but for K = 2. Performance is much worse, since we pass
through a very narrow bottleneck. (¢) 1(Z,Y) vs I(Z, X) as we vary 3 for K = 256. We see that
increasing (Z, X) helps training set performance, but can result in overfitting. (d) /(Z,X) vs
for K = 256. We see that for a good value of 3, such as 1072, we only need to store about 10 bits
of information about the input.

MNIST: 2D Embedding Visualization

I

T £ -

-
0 o ~ 0

P

1s 10 s 0 5 10 1s 4 2 0 2 4 3 2 0 1

(@) B = 1073, errme = 3.18%, (b) 8 = 1071, errme = 3.44%, (¢) 8 = 10°, errme = 33.82%,
err; = 3.24% err; = 4.32% err; = 62.81%.

Figure 2: Visualizing embeddings of 1000 test images in two dimensions. We plot the 95% confi-
dence interval of the Gaussian embedding p(z|z) = M (p, X) as an ellipse. The images are colored
according to their true class label. The background greyscale image denotes the entropy of the vari-
ational classifier evaluated at each two dimensional location. As /3 becomes larger, we forget more
about the input and the embeddings start to overlap to such a degree that the classes become indis-
tinguishable. We also report the test error using a single sample, err;, and using 12 Monte Carlo
samples, errmc. For “good” values of 3, a single sample suffices.

Adversary ML Models

P Train model to add noise to a sample and change class prediction
» Could be targeted or untargeted

» Authors evaluate robustness to two adversary models:

» [, Optimizer
» Fast Gradient Sign - Evaluate gradient and take one step of size €

MNIST: Adversarial Experiment

» Perturb 10 zeroes to classify as ones
» use Ly adversary from Carlini & Wagner (2016)

MNIST: Adversarial Results

Figure 3: The adversary is trying to force each O to be classified as a 1. Successful attacks have a red
background. Unsuccessful attacks have a green background. In the case that the label is changed
to an incorrect label different from the target label (i.e., the classifier outputs something other than
0 or 1), the background is purple. The first column is the original image. The second column is
adversarial examples targeting our deterministic baseline model. The third column is adversarial
examples targeting our dropout model. The remaining columns are adversarial examples targeting
our VIB models for different 3.

L2 Perturbation vs Beta, Compare with Deterministic

3.0 - = Deterministic Model L*
ri Targeted L2 Optimization (0->1):L0
=1 = Targeted L2 Optimization (0->1):L2 P>
=== Targeted L2 Optimization (0->1):Lco

. 25
|
o
©
5]
=
Q20
-
0
£
£
9]
T 15
gL
©
-
<
1.0 o TRy

101! 10710 10° 108 107 10°° 107 10 107 102

L2 Perturbation vs Beta, Compare with Dropout

— — Dropout Model L*

ri Targeted L2 Optimization (0->1):L0
=1 = Targeted L2 Optimization (0->1):L2
1.8 === Targeted L2 Optimization (0->1):Lc

1.6

1.4

All L*/Dropout Model L*

1.0 S R

101! 10710 10° 108 107 10°° 107 10 107 102

Accuracy vs Beta, L2 Adversary

0.7

° ° °
= & >

Accuracy on Adversarial Examples
e
w

0.1 - - Deterministic and Dropout Models (Targeted and Untargeted)
== Targeted L2 Optimization
= Untargeted L2 Optimization

Figure 6: Classification accuracy (from O to 1) on Lo adversarial examples (of all classes) as a
function of B. The blue line is for targeted attacks, and the green line is for untargeted attacks
(which are easier to resist). In this case, 3 = 107! has performance indistinguishable from 3 = 0.
The deterministic model and dropout model both have a classification accuracy of 0% in both the
targeted and untargeted attack scenarios, indicated by the horizontal red dashed line at the bottom of
the plot. This is the same accuracy on adversarial examples from this adversary reported in Carlini
& Wagner (2016) on a convolutional network trained on MNIST.

Relative Accuracy on Adversarial Examples

== FGS, epsilon=0.500

- - Dropout Model
5 = FGS, epsilon=0.350
== FGS, epsilon=0.400
== FGS, epsilon=0.450

8
5
£
§ == FGS, epsilon=0500

Relative Accuracy on Adversa

(a) (b)

Figure 5: Classification accuracy of VIB classifiers, divided by accuracy of baseline classifiers, on
FGS-generated adversarial examples as a function of 3. Higher is better, and the baseline is always
at 1.0. For the FGS adversarial examples, when 5 = 0 (not shown), the VIB model’s performance is
almost identical to when 3 = 1078, (a) FGS accuracy normalized by the base deterministic model
performance. The base deterministic model’s accuracy on the adversarial examples ranges from
about 1% when € = (.5 to about 5% when ¢ = 0.35. (b) Same as (a), but with the dropout model
as the baseline. The dropout model is more robust than the base model, but less robust than VIB,
particularly for stronger adversaries (i.e., larger values of €). The dropout model’s accuracy on the
adversarial examples ranges from about 5% when ¢ = 0.5 to about 16% when ¢ = 0.35. As in
the other results, relative performance is more dramatic as 3 increases, which seems to indicate that
the VIB models are learning to ignore more of the perturbations caused by the FGS method, even
though they were not trained on any adversarial examples.

ImageNet: Adversarial Experiment

1M images, 1K classes

Use pretrained Inception Resnet V2 at 80.4% accuracy

apply the pretrained model to each image and extract latent representation
resulting representation is 1536 dimensions

input these to model mostly similar to MNIST experiments

vVvyvyyvyy

ImageNet: Classification results

» All results lower than 80.4% baseline

» Likely need more training time or better hyperparameters
» Best accuracy: 80.12% with 8 = 0.01

» 3 =0.01 — roughly 45 bits in /(X, Z)

» 3 =0 — 10,000 bits, but only 78.87% accuracy

ImageNet: Adversarial Results

Metric | Determ | IRv2 | VIB(0.01)

Sucessful target | 1.0 1.0 0.567
Ly | 645 14.43 | 43.27
L. | 018 044 | 0.92

Table 2: Quantitative results showing how the different Inception Resnet V2-based architectures
(described in Section[4.2.5) respond to targeted Lo adversarial examples. Determ is the deterministic
architecture, /Rv2 is the unmodified Inception Resnet V2 architecture, and VIB(0.01) is the VIB
architecture with 8 = 0.01. Successful target is the fraction of adversarial examples that caused
the architecture to classify as the target class (soccer ball). Lower is better. Lo and L, are the
average L distances between the original images and the adversarial examples. Larger values mean
the adversary had to make a larger perturbation to change the class.

ImageNet Perturbations: Clean & VIB
\ f;g EF.

ImageNet Perturbations: Determlnlstlc & Unmodified ResNet

981
222|222

ImageNet: Magnitude of Perturbations

Figure 8: Shown are the absolute differences between the original and final perturbed images for
all three networks. The left block shows the perturbations created while targeting the VIB network.
The middle block shows the perturbations needed for the deterministic baseline using precomputed
whitened features. The right block shows the perturbations created for the unmodified Inception
ResNet V2 network. The contrast has been increased by the same amount in all three columns to
emphasize the difference in the magnitude of the perturbations. The VIB network required much
larger perturbations to confuse the classifier, and even then did not achieve the targeted class in 13
of those cases.

Final Thoughts

» |'m reasonably convinced this is a good regularizer
> Some examples support adversarial robustness, others not so much
» Learning 3 is probably nontrivial

Questions?

References

Alemi, A. A., Fischer, 1., Dillon, J. V., & Murphy, K. (2016). Deep variational
information bottleneck. arXiv preprint arXiv:1612.00410.

