Dropout as Bayesian Approximation:
Representing Model Uncertainty in Deep Learning



Introduction

Tools (like deep learning )for regression and classification do not capture model
uncertainty (Root cause of the discussion)

On contrary, Bayesian Model, is a mathematically grounded framework but with high
computational cost.

* A Bayesian model is a statistical model that uses probability to represent uncertainty in both the model's output and input. It's made up of a model for
the data and a prior distribution for the model's parameters.

This paper talks about casting dropout training in deep neural networks, as approximate
Bayesian inference in deep Gaussian process.

It mitigates the problem of representing uncertainty in deep learning without sacrificing
computational complexity or test accuracy.



Paper’s view

Neural network with arbitrary depth and non-linearities with dropout applied before every
weight layer, is mathematically equivalent to an approximation to the probabilistic deep

Gaussian process.

*Deep Gaussian Processes are a sophisticated machine learning approach that combines the hierarchical structure of deep learning
with the probabilistic modeling capabilities of Gaussian processes. offering a powerful tool for tasks requiring complex data modeling
and uncertainty quantification

The paper compare uncertainty obtained from different task.

Shows that model uncertainty is indispensable for classification task.



When training a neural network

Important aspects

* Those marked in Red are where uncertainty of model is dealt

. Data Preprocessing

. Data Augmentation

. Network Architecture

. Regularization Techniques (Dropout)
. Loss Function and Optimization

. Learning Rate

. Batch size

. Evaluation Metrics

Training Duration
Hardware Considerations
Monitoring Training
Hyperparameter Tuning
Reproducibility
Validation strategies
Error Analysis

Model Deployment



What is Uncertainty

Lack of certainty in the prediction by statistical model or algorithm, due to inherent
limitation of model or training data.

Some of the sources and type of Uncertainty

Aleatoric Uncertainty

. Data Uncertainty
Epistemic Uncertainty

. Parameter Uncertainty

. Model Structure Uncertainty

. Conceptual Uncertainty
. Extrapolation Uncertainty

 Aleatoric Uncertainty & Epistemic Uncertainty
. Prediction Uncertainty

Estimate and report the uncertainty of model Prediction provide information about
reliability of the prediction.



Sample of Uncertainty
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Regularization

Regularization refers to techniques used to prevent overfitting . It helps to improve the generalization of the
model to new or unseen data.

Commonly used regularization techniques in neural network:
*  Weight Regularization (L1 and L2 regularization) : Penalty to loss function based on the magnitude of weights.

*  Dropout : Randomly selected neurons are ignored during the training.
* Early Stopping : Monitor model’s performance on validation set during training and stop training once performance begin to degrade.

* Data Augmentation: Artificially increasing the size of training dataset, by creating modified version of data. (e.g. rotations, translations,
zooming on images. Model generalize better when provided with larger or more diverse training set.

* Noise Addition : Adding noise to input or hidden layers during training prevents models from learning spurious (misleading) patterns in
training data.

* Batch Normalization : Besides normalizing output of each layer’s activations, batch normalization can have a regularizing effect as well.

*Normalizing : adjusting input data or activation of neurons to keep them close to the particular distribution, often a standard distribution.

* Ensemble Methods : Techniques like bagging and boosting, where multiple models are trained, and their predictions are averaged. It
improves generalization and performance.
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Dropout computation

1 N L

Laropou = 3= > E(yi: F1) + A Y (IIWil[3 +[bs]13)

g—1

N : Sample Count

E() + loss term for the i-th sample Average loss over all N samples
A : Hyperparameter

L : Layer of the neural network

A : Sum of squares of the weights in the i-th layer

: Sum of the squares of the biases in the i-th layer



P(y|x,X,Y)
P(y|x,w)
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Predictive Probabillity
of deep Gaussian process model

plyix. X.Y) = /p(_vy|x. w)p(w | X, Y )dw (2)
p(y|x,w) =N (y; ¥(x,w), 7 'Ip)
y(x,w={Wiy,...,.W L}) = .-"’iwm .-""i.\-’\fga(\le+ml)...
VK, V K,

: Predictive distribution of a new output vy, given a new input x. Observed data X (input) and Y(outputs)
: Likelihood of y given the x and a specific set of weights w.

: Hyperparameter

: Layer of the neural network

: Sum of squares of the weights in the i-th layer

: Sum of the squares of the biases in the i-th layer
The posterior distribution p(w|X,Y) in eq. (2) is in-
tractable. We use g(w), a distribution over matrices whose
columns are randomly set to zero, to approximate the in-
tractable posterior. We define g(w) as:

W, = M; - diag([z: ;)54
z;; ~ Bernoulli(p;) fori =1,....L, j=1,...,K; 4



Minimization Objective

We minimise the KL divergence between the approximate
posterior g(w ) above and the posterior of the full deep GP,
p(w| X, Y ). This KL is our minimisation objective

_ / (w) log p(Y|X, w)dw + KL(g(w)||p(w)). (3

We rewrite the ﬁrst term as a sum

_Z /Q(w)logp(vnlxn w)dw

n—I1



Approximate predictive distribution

predictive distribution is given by
q(y”[x") = /p(y*\X*. w)q(w)dw (5)

where w = {W;}%_, is our set of random variables for a
model with L layers.



Experiments — Regression Task
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Figure 2. Predictive mean and uncertainties on the Mauna Loa CO; concentrations dataset, for various models. In red is the
observed function (left of the dashed blue line); in blue is the predictive mean plus/minus two standard deviations (8 for fig. 2d).
Different shades of blue represent half a standard deviation. Marked with a dashed red line is a point far away from the data: standard
dropout confidently predicts an insensible value for the point; the other models predict insensible values as well but with the additional
information that the models are uncertain about their predictions.



Experiments — Classification
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Figure 4. A scatter of 100 forward passes of the softmax input and output for dropout LeNet. On the X axis is a rotated image of
the digit 1. The input is classified as digit 5 for images 6-7, even though model uncertainty is extremly large (best viewed in colour).



Experiments
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Avg. Test RMSE and Std. Errors Avg. Test LL and Std. Errors

Dataset VI PBP Dropout VI PBP Dropout

Boston Housing 432 £0.29 3.01 £0.18 2.97 =0.85 -2.90 £0.07 -2.57 £0.09 -2.46 +0.25
Concrete Strength 7.19 £0.12 5.67 £0.09 5.23 £0.53 -3.39 £0.02 -3.16 £0.02 -3.04 +0.09
Energy Efficiency 2.65 £0.08 1.80£+0.05 L.66 £0.19 -2.39 +0.03 -2.04 £0.02 -1.99 +0.09
Kin8nm 0.10 £0.00 0.10 £0.00 0.10 £0.00  0.90 £0.01 0.90 £0.01 0.95 +0.03
Naval Propulsion 0.01 =0.00 0.01 £0.00 0.01 £0.00  3.73 £0.12 3.73 =0.01 3.80 £0.05
Power Plant 433 £0.04 412 +0.03 4.02 =0.18 -2.89 +£0.01 -2.84 £0.01 -2.80 +0.05
Protein Structure 4.84 +0.03 473 £0.01 436 =0.04 -2.99 +£0.01 -2.97 £0.00 -2.89 +0.01
Wine Quality Red 0.65 £0.01 0.64 +=0.01 0.62 =0.04 -0.98 +£0.01 -0.97 £0.01 -0.93 +0.06
Yacht Hydrodynamics  6.89 £0.67 1.02 £0.05 1.11 =0.38 -3.43 £0.16 -1.63 £0.02 -1.55 £+0.12
Year Prediction MSD  9.034 £NA 8.879 £NA 8.849 £NA -3.622 =NA -3.603 =NA -3.588 £NA

Table 1. Average test performance in RMSE and predictive log likelihood for a popular variational inference method (VI, Graves
(2011)), Probabilistic back-propagation (PBP. Hernandez-Lobato & Adams (2015)), and dropout uncertainty (Dropout).
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