
Monte Carlo Methods

Prof. Jason Pacheco

Some material from:
 Prof. Erik Sudderth & Prof. Kobus Barnard

CSC696H: Probabilistic Methods in ML

Administrative Items
• Sign up for paper presentation

• Create Github repository
• Title “CSC969H Spring 2024 – <Name>”
• Add Markdown document “critical_summary.md”
• Add me as collaborator “pachecoj”
• Set repository as Private

Critical Reading Summaries

Starting next week all readings will require critical summaries

I will add a grade item to D2L for 1st half of summaries
• Nothing to hand in on D2L
• Append summaries to critical_summary.md in Github repo
• For full credit make sure to push summaries to Github regularly

Short paragraph that answers the following:
• What are the strengths?
• What are the weaknesses (what would you improve)?
• What are some points that would be helpful to discuss in class?

Outline

• Monte Carlo Estimation

• Sequential Monte Carlo

• Markov Chain Monte Carlo

Outline

• Monte Carlo Estimation

• Sequential Monte Carlo

• Markov Chain Monte Carlo

Motivation for Monte Carlo Methods

• Now consider computing the expectation of a function
 over .

• Recall that this looks like

• How can we approximate or estimate E[f]?

A bad plan…

Scales poorly with dimension of Z

A better plan…

Motivation for Monte Carlo Methods

• Generally, Z lives in a very high dimensional space.

• Generally, regions of high is very little of that space.

• IE, the probability mass is very localized.

• Watching samples from should provide a good maximum
(one of our inference problems)

Motivation for Monte Carlo Methods

§ Real problems are typically complex and high dimensional.

§ Suppose that we could generate samples from a distribution
that is proportional to one we are interested in.

§ Typically we want posterior samples,

Don’t know marginal
likelihood / normalizer

Unnormalized
posterior

§ Typically, is easier to evaluate (though not always)

Inference (and related) Tasks

• Simulation:

• Compute expectations:

• Optimization:

• Compute normalizer / marginal likelihood:

Inference (and related) Tasks

• Simulation:

• Compute expectations:

• Optimization:

• Compute normalizer / marginal likelihood:

Sampling Continuous RVs

Recall that the CDF is the integral of the PDF and (left) tail probability,

Question Given samples what is
the probability distribution of the CDF values,

Observation 1 Equally spaced intervals of CDF
correspond to regions of equal event probability

Observation 2 The same events have unequal
regions under PDF

Sampling Continuous RVs

Answer The CDF of iid samples has a
standard uniform distribution!

Question How can we use this fact to
sample any RV?

Answer Apply this relationship in reverse:
1. Sample iid standard uniform RVs
2. Compute inverse CDF
3. Result are samples from the target

This property is called the
probability integral transform

Inverse Transform Sampling

Ø We can use these to exactly sample from any continuous
distribution using the cumulative distribution function:

Ø Assuming continuous CDF is invertible:

Xi = h(Ui)

FX(x) = P (X  x) =

Z x

�1
fX(z) dz

p(y)

h(y)

y0

1

fX(x) FX(x)

h(u) = F�1
X (u)

P (Xi  x) = P (h(Ui)  x) = P (Ui  FX(x)) = FX(x)

Ø Input: Independent standard uniform variables U1, U2, U3, . . .

This function transforms uniform variables to our target distribution!

Requires us to have
access to inverse CDF

Inverse Transform Sampling

Ø Very nice trick that applies to all continuous RVs (in theory)

Ø Yay, we know how to sample any RV right? Wrong…

Ø Don’t always have the inverse CDF (or cannot calculated it)

Ø Doesn’t extend easily to multivariate RVs (that’s why I only
showed 1-dimensional)

Rejection Sampling

Assume
• Access to easy-to-sample distribution
• Constant k such that

Proposal Distribution
Where we can use one of

methods on previous slides
to sample efficiently

Algorithm

Example Uses Gaussian
proposal q to draw samples
from multimodal distribution p

Rejection Sampling

• Rejection sampling is hopeless in high dimensions, but
is useful for sampling low dimensional “building block”
functions.

• For example, the Box-Muller method for generating
samples from a Gaussian uses rejection sampling.

A second example where a
gamma distribution is
approximated by a Cauchy
proposal distribution.

Inference (and related) Tasks

• Simulation:

• Compute expectations:

• Optimization:

• Compute normalizer / marginal likelihood:

Monte Carlo Integration

One reason to sample a distribution is to approximate
expected values under that distribution…

Expected value of function w.r.t. distribution given by,

Ø Doesn’t always have a closed-form for arbitrary functions
Ø Suppose we have iid samples:
Ø Monte Carlo estimate of expected value,

Monte Carlo Integration

• Expectation estimated from empirical distribution of L samples:

• For any N this estimator, a random variable, is unbiased:

• The Dirac delta is loosely defined as a piecewise function:
Caveat This is technically incorrect. Dirac is only well-
defined within integrals, but it
gets the intuition across.

Monte Carlo Asymptotics

• Estimator variance reduces at rate 1/N:

• If the true variance is finite have central limit theorem:

Independent of dimensionality
of random variable X

• Even if true variance is infinite have laws of large numbers:

Weak
Law

Strong
Law

Importance Sampling

Can we estimate without sampling p(z)?

Monte Carlo estimate over samples from proposal q(z):

Key: We can sample from an “easy” distribution q(z) instead!

q(z) is an easy-to-sample
proposal distribution

Importance Sampling

IS weights are the ratio of target / proposal distributions:

where

But we often do not know the normalizer of the target distribution,

where

Can only evaluate unnormalized target

Can we evaluate IS estimate in terms of unnormalized weights?

Yes! Let’s see how…

Importance Sampling (Normalized)

Recall, the importance sampling estimate is given by,

q(z) =
1

Zq

q̃(z)

With normalized target and proposal distributions, respectively:

Substitute and pull out ratio of normalizers,

Easy to computeNeed to compute this…

Importance Sampling (Normalized)

Idea Compute importance sampling estimate of target normalizer:

Typically we have normalized proposal q(z) so Zq=1 and,

Where are our unnormalized importance weights,

We can compute this!

Given samples we can write the IS estimate as,

Importance Sampling (normalized)

where

The ratio of normalizers is approximated by normalized weights,

Substituting the normalized weights yields,

1. Simulate from tractable distribution

Importance Sampling On-A-Slide

[Source: Bishop]

2. Compute importance weights & normalize

3. Compute importance-weighted expectation

Note There is no 1/N term since it is
part of the normalized IS weights

Selecting Proposal Distributions

(a) (b)

(c) (d)

(e) (f)

Figure 2.17. Monte Carlo estimates based on 30 samples (arrows) from one–dimensional proposal
distributions (left column), and corresponding kernel density estimates (right column) constructed via
likelihood cross–validation. (a) Target density (solid), and unweighted direct samples. (b) Kernel
density (thick blue line) estimated from Gaussian kernels (thin black lines). (c) A mixture proposal
distribution (solid) closely matched to the target density (dashed), and importance weighted samples.
(d) Kernel density estimated from weighted Gaussian kernels. (e) A Gaussian proposal distribution
(solid) with mean and variance matching the target density (dashed), and weighted samples. (f) Kernel
density with artifacts from the Gaussian proposal’s widely varying importance weights.

(a) (b)

(c) (d)

(e) (f)

Figure 2.17. Monte Carlo estimates based on 30 samples (arrows) from one–dimensional proposal
distributions (left column), and corresponding kernel density estimates (right column) constructed via
likelihood cross–validation. (a) Target density (solid), and unweighted direct samples. (b) Kernel
density (thick blue line) estimated from Gaussian kernels (thin black lines). (c) A mixture proposal
distribution (solid) closely matched to the target density (dashed), and importance weighted samples.
(d) Kernel density estimated from weighted Gaussian kernels. (e) A Gaussian proposal distribution
(solid) with mean and variance matching the target density (dashed), and weighted samples. (f) Kernel
density with artifacts from the Gaussian proposal’s widely varying importance weights.

(a) (b)

(c) (d)

(e) (f)

Figure 2.17. Monte Carlo estimates based on 30 samples (arrows) from one–dimensional proposal
distributions (left column), and corresponding kernel density estimates (right column) constructed via
likelihood cross–validation. (a) Target density (solid), and unweighted direct samples. (b) Kernel
density (thick blue line) estimated from Gaussian kernels (thin black lines). (c) A mixture proposal
distribution (solid) closely matched to the target density (dashed), and importance weighted samples.
(d) Kernel density estimated from weighted Gaussian kernels. (e) A Gaussian proposal distribution
(solid) with mean and variance matching the target density (dashed), and weighted samples. (f) Kernel
density with artifacts from the Gaussian proposal’s widely varying importance weights.

Target Distribution Good Proposal Poor Proposal

(a) (b)

(c) (d)

(e) (f)

Figure 2.17. Monte Carlo estimates based on 30 samples (arrows) from one–dimensional proposal
distributions (left column), and corresponding kernel density estimates (right column) constructed via
likelihood cross–validation. (a) Target density (solid), and unweighted direct samples. (b) Kernel
density (thick blue line) estimated from Gaussian kernels (thin black lines). (c) A mixture proposal
distribution (solid) closely matched to the target density (dashed), and importance weighted samples.
(d) Kernel density estimated from weighted Gaussian kernels. (e) A Gaussian proposal distribution
(solid) with mean and variance matching the target density (dashed), and weighted samples. (f) Kernel
density with artifacts from the Gaussian proposal’s widely varying importance weights.

(a) (b)

(c) (d)

(e) (f)

Figure 2.17. Monte Carlo estimates based on 30 samples (arrows) from one–dimensional proposal
distributions (left column), and corresponding kernel density estimates (right column) constructed via
likelihood cross–validation. (a) Target density (solid), and unweighted direct samples. (b) Kernel
density (thick blue line) estimated from Gaussian kernels (thin black lines). (c) A mixture proposal
distribution (solid) closely matched to the target density (dashed), and importance weighted samples.
(d) Kernel density estimated from weighted Gaussian kernels. (e) A Gaussian proposal distribution
(solid) with mean and variance matching the target density (dashed), and weighted samples. (f) Kernel
density with artifacts from the Gaussian proposal’s widely varying importance weights.

(a) (b)

(c) (d)

(e) (f)

Figure 2.17. Monte Carlo estimates based on 30 samples (arrows) from one–dimensional proposal
distributions (left column), and corresponding kernel density estimates (right column) constructed via
likelihood cross–validation. (a) Target density (solid), and unweighted direct samples. (b) Kernel
density (thick blue line) estimated from Gaussian kernels (thin black lines). (c) A mixture proposal
distribution (solid) closely matched to the target density (dashed), and importance weighted samples.
(d) Kernel density estimated from weighted Gaussian kernels. (e) A Gaussian proposal distribution
(solid) with mean and variance matching the target density (dashed), and weighted samples. (f) Kernel
density with artifacts from the Gaussian proposal’s widely varying importance weights.

Sec. 2.4. Monte Carlo Methods 85

the poorly matched proposal distribution of Fig. 2.17(e) causes many samples to have
negligible weight, greatly reducing the effective sample size. Heavy–tailed proposal dis-
tributions, which are more dispersed than the target density, typically provide greater
robustness [107, 192]. For high–dimensional problems, however, designing good propos-
als is extremely challenging, since even minor discrepancies can produce widely varying
importance weights. In graphical models, importance sampling is thus typically used
as a building block within more sophisticated Monte Carlo methods.

! 2.4.2 Kernel Density Estimation

In some applications of Monte Carlo methods, an explicit estimate p̂(x) of the target
density p(x) is desired, rather than a summary statistic as in eq. (2.138). Nonparametric
density estimators avoid choosing a particular form for p̂(x), and allow the complexity
of the estimated density to grow as more samples are observed. Given L independent
samples {x(ℓ)}L

ℓ=1, the corresponding kernel or Parzen window density estimate [230,
263] can be written as follows:

p̂(x) =
L∑

ℓ=1

w(ℓ)N (x; x(ℓ), Λ) (2.142)

This estimator uses a Gaussian kernel function to smooth the raw sample set, intuitively
placing more probability mass in regions with many samples. Other kernel functions
may also be considered [263], but we focus on the Gaussian case. If these samples are
drawn from the target density p(x), the weights are set uniformly to w(ℓ) = 1/L. More
generally, they could come from an importance sampling scheme [220] as in eq. (2.141).

The kernel density estimate of eq. (2.142) depends on the bandwidth or covariance
Λ of the Gaussian kernel function. There is an extensive literature on methods for
automatic bandwidth selection [263]. For example, the simple “rule of thumb” method
combines a robust covariance estimate with an asymptotic formula which assumes the
target density is Gaussian. While fast to compute, it often oversmooths multimodal
distributions. In such cases, more sophisticated cross–validation schemes can improve
performance [263]. Fig. 2.17 illustrates kernel density estimates constructed from three
different proposal distributions, with bandwidth automatically selected via likelihood
cross–validation. Note that inaccurate importance densities produce less reliable density
estimators (compare Fig. 2.17(d) and Fig. 2.17(f)).

! 2.4.3 Gibbs Sampling

We now describe a family of iterative, Markov chain Monte Carlo (MCMC) methods
which draw samples from an otherwise intractable target density p(x). Starting from
some initial global configuration x(0) ∈ X , subsequent states are determined via a first–
order Markov process:

x(t) ∼ q(x | x(t−1)) t = 1, 2, . . . (2.143)

Kernel or Parzen window estimators
interpolate to predict density: w(`) / p(x(`))

q(x(`))

Q: What is a good proposal distribution?

A: Minimize estimator variance

Importance Sampling

E.g. can do better
than q=p [Source: Bishop]

Minimum variance obtained when,

e.g. for N-dim. X and Gaussian q(x):

Estimator variance scales catastrophically with dimension:

Selecting Proposal Distributions
• For a toy one-dimensional, heavy-tailed target distribution:

Gaussian Proposal Cauchy (Student’s-t) Proposal
Empirical variance of weights may not predict estimator variance!
• Always (asymptotically) unbiased, but variance of estimator can

be enormous unless weight function bounded above:

Varq[f̂L] =
1

L
Varq[f(x)w(x)] w(x) =

p(x)

q(x)
Eq[f̂L] = Ep[f]

Samples (L) Samples (L)

Monte Carlo Methods Summary

Importance Sampling

Rejection sampling
• Choose q such that:
• Sample q(z) and keep with probability:

Pro: Efficient, easy to implement
Con: Acceptance rate evaporates as dimension increases

Pro: Efficient, easy to implement
Con: Variance grows exponentially in dimension

Outline

• Monte Carlo Estimation

• Sequential Monte Carlo

• Markov Chain Monte Carlo

Outline

• Monte Carlo Estimation

• Sequential Monte Carlo

• Markov Chain Monte Carlo

Non-linear State Space Models

• State dynamics and measurements given by
potentially complex nonlinear functions

• Noise sampled from non-Gaussian distributions
• Usually no closed form for messages or marginals

Sequential Importance Sampling (SIS)

• Suppose interested in some complex, global function of state:

• Construct efficient proposal using Markov structure

q(x | y) = q(x0)
TY

t=1

q(xt | xt�1, yt) q(xt | xt�1, yt) ⇡ p(xt | xt�1, y)

Computing the weights is easy with this type of proposal!

E[f] =
Z

f(x)p(x | y) dx ⇡
LX

`=1

w`f(x
(`)) w` /

p(x(`) | y)
q(x(`) | y)

x(`) ⇠ q(x | y)

Recursive Weight Updating

Recall the importance weights are given by,

Plugging in the factorization of p and q weights at time t are:

Therefore, by recursion we have that weights at time t+1 are:

Sequential Importance Sampling (SIS)
For = 1,…,N

Sample initial N particles from proposal prior:
Compute initial importance weights:

For t=1,…T
For =1,…N

Propagate particles:

Compute unnormalized weights,

Normalize weights:

Filter mean estimate:

Particle Filters: The Movie

(M. Isard, 1996)

Weight Degeneration

Sequential importance sampling does not work!

• In time, unnormalized weights approach zero with high probability,

• Normalized weights approach one-hot vector,

• Sample trajectories are high-dimensional and become unlikely

Particle Resampling

p(xt | yt̄) ⇡
LX

`=1

!(`)
t �

x(`)
t
(xt) p(xt | yt̄) ⇡

LX

`=1

1

L
�
x̄(`)
t
(xt)

x̄(`)
t = x(j`)

t

j` ⇠ Cat(!t)

~xð1Þ; . . . ; ~xðMÞ, taking proper account of the weights
computed in (4). This principle is illustrated in Fig. 4.

There are several ways of implementing this basic
idea, the most obvious approach being sampling with
replacement, with the probability of sampling each xðiÞ set
equal to the normalized importance weight !ðiÞ. Hence
the number of times NðiÞ that each particular point ~xðiÞ in
the first-stage sample is selected follows a binomial
BinðN; !ðiÞÞ distribution. The vector ðNð1Þ; . . . ;NðMÞÞ is
distributed according to MultðN; !ð1Þ; . . . ; !ðMÞÞ, the
multinomial distribution with parameter N and probabil-
ities of success ð!ð1Þ; . . . ; !ðMÞÞ. In this resampling step,
the points in the first-stage sample that are associated
with small normalized importance weights are most likely
to be discarded, whereas the best points in the sample are
replicated in proportion to their importance weights. In
most applications, it is typical to choose M, the size of the
first-stage sample, larger (and sometimes much larger)
than N.

While this resampling step is unnecessary in the non-
recursive framework, and would always increase the
Monte Carlo variance of our estimators, it is a vital com-
ponent of the sequential schemes which follow, avoiding
degeneracy of the importance weights over time. While the
multinomial resampling scheme above is the most natural
first approach, it should be noted that improvements can
be achieved through variance reduction strategies such as
stratification. Some of these alternative sampling schemes
guarantee a reduced Monte Carlo variance, at a compa-

rable computational cost [30]–[33]. We will sometimes
refer to the resampling step as a selection step below.

B. Sequential Monte Carlo Methods
We now specialise the sampling techniques considered

above to the sequential setting of the state-space model.
Starting with the initial, or Bprior,[distribution !0ðx0Þ,
the posterior density !0:tj0:tðx0:tjy0:tÞ can be obtained using
the following prediction-correction recursion [34]:

• Prediction

!0:tj0:t#1ðx0:tjy0:t#1Þ
¼ !0:t#1j0:t#1ðx0:t#1jy0:t#1Þfðxtjxt#1Þ (5)

• Correction

!0:tj0:tðx0:tjy0:tÞ ¼
gð ytjxtÞ!0:tj0:t#1ðx0:tjy0:t#1Þ

‘tj0:t#1ð ytjy0:t#1Þ
(6)

where ‘tj0:t#1 is the predictive distribution of yt
given the past observations y0:t#1. For a fixed data
realization, this term is a normalizing constant
(independent of the state); it will not be necessary
to compute this term in standard implementations
of SMC methods.

We would like to sample from !0:tj0:tðx0:tjy0:tÞ; since it is
generally impossible to sample directly from this dis-
tribution, we resort to a sequential version of the impor-
tance sampling and resampling procedure outlined above.
Conceptually, we sample N particle paths ~xðiÞ0:t, i ¼ 1; . . . ;N,
from a convenient importance distribution q0:tðx0:tjy0:tÞ,
and compute the unnormalized importance weights

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
! "

q0:t ~xðiÞ0:tjy0:t
! " ; i ¼ 1; . . . ;N: (7)

Using this weighted sample fð~xðiÞ0:t; ~!
ðiÞ
t Þg1%i%N, we may

approximate the expectation of any function h defined on
the path space using the self-normalized importance
sampling estimator

!h ¼
Z

hðx0:tÞ!0:tj0:tðx0:tjy0:tÞdx0:t

&
XN

i¼1

~!ðiÞ
t

PN
j¼1 ~!

ðjÞ
t

h ~xðiÞ0:t

! "
: (8)

As in the case of the nonsequential importance sampling
above, we will use in the following the notation !ðiÞ

t to refer

Fig. 4. Principle of resampling. Top: the sample drawn from q

(dashed line) with associated normalized importance weights

depicted by bullets with radii proportional to the normalized

weights (the target density corresponding to p is plotted as a solid

line). Bottom: After resampling, all particles have the same

importance weight, and some of them have been either

discarded or duplicated (here M ¼ N ¼ 6).

Cappé et al.: An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

Vol. 95, No. 5, May 2007 | Proceedings of the IEEE 903

Resample with replacement produces random
discrete distribution with same mean as original

distribution
While remaining unbiased,

resampling avoids degeneracies in
which most weights go to zero

yt̄ = {y1, . . . , yt}where

Sequential IS with Resampling : Particle Filter
Initialize: N samples and weights

For t=1,…T

For =1,…N
Propagate particles:

Compute unnormalized weights,

Normalize weights:

Filter mean estimate:

If Resampling:
Resample from according to normalized weights (with replacement)

Else: Set
Set uniform weights

“Bootstrap” Proposal

Recall that the full proposal distribution factorizes as,

q(x | y) = q(x0)
TY

t=1

q(xt | xt�1, yt)

A convenient choice is to sample from the prior distribution,

This is easy to sample, and weight updates simplify,

“Correct” weights with data likelihood

Bootstrap Particle Filter
Initialize: N samples and weights

For t=1,…T

For =1,…N
Propagate particles:

Compute unnormalized weights,

Normalize weights:

Filter mean estimate:

If Resampling:
Resample from according to normalized weights (with replacement)

Else: Set
Set uniform weights

Changes for
Bootstrap

Particle Filtering Algorithms

Sample-based density estimate

Weight by observation likelihood

Resample & propagate by dynamics

• Represent state estimates
using a set of samples

• Propagate over time using
sequential importance
sampling with resampling

m12(x2) m23(x3)

mt�1,t(xt)

qt̄(xt)

mt,t+1(xt+1)

BP for State-Space Models

120 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

by the graph of Fig. 2.7, the joint distribution factors as

p(x, y) = p(x0) p(y0 | x0)
T−1∏

t=1

p(xt | xt−1) p(yt | xt) (3.1)

In this section, we suppose that the hidden states take values in some continuous space
xt ∈ Xt, and develop computational methods which tractably approximate their poste-
rior distribution.

In Markov chains and other tree–structured graphs, the belief propagation (BP)
algorithm [178, 231, 255, 339] can be used to efficiently infer the posterior distributions
p(xt | y) of the state variables. As described in Sec. 2.3.2, BP is based on a series of
messages passed between neighboring nodes. For an HMM factorized as in eq. (3.1), the
“forward” BP message passed to subsequent time steps is computed via the following
recursion:

mt,t+1(xt+1) ∝
∫

Xt

p(xt+1 | xt) p(yt | xt)mt−1,t(xt) dxt (3.2)

For such HMMs, these BP messages have an interesting probabilistic interpretation. In
particular, the outgoing message from the starting timepoint equals

m0,1(x1) ∝
∫

X0

p(x1 | x0) p(x0) p(y0 | x0) dx0 ∝ p(x1 | y0) (3.3)

Letting yt = {y0, y1, . . . , yt} denote those observations seen up to time t, a simple
induction argument then shows that

mt−1,t(xt) ∝ p
(
xt | yt−1

)
(3.4)

mt−1,t(xt) p(yt | xt) ∝ p(xt | yt) (3.5)

Forward messages thus equal the predictive distribution of the next hidden state, given
all preceding observations. Rescaling these messages by the current observation’s likeli-
hood p(yt | xt), as in eq. (3.5), we then recover filtered estimates of the state variables.
This approach is widely used in online tracking applications, where causal processing
of an observation sequence is required.

As discussed in Sec. 2.3.2, analytic evaluation of BP’s message update integral is
typically intractable for non–linear or non–Gaussian dynamical systems. For high–
dimensional state spaces, like those arising in visual tracking problems, fixed dis-
cretizations of Xt are also computationally infeasible. In these applications, particle
filters [11, 70, 72, 183] provide a popular method of approximate inference. In their sim-
plest form, particle filters approximate the forward BP messages via a collection of L
weighted samples, or particles:

mt−1,t(xt) ≈
L∑

ℓ=1

w(ℓ)
t−1,tδ(xt, x

(ℓ)
t)

L∑

ℓ=1

w(ℓ)
t−1,t = 1 (3.6)

yt̄ = {y1, . . . , yt}
= qt̄(xt)

Inference (Product step of BP): qt̄(xt) =
1

Zt
mt�1,t(xt)p(yt | xt)

where

Prediction (Integral/Sum step of BP):

Particle Filter: Measurement Update

120 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

by the graph of Fig. 2.7, the joint distribution factors as

p(x, y) = p(x0) p(y0 | x0)
T−1∏

t=1

p(xt | xt−1) p(yt | xt) (3.1)

In this section, we suppose that the hidden states take values in some continuous space
xt ∈ Xt, and develop computational methods which tractably approximate their poste-
rior distribution.

In Markov chains and other tree–structured graphs, the belief propagation (BP)
algorithm [178, 231, 255, 339] can be used to efficiently infer the posterior distributions
p(xt | y) of the state variables. As described in Sec. 2.3.2, BP is based on a series of
messages passed between neighboring nodes. For an HMM factorized as in eq. (3.1), the
“forward” BP message passed to subsequent time steps is computed via the following
recursion:

mt,t+1(xt+1) ∝
∫

Xt

p(xt+1 | xt) p(yt | xt)mt−1,t(xt) dxt (3.2)

For such HMMs, these BP messages have an interesting probabilistic interpretation. In
particular, the outgoing message from the starting timepoint equals

m0,1(x1) ∝
∫

X0

p(x1 | x0) p(x0) p(y0 | x0) dx0 ∝ p(x1 | y0) (3.3)

Letting yt = {y0, y1, . . . , yt} denote those observations seen up to time t, a simple
induction argument then shows that

mt−1,t(xt) ∝ p
(
xt | yt−1

)
(3.4)

mt−1,t(xt) p(yt | xt) ∝ p(xt | yt) (3.5)

Forward messages thus equal the predictive distribution of the next hidden state, given
all preceding observations. Rescaling these messages by the current observation’s likeli-
hood p(yt | xt), as in eq. (3.5), we then recover filtered estimates of the state variables.
This approach is widely used in online tracking applications, where causal processing
of an observation sequence is required.

As discussed in Sec. 2.3.2, analytic evaluation of BP’s message update integral is
typically intractable for non–linear or non–Gaussian dynamical systems. For high–
dimensional state spaces, like those arising in visual tracking problems, fixed dis-
cretizations of Xt are also computationally infeasible. In these applications, particle
filters [11, 70, 72, 183] provide a popular method of approximate inference. In their sim-
plest form, particle filters approximate the forward BP messages via a collection of L
weighted samples, or particles:

mt−1,t(xt) ≈
L∑

ℓ=1

w(ℓ)
t−1,tδ(xt, x

(ℓ)
t)

L∑

ℓ=1

w(ℓ)
t−1,t = 1 (3.6)

120 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

by the graph of Fig. 2.7, the joint distribution factors as

p(x, y) = p(x0) p(y0 | x0)
T−1∏

t=1

p(xt | xt−1) p(yt | xt) (3.1)

In this section, we suppose that the hidden states take values in some continuous space
xt ∈ Xt, and develop computational methods which tractably approximate their poste-
rior distribution.

In Markov chains and other tree–structured graphs, the belief propagation (BP)
algorithm [178, 231, 255, 339] can be used to efficiently infer the posterior distributions
p(xt | y) of the state variables. As described in Sec. 2.3.2, BP is based on a series of
messages passed between neighboring nodes. For an HMM factorized as in eq. (3.1), the
“forward” BP message passed to subsequent time steps is computed via the following
recursion:

mt,t+1(xt+1) ∝
∫

Xt

p(xt+1 | xt) p(yt | xt)mt−1,t(xt) dxt (3.2)

For such HMMs, these BP messages have an interesting probabilistic interpretation. In
particular, the outgoing message from the starting timepoint equals

m0,1(x1) ∝
∫

X0

p(x1 | x0) p(x0) p(y0 | x0) dx0 ∝ p(x1 | y0) (3.3)

Letting yt = {y0, y1, . . . , yt} denote those observations seen up to time t, a simple
induction argument then shows that

mt−1,t(xt) ∝ p
(
xt | yt−1

)
(3.4)

mt−1,t(xt) p(yt | xt) ∝ p(xt | yt) (3.5)

Forward messages thus equal the predictive distribution of the next hidden state, given
all preceding observations. Rescaling these messages by the current observation’s likeli-
hood p(yt | xt), as in eq. (3.5), we then recover filtered estimates of the state variables.
This approach is widely used in online tracking applications, where causal processing
of an observation sequence is required.

As discussed in Sec. 2.3.2, analytic evaluation of BP’s message update integral is
typically intractable for non–linear or non–Gaussian dynamical systems. For high–
dimensional state spaces, like those arising in visual tracking problems, fixed dis-
cretizations of Xt are also computationally infeasible. In these applications, particle
filters [11, 70, 72, 183] provide a popular method of approximate inference. In their sim-
plest form, particle filters approximate the forward BP messages via a collection of L
weighted samples, or particles:

mt−1,t(xt) ≈
L∑

ℓ=1

w(ℓ)
t−1,tδ(xt, x

(ℓ)
t)

L∑

ℓ=1

w(ℓ)
t−1,t = 1 (3.6)

Sec. 3.1. Particle Filters 121

Importance sampling methods (see Sec. 2.4.1) are then used to update the particles x(ℓ)
t ,

and corresponding weights w(ℓ)
t−1,t, as the dynamical system evolves. Given these sample–

based density estimates, any statistic ft(xt) of the filtering distribution may be approx-
imated as in eq. (2.141).

Particle filters were independently proposed in several different research communi-
ties, and variants are alternatively known as bootstrap filters [119], the condensation
algorithm [146], and survival of the fittest [165]. However, all of these sequential Monte
Carlo methods [70, 72] share the use of importance sampling, possibly coupled with
additional MCMC iterations [114, 183], to recursively update nonparametric density
estimates. In the following sections, we describe the basic structure of particle filters,
and discuss various extensions.

! 3.1.1 Sequential Importance Sampling

Examining the message update integral of eq. (3.2), we see that it can be conceptu-
ally decomposed into two stages. First, the measurement update p(yt | xt) mt−1,t(xt)
combines information from preceding observations with the evidence provided by the
new observation yt. The resulting posterior distribution (see eq. (3.5)) is then convolved
with the state transition density p(xt+1 | xt), optimally propagating information to sub-
sequent times. Particle filters stochastically approximate these two stages, and thereby
compute consistent nonparametric estimates of the exact filtering distributions.

Throughout this section, we use mt−1,t(xt) to denote a sample–based approximation,
as in eq. (3.6), of the exact BP message function. We then let qt(xt) indicate a corre-
sponding nonparametric estimate of the filtering distribution p(xt | yt) (see eq. (3.5)).

Measurement Update

Suppose that mt−1,t(xt), the BP message from the preceding point in time, is rep-
resented by L weighted samples as in eq. (3.6). At time t = 0, the algorithm may
be initialized by drawing L independent samples x(ℓ)

0 ∼ p(x0) from the prior. From
eq. (3.5), the posterior distribution of xt then equals

qt(xt) ∝ mt−1,t(xt) p(yt | xt) ∝
L∑

ℓ=1

w(ℓ)
t−1,t p(yt | x(ℓ)

t) δ(xt, x
(ℓ)
t) (3.7)

Normalizing these importance weights, which are determined by evaluating the likeli-
hood of yt with respect to each particle, we then have

qt(xt) =
L∑

ℓ=1

w(ℓ)
t δ(xt, x

(ℓ)
t) w(ℓ)

t "
w(ℓ)

t−1,t p(yt | x(ℓ)
t)

∑L
m=1 w(m)

t−1,t p(yt | x(m)
t)

(3.8)

This update equation is motivated by the general importance sampling framework
described in Sec. 2.4.1. In particular, if mt−1,t(xt) defines an unbiased estimate of
p
(
xt | yt−1

)
, it is easily shown [72, 183] that qt(xt) also leads to unbiased importance

estimates for statistics of p(xt | yt).

Sec. 3.1. Particle Filters 121

Importance sampling methods (see Sec. 2.4.1) are then used to update the particles x(ℓ)
t ,

and corresponding weights w(ℓ)
t−1,t, as the dynamical system evolves. Given these sample–

based density estimates, any statistic ft(xt) of the filtering distribution may be approx-
imated as in eq. (2.141).

Particle filters were independently proposed in several different research communi-
ties, and variants are alternatively known as bootstrap filters [119], the condensation
algorithm [146], and survival of the fittest [165]. However, all of these sequential Monte
Carlo methods [70, 72] share the use of importance sampling, possibly coupled with
additional MCMC iterations [114, 183], to recursively update nonparametric density
estimates. In the following sections, we describe the basic structure of particle filters,
and discuss various extensions.

! 3.1.1 Sequential Importance Sampling

Examining the message update integral of eq. (3.2), we see that it can be conceptu-
ally decomposed into two stages. First, the measurement update p(yt | xt) mt−1,t(xt)
combines information from preceding observations with the evidence provided by the
new observation yt. The resulting posterior distribution (see eq. (3.5)) is then convolved
with the state transition density p(xt+1 | xt), optimally propagating information to sub-
sequent times. Particle filters stochastically approximate these two stages, and thereby
compute consistent nonparametric estimates of the exact filtering distributions.

Throughout this section, we use mt−1,t(xt) to denote a sample–based approximation,
as in eq. (3.6), of the exact BP message function. We then let qt(xt) indicate a corre-
sponding nonparametric estimate of the filtering distribution p(xt | yt) (see eq. (3.5)).

Measurement Update

Suppose that mt−1,t(xt), the BP message from the preceding point in time, is rep-
resented by L weighted samples as in eq. (3.6). At time t = 0, the algorithm may
be initialized by drawing L independent samples x(ℓ)

0 ∼ p(x0) from the prior. From
eq. (3.5), the posterior distribution of xt then equals

qt(xt) ∝ mt−1,t(xt) p(yt | xt) ∝
L∑

ℓ=1

w(ℓ)
t−1,t p(yt | x(ℓ)

t) δ(xt, x
(ℓ)
t) (3.7)

Normalizing these importance weights, which are determined by evaluating the likeli-
hood of yt with respect to each particle, we then have

qt(xt) =
L∑

ℓ=1

w(ℓ)
t δ(xt, x

(ℓ)
t) w(ℓ)

t "
w(ℓ)

t−1,t p(yt | x(ℓ)
t)

∑L
m=1 w(m)

t−1,t p(yt | x(m)
t)

(3.8)

This update equation is motivated by the general importance sampling framework
described in Sec. 2.4.1. In particular, if mt−1,t(xt) defines an unbiased estimate of
p
(
xt | yt−1

)
, it is easily shown [72, 183] that qt(xt) also leads to unbiased importance

estimates for statistics of p(xt | yt).

Variance of importance weights increases with each update

Incoming message: A set of L weighted particles

Sec. 3.1. Particle Filters 121

Importance sampling methods (see Sec. 2.4.1) are then used to update the particles x(ℓ)
t ,

and corresponding weights w(ℓ)
t−1,t, as the dynamical system evolves. Given these sample–

based density estimates, any statistic ft(xt) of the filtering distribution may be approx-
imated as in eq. (2.141).

Particle filters were independently proposed in several different research communi-
ties, and variants are alternatively known as bootstrap filters [119], the condensation
algorithm [146], and survival of the fittest [165]. However, all of these sequential Monte
Carlo methods [70, 72] share the use of importance sampling, possibly coupled with
additional MCMC iterations [114, 183], to recursively update nonparametric density
estimates. In the following sections, we describe the basic structure of particle filters,
and discuss various extensions.

! 3.1.1 Sequential Importance Sampling

Examining the message update integral of eq. (3.2), we see that it can be conceptu-
ally decomposed into two stages. First, the measurement update p(yt | xt) mt−1,t(xt)
combines information from preceding observations with the evidence provided by the
new observation yt. The resulting posterior distribution (see eq. (3.5)) is then convolved
with the state transition density p(xt+1 | xt), optimally propagating information to sub-
sequent times. Particle filters stochastically approximate these two stages, and thereby
compute consistent nonparametric estimates of the exact filtering distributions.

Throughout this section, we use mt−1,t(xt) to denote a sample–based approximation,
as in eq. (3.6), of the exact BP message function. We then let qt(xt) indicate a corre-
sponding nonparametric estimate of the filtering distribution p(xt | yt) (see eq. (3.5)).

Measurement Update

Suppose that mt−1,t(xt), the BP message from the preceding point in time, is rep-
resented by L weighted samples as in eq. (3.6). At time t = 0, the algorithm may
be initialized by drawing L independent samples x(ℓ)

0 ∼ p(x0) from the prior. From
eq. (3.5), the posterior distribution of xt then equals

qt(xt) ∝ mt−1,t(xt) p(yt | xt) ∝
L∑

ℓ=1

w(ℓ)
t−1,t p(yt | x(ℓ)

t) δ(xt, x
(ℓ)
t) (3.7)

Normalizing these importance weights, which are determined by evaluating the likeli-
hood of yt with respect to each particle, we then have

qt(xt) =
L∑

ℓ=1

w(ℓ)
t δ(xt, x

(ℓ)
t) w(ℓ)

t "
w(ℓ)

t−1,t p(yt | x(ℓ)
t)

∑L
m=1 w(m)

t−1,t p(yt | x(m)
t)

(3.8)

This update equation is motivated by the general importance sampling framework
described in Sec. 2.4.1. In particular, if mt−1,t(xt) defines an unbiased estimate of
p
(
xt | yt−1

)
, it is easily shown [72, 183] that qt(xt) also leads to unbiased importance

estimates for statistics of p(xt | yt).

Bayes’ Rule: Posterior at particles proportional to prior times likelihood

Particle Filter: Sample Propagation

Sec. 3.1. Particle Filters 121

Importance sampling methods (see Sec. 2.4.1) are then used to update the particles x(ℓ)
t ,

and corresponding weights w(ℓ)
t−1,t, as the dynamical system evolves. Given these sample–

based density estimates, any statistic ft(xt) of the filtering distribution may be approx-
imated as in eq. (2.141).

Particle filters were independently proposed in several different research communi-
ties, and variants are alternatively known as bootstrap filters [119], the condensation
algorithm [146], and survival of the fittest [165]. However, all of these sequential Monte
Carlo methods [70, 72] share the use of importance sampling, possibly coupled with
additional MCMC iterations [114, 183], to recursively update nonparametric density
estimates. In the following sections, we describe the basic structure of particle filters,
and discuss various extensions.

! 3.1.1 Sequential Importance Sampling

Examining the message update integral of eq. (3.2), we see that it can be conceptu-
ally decomposed into two stages. First, the measurement update p(yt | xt) mt−1,t(xt)
combines information from preceding observations with the evidence provided by the
new observation yt. The resulting posterior distribution (see eq. (3.5)) is then convolved
with the state transition density p(xt+1 | xt), optimally propagating information to sub-
sequent times. Particle filters stochastically approximate these two stages, and thereby
compute consistent nonparametric estimates of the exact filtering distributions.

Throughout this section, we use mt−1,t(xt) to denote a sample–based approximation,
as in eq. (3.6), of the exact BP message function. We then let qt(xt) indicate a corre-
sponding nonparametric estimate of the filtering distribution p(xt | yt) (see eq. (3.5)).

Measurement Update

Suppose that mt−1,t(xt), the BP message from the preceding point in time, is rep-
resented by L weighted samples as in eq. (3.6). At time t = 0, the algorithm may
be initialized by drawing L independent samples x(ℓ)

0 ∼ p(x0) from the prior. From
eq. (3.5), the posterior distribution of xt then equals

qt(xt) ∝ mt−1,t(xt) p(yt | xt) ∝
L∑

ℓ=1

w(ℓ)
t−1,t p(yt | x(ℓ)

t) δ(xt, x
(ℓ)
t) (3.7)

Normalizing these importance weights, which are determined by evaluating the likeli-
hood of yt with respect to each particle, we then have

qt(xt) =
L∑

ℓ=1

w(ℓ)
t δ(xt, x

(ℓ)
t) w(ℓ)

t "
w(ℓ)

t−1,t p(yt | x(ℓ)
t)

∑L
m=1 w(m)

t−1,t p(yt | x(m)
t)

(3.8)

This update equation is motivated by the general importance sampling framework
described in Sec. 2.4.1. In particular, if mt−1,t(xt) defines an unbiased estimate of
p
(
xt | yt−1

)
, it is easily shown [72, 183] that qt(xt) also leads to unbiased importance

estimates for statistics of p(xt | yt).

State Posterior Estimate: A set of L weighted particles
LX

`=1

w(`)
t = 1

Prediction: Sample next state conditioned on current particles

122 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

Sample Propagation

Given a particle–based filtering distribution qt(xt), we may predict likely values of
subsequent states by simulating the dynamical system underlying the HMM. In the
simplest case, particle filters use this approach to compute outgoing messages:

mt,t+1(xt+1) =
L∑

ℓ=1

w(ℓ)
t,t+1δ(xt+1, x

(ℓ)
t+1)

x(ℓ)
t+1 ∼ p(xt+1 | x(ℓ)

t)

w(ℓ)
t,t+1 = w(ℓ)

t

(3.9)

Given that x(ℓ)
t+1 is sampled from the prior, these weights w(ℓ)

t,t+1 can be justified as an
importance estimate of the joint distribution p(xt, xt+1 | yt). Discarding x(ℓ)

t , which by
the model’s Markov structure is not needed for subsequent simulation steps, we then
arrive at eq. (3.9).

Depletion and Resampling

By iterating the predictions and measurement updates of eqs. (3.8, 3.9), we recursively
compute unbiased estimates qt(xt) of the filtering densities p(xt | yt). The practical
reliability of this sequential Monte Carlo method depends critically on the variability
of these estimates, which is characterized by the variance of the importance weights [9].
Although exact performance evaluation is typically intractable, the effective sample
size [11, 72] can be estimated as follows:

Leff =

(
L∑

ℓ=1

(
w(ℓ)

)2
)−1

(3.10)

For uniform weights w(ℓ) = 1/L, the effective sample size Leff = L, the number of
particles. In contrast, when one particle is allocated most of the posterior probability
mass, Leff → 1.

Due to accumulation of the approximations underlying subsequent message updates,
the expected variance of the importance weights increases over time [72]. For any finite
sample size L, the number of effective particles Leff thus approaches one after sufficiently
many iterations. In practice, the resulting sample depletion is avoided via a resampling
operation. Given the discrete filtering distribution qt(xt) of eq. (3.8), L new particles

x̃(ℓ)
t are resampled, and then propagated to subsequent timesteps:

x̃(ℓ)
t ∼ qt(xt)

x(ℓ)
t+1 ∼ p(xt+1 | x̃(ℓ)

t)
ℓ = 1, . . . , L (3.11)

After such resampling, outgoing message particles are equally weighted as w(ℓ)
t,t+1 = 1/L.

Because new samples x̃(ℓ)
t are drawn with replacement, they typically repeat those x(m)

t

with large weights w(m)
t multiple times, and ignore some low weight samples entirely.

Assumption for now: Can exactly simulate temporal dynamics

Particle Filter: Resampling

Sec. 3.1. Particle Filters 121

Importance sampling methods (see Sec. 2.4.1) are then used to update the particles x(ℓ)
t ,

and corresponding weights w(ℓ)
t−1,t, as the dynamical system evolves. Given these sample–

based density estimates, any statistic ft(xt) of the filtering distribution may be approx-
imated as in eq. (2.141).

Particle filters were independently proposed in several different research communi-
ties, and variants are alternatively known as bootstrap filters [119], the condensation
algorithm [146], and survival of the fittest [165]. However, all of these sequential Monte
Carlo methods [70, 72] share the use of importance sampling, possibly coupled with
additional MCMC iterations [114, 183], to recursively update nonparametric density
estimates. In the following sections, we describe the basic structure of particle filters,
and discuss various extensions.

! 3.1.1 Sequential Importance Sampling

Examining the message update integral of eq. (3.2), we see that it can be conceptu-
ally decomposed into two stages. First, the measurement update p(yt | xt) mt−1,t(xt)
combines information from preceding observations with the evidence provided by the
new observation yt. The resulting posterior distribution (see eq. (3.5)) is then convolved
with the state transition density p(xt+1 | xt), optimally propagating information to sub-
sequent times. Particle filters stochastically approximate these two stages, and thereby
compute consistent nonparametric estimates of the exact filtering distributions.

Throughout this section, we use mt−1,t(xt) to denote a sample–based approximation,
as in eq. (3.6), of the exact BP message function. We then let qt(xt) indicate a corre-
sponding nonparametric estimate of the filtering distribution p(xt | yt) (see eq. (3.5)).

Measurement Update

Suppose that mt−1,t(xt), the BP message from the preceding point in time, is rep-
resented by L weighted samples as in eq. (3.6). At time t = 0, the algorithm may
be initialized by drawing L independent samples x(ℓ)

0 ∼ p(x0) from the prior. From
eq. (3.5), the posterior distribution of xt then equals

qt(xt) ∝ mt−1,t(xt) p(yt | xt) ∝
L∑

ℓ=1

w(ℓ)
t−1,t p(yt | x(ℓ)

t) δ(xt, x
(ℓ)
t) (3.7)

Normalizing these importance weights, which are determined by evaluating the likeli-
hood of yt with respect to each particle, we then have

qt(xt) =
L∑

ℓ=1

w(ℓ)
t δ(xt, x

(ℓ)
t) w(ℓ)

t "
w(ℓ)

t−1,t p(yt | x(ℓ)
t)

∑L
m=1 w(m)

t−1,t p(yt | x(m)
t)

(3.8)

This update equation is motivated by the general importance sampling framework
described in Sec. 2.4.1. In particular, if mt−1,t(xt) defines an unbiased estimate of
p
(
xt | yt−1

)
, it is easily shown [72, 183] that qt(xt) also leads to unbiased importance

estimates for statistics of p(xt | yt).

State Posterior Estimate:

~xð1Þ; . . . ; ~xðMÞ, taking proper account of the weights
computed in (4). This principle is illustrated in Fig. 4.

There are several ways of implementing this basic
idea, the most obvious approach being sampling with
replacement, with the probability of sampling each xðiÞ set
equal to the normalized importance weight !ðiÞ. Hence
the number of times NðiÞ that each particular point ~xðiÞ in
the first-stage sample is selected follows a binomial
BinðN; !ðiÞÞ distribution. The vector ðNð1Þ; . . . ;NðMÞÞ is
distributed according to MultðN; !ð1Þ; . . . ; !ðMÞÞ, the
multinomial distribution with parameter N and probabil-
ities of success ð!ð1Þ; . . . ; !ðMÞÞ. In this resampling step,
the points in the first-stage sample that are associated
with small normalized importance weights are most likely
to be discarded, whereas the best points in the sample are
replicated in proportion to their importance weights. In
most applications, it is typical to choose M, the size of the
first-stage sample, larger (and sometimes much larger)
than N.

While this resampling step is unnecessary in the non-
recursive framework, and would always increase the
Monte Carlo variance of our estimators, it is a vital com-
ponent of the sequential schemes which follow, avoiding
degeneracy of the importance weights over time. While the
multinomial resampling scheme above is the most natural
first approach, it should be noted that improvements can
be achieved through variance reduction strategies such as
stratification. Some of these alternative sampling schemes
guarantee a reduced Monte Carlo variance, at a compa-

rable computational cost [30]–[33]. We will sometimes
refer to the resampling step as a selection step below.

B. Sequential Monte Carlo Methods
We now specialise the sampling techniques considered

above to the sequential setting of the state-space model.
Starting with the initial, or Bprior,[distribution !0ðx0Þ,
the posterior density !0:tj0:tðx0:tjy0:tÞ can be obtained using
the following prediction-correction recursion [34]:

• Prediction

!0:tj0:t#1ðx0:tjy0:t#1Þ
¼ !0:t#1j0:t#1ðx0:t#1jy0:t#1Þfðxtjxt#1Þ (5)

• Correction

!0:tj0:tðx0:tjy0:tÞ ¼
gð ytjxtÞ!0:tj0:t#1ðx0:tjy0:t#1Þ

‘tj0:t#1ð ytjy0:t#1Þ
(6)

where ‘tj0:t#1 is the predictive distribution of yt
given the past observations y0:t#1. For a fixed data
realization, this term is a normalizing constant
(independent of the state); it will not be necessary
to compute this term in standard implementations
of SMC methods.

We would like to sample from !0:tj0:tðx0:tjy0:tÞ; since it is
generally impossible to sample directly from this dis-
tribution, we resort to a sequential version of the impor-
tance sampling and resampling procedure outlined above.
Conceptually, we sample N particle paths ~xðiÞ0:t, i ¼ 1; . . . ;N,
from a convenient importance distribution q0:tðx0:tjy0:tÞ,
and compute the unnormalized importance weights

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
! "

q0:t ~xðiÞ0:tjy0:t
! " ; i ¼ 1; . . . ;N: (7)

Using this weighted sample fð~xðiÞ0:t; ~!
ðiÞ
t Þg1%i%N, we may

approximate the expectation of any function h defined on
the path space using the self-normalized importance
sampling estimator

!h ¼
Z

hðx0:tÞ!0:tj0:tðx0:tjy0:tÞdx0:t

&
XN

i¼1

~!ðiÞ
t

PN
j¼1 ~!

ðjÞ
t

h ~xðiÞ0:t

! "
: (8)

As in the case of the nonsequential importance sampling
above, we will use in the following the notation !ðiÞ

t to refer

Fig. 4. Principle of resampling. Top: the sample drawn from q

(dashed line) with associated normalized importance weights

depicted by bullets with radii proportional to the normalized

weights (the target density corresponding to p is plotted as a solid

line). Bottom: After resampling, all particles have the same

importance weight, and some of them have been either

discarded or duplicated (here M ¼ N ¼ 6).

Cappé et al.: An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

Vol. 95, No. 5, May 2007 | Proceedings of the IEEE 903

Prediction: Sample next state conditioned on randomly chosen particles

122 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

Sample Propagation

Given a particle–based filtering distribution qt(xt), we may predict likely values of
subsequent states by simulating the dynamical system underlying the HMM. In the
simplest case, particle filters use this approach to compute outgoing messages:

mt,t+1(xt+1) =
L∑

ℓ=1

w(ℓ)
t,t+1δ(xt+1, x

(ℓ)
t+1)

x(ℓ)
t+1 ∼ p(xt+1 | x(ℓ)

t)

w(ℓ)
t,t+1 = w(ℓ)

t

(3.9)

Given that x(ℓ)
t+1 is sampled from the prior, these weights w(ℓ)

t,t+1 can be justified as an
importance estimate of the joint distribution p(xt, xt+1 | yt). Discarding x(ℓ)

t , which by
the model’s Markov structure is not needed for subsequent simulation steps, we then
arrive at eq. (3.9).

Depletion and Resampling

By iterating the predictions and measurement updates of eqs. (3.8, 3.9), we recursively
compute unbiased estimates qt(xt) of the filtering densities p(xt | yt). The practical
reliability of this sequential Monte Carlo method depends critically on the variability
of these estimates, which is characterized by the variance of the importance weights [9].
Although exact performance evaluation is typically intractable, the effective sample
size [11, 72] can be estimated as follows:

Leff =

(
L∑

ℓ=1

(
w(ℓ)

)2
)−1

(3.10)

For uniform weights w(ℓ) = 1/L, the effective sample size Leff = L, the number of
particles. In contrast, when one particle is allocated most of the posterior probability
mass, Leff → 1.

Due to accumulation of the approximations underlying subsequent message updates,
the expected variance of the importance weights increases over time [72]. For any finite
sample size L, the number of effective particles Leff thus approaches one after sufficiently
many iterations. In practice, the resulting sample depletion is avoided via a resampling
operation. Given the discrete filtering distribution qt(xt) of eq. (3.8), L new particles

x̃(ℓ)
t are resampled, and then propagated to subsequent timesteps:

x̃(ℓ)
t ∼ qt(xt)

x(ℓ)
t+1 ∼ p(xt+1 | x̃(ℓ)

t)
ℓ = 1, . . . , L (3.11)

After such resampling, outgoing message particles are equally weighted as w(ℓ)
t,t+1 = 1/L.

Because new samples x̃(ℓ)
t are drawn with replacement, they typically repeat those x(m)

t

with large weights w(m)
t multiple times, and ignore some low weight samples entirely.

122 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

Sample Propagation

Given a particle–based filtering distribution qt(xt), we may predict likely values of
subsequent states by simulating the dynamical system underlying the HMM. In the
simplest case, particle filters use this approach to compute outgoing messages:

mt,t+1(xt+1) =
L∑

ℓ=1

w(ℓ)
t,t+1δ(xt+1, x

(ℓ)
t+1)

x(ℓ)
t+1 ∼ p(xt+1 | x(ℓ)

t)

w(ℓ)
t,t+1 = w(ℓ)

t

(3.9)

Given that x(ℓ)
t+1 is sampled from the prior, these weights w(ℓ)

t,t+1 can be justified as an
importance estimate of the joint distribution p(xt, xt+1 | yt). Discarding x(ℓ)

t , which by
the model’s Markov structure is not needed for subsequent simulation steps, we then
arrive at eq. (3.9).

Depletion and Resampling

By iterating the predictions and measurement updates of eqs. (3.8, 3.9), we recursively
compute unbiased estimates qt(xt) of the filtering densities p(xt | yt). The practical
reliability of this sequential Monte Carlo method depends critically on the variability
of these estimates, which is characterized by the variance of the importance weights [9].
Although exact performance evaluation is typically intractable, the effective sample
size [11, 72] can be estimated as follows:

Leff =

(
L∑

ℓ=1

(
w(ℓ)

)2
)−1

(3.10)

For uniform weights w(ℓ) = 1/L, the effective sample size Leff = L, the number of
particles. In contrast, when one particle is allocated most of the posterior probability
mass, Leff → 1.

Due to accumulation of the approximations underlying subsequent message updates,
the expected variance of the importance weights increases over time [72]. For any finite
sample size L, the number of effective particles Leff thus approaches one after sufficiently
many iterations. In practice, the resulting sample depletion is avoided via a resampling
operation. Given the discrete filtering distribution qt(xt) of eq. (3.8), L new particles

x̃(ℓ)
t are resampled, and then propagated to subsequent timesteps:

x̃(ℓ)
t ∼ qt(xt)

x(ℓ)
t+1 ∼ p(xt+1 | x̃(ℓ)

t)
ℓ = 1, . . . , L (3.11)

After such resampling, outgoing message particles are equally weighted as w(ℓ)
t,t+1 = 1/L.

Because new samples x̃(ℓ)
t are drawn with replacement, they typically repeat those x(m)

t

with large weights w(m)
t multiple times, and ignore some low weight samples entirely.

122 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

Sample Propagation

Given a particle–based filtering distribution qt(xt), we may predict likely values of
subsequent states by simulating the dynamical system underlying the HMM. In the
simplest case, particle filters use this approach to compute outgoing messages:

mt,t+1(xt+1) =
L∑

ℓ=1

w(ℓ)
t,t+1δ(xt+1, x

(ℓ)
t+1)

x(ℓ)
t+1 ∼ p(xt+1 | x(ℓ)

t)

w(ℓ)
t,t+1 = w(ℓ)

t

(3.9)

Given that x(ℓ)
t+1 is sampled from the prior, these weights w(ℓ)

t,t+1 can be justified as an
importance estimate of the joint distribution p(xt, xt+1 | yt). Discarding x(ℓ)

t , which by
the model’s Markov structure is not needed for subsequent simulation steps, we then
arrive at eq. (3.9).

Depletion and Resampling

By iterating the predictions and measurement updates of eqs. (3.8, 3.9), we recursively
compute unbiased estimates qt(xt) of the filtering densities p(xt | yt). The practical
reliability of this sequential Monte Carlo method depends critically on the variability
of these estimates, which is characterized by the variance of the importance weights [9].
Although exact performance evaluation is typically intractable, the effective sample
size [11, 72] can be estimated as follows:

Leff =

(
L∑

ℓ=1

(
w(ℓ)

)2
)−1

(3.10)

For uniform weights w(ℓ) = 1/L, the effective sample size Leff = L, the number of
particles. In contrast, when one particle is allocated most of the posterior probability
mass, Leff → 1.

Due to accumulation of the approximations underlying subsequent message updates,
the expected variance of the importance weights increases over time [72]. For any finite
sample size L, the number of effective particles Leff thus approaches one after sufficiently
many iterations. In practice, the resulting sample depletion is avoided via a resampling
operation. Given the discrete filtering distribution qt(xt) of eq. (3.8), L new particles

x̃(ℓ)
t are resampled, and then propagated to subsequent timesteps:

x̃(ℓ)
t ∼ qt(xt)

x(ℓ)
t+1 ∼ p(xt+1 | x̃(ℓ)

t)
ℓ = 1, . . . , L (3.11)

After such resampling, outgoing message particles are equally weighted as w(ℓ)
t,t+1 = 1/L.

Because new samples x̃(ℓ)
t are drawn with replacement, they typically repeat those x(m)

t

with large weights w(m)
t multiple times, and ignore some low weight samples entirely.

Resampling with replacement preserves
expectations, but increases the variance of

subsequent estimators

Particle Filter: Resampling

Sec. 3.1. Particle Filters 121

Importance sampling methods (see Sec. 2.4.1) are then used to update the particles x(ℓ)
t ,

and corresponding weights w(ℓ)
t−1,t, as the dynamical system evolves. Given these sample–

based density estimates, any statistic ft(xt) of the filtering distribution may be approx-
imated as in eq. (2.141).

Particle filters were independently proposed in several different research communi-
ties, and variants are alternatively known as bootstrap filters [119], the condensation
algorithm [146], and survival of the fittest [165]. However, all of these sequential Monte
Carlo methods [70, 72] share the use of importance sampling, possibly coupled with
additional MCMC iterations [114, 183], to recursively update nonparametric density
estimates. In the following sections, we describe the basic structure of particle filters,
and discuss various extensions.

! 3.1.1 Sequential Importance Sampling

Examining the message update integral of eq. (3.2), we see that it can be conceptu-
ally decomposed into two stages. First, the measurement update p(yt | xt) mt−1,t(xt)
combines information from preceding observations with the evidence provided by the
new observation yt. The resulting posterior distribution (see eq. (3.5)) is then convolved
with the state transition density p(xt+1 | xt), optimally propagating information to sub-
sequent times. Particle filters stochastically approximate these two stages, and thereby
compute consistent nonparametric estimates of the exact filtering distributions.

Throughout this section, we use mt−1,t(xt) to denote a sample–based approximation,
as in eq. (3.6), of the exact BP message function. We then let qt(xt) indicate a corre-
sponding nonparametric estimate of the filtering distribution p(xt | yt) (see eq. (3.5)).

Measurement Update

Suppose that mt−1,t(xt), the BP message from the preceding point in time, is rep-
resented by L weighted samples as in eq. (3.6). At time t = 0, the algorithm may
be initialized by drawing L independent samples x(ℓ)

0 ∼ p(x0) from the prior. From
eq. (3.5), the posterior distribution of xt then equals

qt(xt) ∝ mt−1,t(xt) p(yt | xt) ∝
L∑

ℓ=1

w(ℓ)
t−1,t p(yt | x(ℓ)

t) δ(xt, x
(ℓ)
t) (3.7)

Normalizing these importance weights, which are determined by evaluating the likeli-
hood of yt with respect to each particle, we then have

qt(xt) =
L∑

ℓ=1

w(ℓ)
t δ(xt, x

(ℓ)
t) w(ℓ)

t "
w(ℓ)

t−1,t p(yt | x(ℓ)
t)

∑L
m=1 w(m)

t−1,t p(yt | x(m)
t)

(3.8)

This update equation is motivated by the general importance sampling framework
described in Sec. 2.4.1. In particular, if mt−1,t(xt) defines an unbiased estimate of
p
(
xt | yt−1

)
, it is easily shown [72, 183] that qt(xt) also leads to unbiased importance

estimates for statistics of p(xt | yt).

State Posterior Estimate:

~xð1Þ; . . . ; ~xðMÞ, taking proper account of the weights
computed in (4). This principle is illustrated in Fig. 4.

There are several ways of implementing this basic
idea, the most obvious approach being sampling with
replacement, with the probability of sampling each xðiÞ set
equal to the normalized importance weight !ðiÞ. Hence
the number of times NðiÞ that each particular point ~xðiÞ in
the first-stage sample is selected follows a binomial
BinðN; !ðiÞÞ distribution. The vector ðNð1Þ; . . . ;NðMÞÞ is
distributed according to MultðN; !ð1Þ; . . . ; !ðMÞÞ, the
multinomial distribution with parameter N and probabil-
ities of success ð!ð1Þ; . . . ; !ðMÞÞ. In this resampling step,
the points in the first-stage sample that are associated
with small normalized importance weights are most likely
to be discarded, whereas the best points in the sample are
replicated in proportion to their importance weights. In
most applications, it is typical to choose M, the size of the
first-stage sample, larger (and sometimes much larger)
than N.

While this resampling step is unnecessary in the non-
recursive framework, and would always increase the
Monte Carlo variance of our estimators, it is a vital com-
ponent of the sequential schemes which follow, avoiding
degeneracy of the importance weights over time. While the
multinomial resampling scheme above is the most natural
first approach, it should be noted that improvements can
be achieved through variance reduction strategies such as
stratification. Some of these alternative sampling schemes
guarantee a reduced Monte Carlo variance, at a compa-

rable computational cost [30]–[33]. We will sometimes
refer to the resampling step as a selection step below.

B. Sequential Monte Carlo Methods
We now specialise the sampling techniques considered

above to the sequential setting of the state-space model.
Starting with the initial, or Bprior,[distribution !0ðx0Þ,
the posterior density !0:tj0:tðx0:tjy0:tÞ can be obtained using
the following prediction-correction recursion [34]:

• Prediction

!0:tj0:t#1ðx0:tjy0:t#1Þ
¼ !0:t#1j0:t#1ðx0:t#1jy0:t#1Þfðxtjxt#1Þ (5)

• Correction

!0:tj0:tðx0:tjy0:tÞ ¼
gð ytjxtÞ!0:tj0:t#1ðx0:tjy0:t#1Þ

‘tj0:t#1ð ytjy0:t#1Þ
(6)

where ‘tj0:t#1 is the predictive distribution of yt
given the past observations y0:t#1. For a fixed data
realization, this term is a normalizing constant
(independent of the state); it will not be necessary
to compute this term in standard implementations
of SMC methods.

We would like to sample from !0:tj0:tðx0:tjy0:tÞ; since it is
generally impossible to sample directly from this dis-
tribution, we resort to a sequential version of the impor-
tance sampling and resampling procedure outlined above.
Conceptually, we sample N particle paths ~xðiÞ0:t, i ¼ 1; . . . ;N,
from a convenient importance distribution q0:tðx0:tjy0:tÞ,
and compute the unnormalized importance weights

~!ðiÞ
t ¼

!0:tj0:t ~xðiÞ0:tjy0:t
! "

q0:t ~xðiÞ0:tjy0:t
! " ; i ¼ 1; . . . ;N: (7)

Using this weighted sample fð~xðiÞ0:t; ~!
ðiÞ
t Þg1%i%N, we may

approximate the expectation of any function h defined on
the path space using the self-normalized importance
sampling estimator

!h ¼
Z

hðx0:tÞ!0:tj0:tðx0:tjy0:tÞdx0:t

&
XN

i¼1

~!ðiÞ
t

PN
j¼1 ~!

ðjÞ
t

h ~xðiÞ0:t

! "
: (8)

As in the case of the nonsequential importance sampling
above, we will use in the following the notation !ðiÞ

t to refer

Fig. 4. Principle of resampling. Top: the sample drawn from q

(dashed line) with associated normalized importance weights

depicted by bullets with radii proportional to the normalized

weights (the target density corresponding to p is plotted as a solid

line). Bottom: After resampling, all particles have the same

importance weight, and some of them have been either

discarded or duplicated (here M ¼ N ¼ 6).

Cappé et al.: An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

Vol. 95, No. 5, May 2007 | Proceedings of the IEEE 903Resampling with replacement preserves
expectations, but increases the variance of

subsequent estimators

Effective Sample Size:

122 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

Sample Propagation

Given a particle–based filtering distribution qt(xt), we may predict likely values of
subsequent states by simulating the dynamical system underlying the HMM. In the
simplest case, particle filters use this approach to compute outgoing messages:

mt,t+1(xt+1) =
L∑

ℓ=1

w(ℓ)
t,t+1δ(xt+1, x

(ℓ)
t+1)

x(ℓ)
t+1 ∼ p(xt+1 | x(ℓ)

t)

w(ℓ)
t,t+1 = w(ℓ)

t

(3.9)

Given that x(ℓ)
t+1 is sampled from the prior, these weights w(ℓ)

t,t+1 can be justified as an
importance estimate of the joint distribution p(xt, xt+1 | yt). Discarding x(ℓ)

t , which by
the model’s Markov structure is not needed for subsequent simulation steps, we then
arrive at eq. (3.9).

Depletion and Resampling

By iterating the predictions and measurement updates of eqs. (3.8, 3.9), we recursively
compute unbiased estimates qt(xt) of the filtering densities p(xt | yt). The practical
reliability of this sequential Monte Carlo method depends critically on the variability
of these estimates, which is characterized by the variance of the importance weights [9].
Although exact performance evaluation is typically intractable, the effective sample
size [11, 72] can be estimated as follows:

Leff =

(
L∑

ℓ=1

(
w(ℓ)

)2
)−1

(3.10)

For uniform weights w(ℓ) = 1/L, the effective sample size Leff = L, the number of
particles. In contrast, when one particle is allocated most of the posterior probability
mass, Leff → 1.

Due to accumulation of the approximations underlying subsequent message updates,
the expected variance of the importance weights increases over time [72]. For any finite
sample size L, the number of effective particles Leff thus approaches one after sufficiently
many iterations. In practice, the resulting sample depletion is avoided via a resampling
operation. Given the discrete filtering distribution qt(xt) of eq. (3.8), L new particles

x̃(ℓ)
t are resampled, and then propagated to subsequent timesteps:

x̃(ℓ)
t ∼ qt(xt)

x(ℓ)
t+1 ∼ p(xt+1 | x̃(ℓ)

t)
ℓ = 1, . . . , L (3.11)

After such resampling, outgoing message particles are equally weighted as w(ℓ)
t,t+1 = 1/L.

Because new samples x̃(ℓ)
t are drawn with replacement, they typically repeat those x(m)

t

with large weights w(m)
t multiple times, and ignore some low weight samples entirely.

1  Le↵  L

Prediction: Sample next state conditioned on randomly chosen particles

122 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

Sample Propagation

Given a particle–based filtering distribution qt(xt), we may predict likely values of
subsequent states by simulating the dynamical system underlying the HMM. In the
simplest case, particle filters use this approach to compute outgoing messages:

mt,t+1(xt+1) =
L∑

ℓ=1

w(ℓ)
t,t+1δ(xt+1, x

(ℓ)
t+1)

x(ℓ)
t+1 ∼ p(xt+1 | x(ℓ)

t)

w(ℓ)
t,t+1 = w(ℓ)

t

(3.9)

Given that x(ℓ)
t+1 is sampled from the prior, these weights w(ℓ)

t,t+1 can be justified as an
importance estimate of the joint distribution p(xt, xt+1 | yt). Discarding x(ℓ)

t , which by
the model’s Markov structure is not needed for subsequent simulation steps, we then
arrive at eq. (3.9).

Depletion and Resampling

By iterating the predictions and measurement updates of eqs. (3.8, 3.9), we recursively
compute unbiased estimates qt(xt) of the filtering densities p(xt | yt). The practical
reliability of this sequential Monte Carlo method depends critically on the variability
of these estimates, which is characterized by the variance of the importance weights [9].
Although exact performance evaluation is typically intractable, the effective sample
size [11, 72] can be estimated as follows:

Leff =

(
L∑

ℓ=1

(
w(ℓ)

)2
)−1

(3.10)

For uniform weights w(ℓ) = 1/L, the effective sample size Leff = L, the number of
particles. In contrast, when one particle is allocated most of the posterior probability
mass, Leff → 1.

Due to accumulation of the approximations underlying subsequent message updates,
the expected variance of the importance weights increases over time [72]. For any finite
sample size L, the number of effective particles Leff thus approaches one after sufficiently
many iterations. In practice, the resulting sample depletion is avoided via a resampling
operation. Given the discrete filtering distribution qt(xt) of eq. (3.8), L new particles

x̃(ℓ)
t are resampled, and then propagated to subsequent timesteps:

x̃(ℓ)
t ∼ qt(xt)

x(ℓ)
t+1 ∼ p(xt+1 | x̃(ℓ)

t)
ℓ = 1, . . . , L (3.11)

After such resampling, outgoing message particles are equally weighted as w(ℓ)
t,t+1 = 1/L.

Because new samples x̃(ℓ)
t are drawn with replacement, they typically repeat those x(m)

t

with large weights w(m)
t multiple times, and ignore some low weight samples entirely.

122 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

Sample Propagation

Given a particle–based filtering distribution qt(xt), we may predict likely values of
subsequent states by simulating the dynamical system underlying the HMM. In the
simplest case, particle filters use this approach to compute outgoing messages:

mt,t+1(xt+1) =
L∑

ℓ=1

w(ℓ)
t,t+1δ(xt+1, x

(ℓ)
t+1)

x(ℓ)
t+1 ∼ p(xt+1 | x(ℓ)

t)

w(ℓ)
t,t+1 = w(ℓ)

t

(3.9)

Given that x(ℓ)
t+1 is sampled from the prior, these weights w(ℓ)

t,t+1 can be justified as an
importance estimate of the joint distribution p(xt, xt+1 | yt). Discarding x(ℓ)

t , which by
the model’s Markov structure is not needed for subsequent simulation steps, we then
arrive at eq. (3.9).

Depletion and Resampling

By iterating the predictions and measurement updates of eqs. (3.8, 3.9), we recursively
compute unbiased estimates qt(xt) of the filtering densities p(xt | yt). The practical
reliability of this sequential Monte Carlo method depends critically on the variability
of these estimates, which is characterized by the variance of the importance weights [9].
Although exact performance evaluation is typically intractable, the effective sample
size [11, 72] can be estimated as follows:

Leff =

(
L∑

ℓ=1

(
w(ℓ)

)2
)−1

(3.10)

For uniform weights w(ℓ) = 1/L, the effective sample size Leff = L, the number of
particles. In contrast, when one particle is allocated most of the posterior probability
mass, Leff → 1.

Due to accumulation of the approximations underlying subsequent message updates,
the expected variance of the importance weights increases over time [72]. For any finite
sample size L, the number of effective particles Leff thus approaches one after sufficiently
many iterations. In practice, the resulting sample depletion is avoided via a resampling
operation. Given the discrete filtering distribution qt(xt) of eq. (3.8), L new particles

x̃(ℓ)
t are resampled, and then propagated to subsequent timesteps:

x̃(ℓ)
t ∼ qt(xt)

x(ℓ)
t+1 ∼ p(xt+1 | x̃(ℓ)

t)
ℓ = 1, . . . , L (3.11)

After such resampling, outgoing message particles are equally weighted as w(ℓ)
t,t+1 = 1/L.

Because new samples x̃(ℓ)
t are drawn with replacement, they typically repeat those x(m)

t

with large weights w(m)
t multiple times, and ignore some low weight samples entirely.

122 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

Sample Propagation

Given a particle–based filtering distribution qt(xt), we may predict likely values of
subsequent states by simulating the dynamical system underlying the HMM. In the
simplest case, particle filters use this approach to compute outgoing messages:

mt,t+1(xt+1) =
L∑

ℓ=1

w(ℓ)
t,t+1δ(xt+1, x

(ℓ)
t+1)

x(ℓ)
t+1 ∼ p(xt+1 | x(ℓ)

t)

w(ℓ)
t,t+1 = w(ℓ)

t

(3.9)

Given that x(ℓ)
t+1 is sampled from the prior, these weights w(ℓ)

t,t+1 can be justified as an
importance estimate of the joint distribution p(xt, xt+1 | yt). Discarding x(ℓ)

t , which by
the model’s Markov structure is not needed for subsequent simulation steps, we then
arrive at eq. (3.9).

Depletion and Resampling

By iterating the predictions and measurement updates of eqs. (3.8, 3.9), we recursively
compute unbiased estimates qt(xt) of the filtering densities p(xt | yt). The practical
reliability of this sequential Monte Carlo method depends critically on the variability
of these estimates, which is characterized by the variance of the importance weights [9].
Although exact performance evaluation is typically intractable, the effective sample
size [11, 72] can be estimated as follows:

Leff =

(
L∑

ℓ=1

(
w(ℓ)

)2
)−1

(3.10)

For uniform weights w(ℓ) = 1/L, the effective sample size Leff = L, the number of
particles. In contrast, when one particle is allocated most of the posterior probability
mass, Leff → 1.

Due to accumulation of the approximations underlying subsequent message updates,
the expected variance of the importance weights increases over time [72]. For any finite
sample size L, the number of effective particles Leff thus approaches one after sufficiently
many iterations. In practice, the resulting sample depletion is avoided via a resampling
operation. Given the discrete filtering distribution qt(xt) of eq. (3.8), L new particles

x̃(ℓ)
t are resampled, and then propagated to subsequent timesteps:

x̃(ℓ)
t ∼ qt(xt)

x(ℓ)
t+1 ∼ p(xt+1 | x̃(ℓ)

t)
ℓ = 1, . . . , L (3.11)

After such resampling, outgoing message particles are equally weighted as w(ℓ)
t,t+1 = 1/L.

Because new samples x̃(ℓ)
t are drawn with replacement, they typically repeat those x(m)

t

with large weights w(m)
t multiple times, and ignore some low weight samples entirely.

Particle Filtering Algorithms

Sample-based density estimate

Weight by observation likelihood

Resample & propagate by dynamics

m12(x2) m23(x3)

mt�1,t(xt)

qt̄(xt)

mt,t+1(xt+1)

• Represent state estimates
using a set of samples

• Propagate over time using
sequential importance
sampling with resampling

Bootstrap Particle Filter Summary

m12(x2) m23(x3)

Assume sample-based approximation of incoming message:
mt�1,t(xt) = p(xt | yt�1, . . . , y1) ⇡

LX

`=1

1

L
�
x(`)
t
(xt)

Account for observation via importance weights:
p(xt | yt, yt�1, . . . , y1) ⇡

LX

`=1

w(`)
t �

x(`)
t
(xt) w(`)

t / p(yt | x(`)
t)

Sample from forward dynamics distribution of next state:

mt,t+1(xt+1) ⇡
LX

m=1

1

L
�
x(m)
t+1

(xt+1) x(m)
t+1 ⇠

LX

`=1

w(`)
t p(xt+1 | x(`)

t)

• Represent state estimates
using a set of samples

• Propagate over time using
sequential importance
sampling with resampling

Bootstrap Particle Filter Summary

1. Propagation

2. Weighting

3. Resampling

[Source: Cappe]

Gaussian noise model,

Toy Nonlinear Model
x t y t

Nonlinear dynamics and observation model…

…filter equations lack closed form.

Measurement

and

Dynamics

Toy Nonlinear Model

What is the probability that a state sequence, sampled
from the prior model, is consistent with all observations?

incorporated, as in Algorithm 2, under otherwise
identical conditions. As expected, this is unable to track
the correct state sequence and the particle distributions
are highly degenerate, i.e., resampling is an essential
ingredient in this type of modelVsee Fig. 10.

G. Marginalized Particle Filters
In many practical scenarios, especially those found in

the tracking domain, the models are not entirely nonlinear
and non-Gaussian. By this we mean that some subset of the
state vector is linear and Gaussian, conditional upon the
other states. In these cases one may use standard linear
Gaussian optimal filtering for the linear part, and particle
filtering for the nonlinear part. This may be thought of as
an optimal Gaussian mixture approximation to the filtering
distribution. See [23], [39], and [49] for detailed
descriptions of this approach to the problem, which is
referred to either as the Rao–Blackwellized particle filter,
or Mixture Kalman filter. Recent work [50], [51] has
studied in detail the possible classes of model that may be

handled by the marginalized filter, and computational
complexity issues. The formulation is as follows.1 First, the
state is partitioned into two components, xLt and xNt ,
referring respectively to the linear (L) and nonlinear (N)
components. The linear part of the model is expressed in
the form of a linear Gaussian state-space model as follows,
with state-space matrices that may depend upon the
nonlinear state xNt

xLt ¼ A xNt
! "

x Lt"1 þ uLt ; (15)

yt ¼ B xNt
! "

x Lt þ vLt : (16)

Here uLt and vLt are independent, zero-mean, Gaussian
disturbances with covariances Cu and Cv, respectively,
and AðÞ and BðÞ are matrices of compatible dimensions
that may depend upon the nonlinear state xNt . At t ¼ 0,
the linear part of the model is initialized with xL0 &
N ð!0ðxN0 Þ; P0ðxN0 ÞÞ.

Now the nonlinear part of the state obeys a general
dynamical model (which is not necessarily Markovian)

xNt & f xNt jx
N
0:t"1

! "
; xN0 & "0 xN0

! "
: (17)

In such a case, conditioning on the nonlinear part of
the state xN0:t and the observations y0:t, the linear part of the
state is jointly Gaussian and the means and covariances of
this Gaussian representation may be obtained by using the
classical Kalman filtering recursions [52]. The basic idea is
then to marginalise the linear part of the state vector to
obtain the posterior distribution of the nonlinear part of
the state

"0:tj0:t x
N
0:tjy0:t

! "
¼
Z

"0:tj0:t x
L
0:t; x

N
0:tjy0:t

! "
dx L0:t:

Particle filtering is then run on the nonlinear state se-
quence only, with target distribution "0:tj0:tðxN0:tjy0:tÞ. The
resulting algorithm is almost exactly as before, requiring
only a slight modification to the basic particle filter
(Algorithm 3) to allow for the fact that the marginalized
system is no longer Markovian, since

p ytjy0:t"1; x
N
0:t

! "
6¼ p ytjxNt
! "

:

Moreover, the dynamical model for the nonlinear part of
the state may itself be non-Markovian, see (17).

Fig. 9. Full particle filter density output (shown as image intensity

plot of kernel density estimates). True state sequence overlaid

(solid line with asterisk markers).

1References [50] and [51] present a more general class of models to
which the marginalized filter may be applied, but we present a more basic
framework for the sake of simplicity here.

Fig. 10. Full Sequential importance sampling (no resampling) filter

density output (shown as image intensity plot of kernel density

estimates). True state sequence overlaid (solid line

with asterisk markers).

Cappé et al. : An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

910 Proceedings of the IEEE | Vol. 95, No. 5, May 2007

Particle Filter Marginal KDEs

incorporated, as in Algorithm 2, under otherwise
identical conditions. As expected, this is unable to track
the correct state sequence and the particle distributions
are highly degenerate, i.e., resampling is an essential
ingredient in this type of modelVsee Fig. 10.

G. Marginalized Particle Filters
In many practical scenarios, especially those found in

the tracking domain, the models are not entirely nonlinear
and non-Gaussian. By this we mean that some subset of the
state vector is linear and Gaussian, conditional upon the
other states. In these cases one may use standard linear
Gaussian optimal filtering for the linear part, and particle
filtering for the nonlinear part. This may be thought of as
an optimal Gaussian mixture approximation to the filtering
distribution. See [23], [39], and [49] for detailed
descriptions of this approach to the problem, which is
referred to either as the Rao–Blackwellized particle filter,
or Mixture Kalman filter. Recent work [50], [51] has
studied in detail the possible classes of model that may be

handled by the marginalized filter, and computational
complexity issues. The formulation is as follows.1 First, the
state is partitioned into two components, xLt and xNt ,
referring respectively to the linear (L) and nonlinear (N)
components. The linear part of the model is expressed in
the form of a linear Gaussian state-space model as follows,
with state-space matrices that may depend upon the
nonlinear state xNt

xLt ¼ A xNt
! "

x Lt"1 þ uLt ; (15)

yt ¼ B xNt
! "

x Lt þ vLt : (16)

Here uLt and vLt are independent, zero-mean, Gaussian
disturbances with covariances Cu and Cv, respectively,
and AðÞ and BðÞ are matrices of compatible dimensions
that may depend upon the nonlinear state xNt . At t ¼ 0,
the linear part of the model is initialized with xL0 &
N ð!0ðxN0 Þ; P0ðxN0 ÞÞ.

Now the nonlinear part of the state obeys a general
dynamical model (which is not necessarily Markovian)

xNt & f xNt jx
N
0:t"1

! "
; xN0 & "0 xN0

! "
: (17)

In such a case, conditioning on the nonlinear part of
the state xN0:t and the observations y0:t, the linear part of the
state is jointly Gaussian and the means and covariances of
this Gaussian representation may be obtained by using the
classical Kalman filtering recursions [52]. The basic idea is
then to marginalise the linear part of the state vector to
obtain the posterior distribution of the nonlinear part of
the state

"0:tj0:t x
N
0:tjy0:t

! "
¼
Z

"0:tj0:t x
L
0:t; x

N
0:tjy0:t

! "
dx L0:t:

Particle filtering is then run on the nonlinear state se-
quence only, with target distribution "0:tj0:tðxN0:tjy0:tÞ. The
resulting algorithm is almost exactly as before, requiring
only a slight modification to the basic particle filter
(Algorithm 3) to allow for the fact that the marginalized
system is no longer Markovian, since

p ytjy0:t"1; x
N
0:t

! "
6¼ p ytjxNt
! "

:

Moreover, the dynamical model for the nonlinear part of
the state may itself be non-Markovian, see (17).

Fig. 9. Full particle filter density output (shown as image intensity

plot of kernel density estimates). True state sequence overlaid

(solid line with asterisk markers).

1References [50] and [51] present a more general class of models to
which the marginalized filter may be applied, but we present a more basic
framework for the sake of simplicity here.

Fig. 10. Full Sequential importance sampling (no resampling) filter

density output (shown as image intensity plot of kernel density

estimates). True state sequence overlaid (solid line

with asterisk markers).

Cappé et al. : An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

910 Proceedings of the IEEE | Vol. 95, No. 5, May 2007

Full Sequence Importance Sampling

x t y t

MeasurementDynamics

A More General Particle Filter
m12(x2) m23(x3)• Assume sample-based approximation

of previous state’s marginal:

• Account for observation and proposal via importance weights:

• Sample from a proposal distribution q:

p(xt�1 | yt�1, . . . , y1) ⇡
LX

`=1

1

L
�
x(`)
t�1

(xt�1)

x(`)
t ⇠ q(xt | x(`)

t�1, yt) ⇡ p(xt | x(`)
t�1, yt)

w(`)
t /

p(x(`)
t | x(`)

t�1)p(yt | x
(`)
t)

q(x(`)
t | x(`)

t�1, yt)
• Resample to avoid particle degeneracy:

p(xt | yt, . . . , y1) ⇡
LX

`=1

1

L
�
x(`)
t
(xt) x(`)

t ⇠
LX

m=1

w(m)
t �

x(m)
t

(xt)

Switching State-Space Model

…

…

Discrete switching state:
With stochastic
transition matrix

Switching state selects dynamics:
[Video: Isard & Blake, ICCV 1998.]

(e.g. Nonlinear Gaussian)

Colors indicate 3 writing modes

Example: Particle Filters for SLAM
Simultaneous Localization & Mapping (FastSLAM, Montemerlo 2003)

An online SLAM algorithm factorize that formula to estimate the robot state at current
time t

FastSLAM approach

It solves the SLAM problem using particle filters. Particle filters are mathematical
models that represent probability distribution as a set of discrete particles which occupy
the state space.

121:1:1:1:1:1 ...),|,(),|,p(−∫ ∫ ∫= ttttttt dxdxdxuzmxpuzmx K

Fig1: Diagram of a SLAM technique

Fig2: probability distribution (ellipse) as particle set (red dots)

x

Particle fitler SLAM

Overview

Simultaneous localization and mapping (SLAM) is a technique used by robots and
autonomous vehicles to build up a map within an unknown environment while at the
same time keeping track of their current position. This is not as straightforward as it
might sound due to inherent uncertainties in discerning the robot's relative movement
from its various sensors. If at the next iteration of map building the measured distance
and direction travelled has a slight inaccuracy, then any features being added to the map
will contain corresponding errors. If unchecked, these positional errors build
cumulatively, grossly distorting the map and therefore the robot's ability to know its
precise location. There are various techniques to compensate for this such as recognising
features that it has come across previously and re-skewing recent parts of the map to
make sure the two instances of that feature become one. Some of the statistical
techniques used in SLAM include Kalman filters, particle filters and scan matching of
range data.

Sensors characteristics

A sensor is characterized principally by:

1. Noise
2. Dimensionality of input

a. Planar laser range finder (2D points)
b. 3D laser range finder (3D point cloud)
c. Camera features..

3. Frame of reference
a. Laser/camera in robot frame
b. GPS in earth coord. Frame
c. Accellerometer/Gyros in inertial coord. frame

SLAM problem

The approach to solve the SLAM problem is addressed using probabilities. SLAM is
usually explained by the conditional probability:

tu
tz

m
tx

uzmx

t

t

t

ttt

 to1 timefrom imputs Control
 to1 timefrom inputsSensor

tenvironmen theof Map
at timerobot theof State

),|,p(

:1

:1

:1:1

=

=

=

=

(a) Raw vehicle odometry (b) FastSLAM 2.0,M=1 particle (c) Same w. dynamic feature management

Figure 1: FastSLAM 2.0 applied to the Victoria Park benchmark data set using only M=1 particle. The accuracy of the recovered path and
the resulting map is indistinguishable from that the best EKF-style methods and the original FastSLAM algorithm withM=100 particles.

At first glance, one may be tempted to substitute w
[m]
t for

the probability on the right-hand side, as in regular Fast-
SLAM. However, w

[m]
t does not consider the sampled pose

s
[m]
t , whereas the expression here does. This leads to a slightly
different probability, which is calculated as follows.
p(zt | nt, n̂

t−1,[m]
, s

t,[m]
, z

t−1
, u

t)

=

∫

p(zt | θnt , nt, s
[m]
t)

︸ ︷︷ ︸

∼ N(zt;g(θnt ,s
[m]
t

),Rt)

p(θnt | n̂
t−1,[m]

, s
t−1,[m]

, z
t−1)

︸ ︷︷ ︸

∼ N(µ
[m]
nt,t−1

,Σ
[m]
nt,t−1

)

dθnt(21)

Linearization of g leads to a Gaussian over zt with mean
g(µ[m]

nt,t−1, s
[m]
t) and covariance Q

[m]
t . Both are functions of

the data association variable nt.

4.5 Feature Management
Finally, in cases with unknown data associations, features
have to created dynamically. As is common for SLAM algo-
rithms [5], our approach creates new features when the mea-
surement probability in (20) is below a threshold. However,
real-world data with frequent outliers will generate spurious
landmarks using this rule. Following [5], our approach re-
moves such spurious landmarks by keeping track of their pos-
terior probability of existence. Our mechanism analyzes mea-
surement to the presence and absence of features. Observing a
landmark provides positive evidence for its existence, whereas
not observing it when µ

[m]
n falls within the robot’s perceptual

range provides negative evidence. The posterior probability
of landmark existence is accumulated by the following Bayes
filter, whose log-odds form is familiar from the literature on
occupancy grid maps [16]:

τ [m]
n =

∑

t

ln
p(i[m]

n | s
[m]
t , zt, n̂

[m]
t)

1 − p(i[m]
n | s

[m]
t , zt, n̂

[m]
t)

(22)

Here τ
[m]
n are the log-odds of the physical existence of land-

mark θ
[m]
n in map m, and p(i[m]

n | s
[m]
t , zt, n̂

[m]
t) is the prob-

abilistic evidence provided by a measurement. Under appro-
priate definition of the latter, this rule provides for a simple
evidence counting rule. If the log odds drops below a prede-
fined threshold, the corresponding landmark is removed from
the map. This mechanism enables particles to free themselves
of spurious features.

5 Convergence
A key result in this paper is the fact that our new version of
FastSLAM converges for M=1 particle, for a restricted class
of linear Gaussian problems (the same for which KFs con-
verge [5; 18]). Specifically, our result applies to SLAM prob-
lems characterized by the following linear form:

g(st, θnt) = θnt − st (23)
h(ut, st−1) = ut + st−1 (24)

Linear SLAM can be thought of as a robot operating in a Carte-
sian space equipped with a noise-free compass, and sensors
that measure distances to features along the coordinate axes.
The following theorem, whose proof can be found in the ap-
pendix, states the convergence of our new FastSLAM variant:
Theorem. For linear SLAM, FastSLAM with M=1 parti-

cles converges in expectation to the correct map if all features
are observed infi nitely often, and if the location of one feature
is known in advance.
This theorem parallels a similar result previously published

for the Kalman filter [5; 18]. However, this result applies to
the Kalman filter, whose update requires time quadratic in the
number of landmarks N . With M=1, the resampling step
becomes obsolete and each update takes constant time. To
our knowledge, our result is the first convergence result for
a constant-time SLAM algorithm. It even holds if all features
are arranged in a large loop, a situation often thought of as the
worst case for SLAM problems [8].

6 Experimental Results
Systematic experiments showed that FastSLAM 2.0 provides
excellent results with surprisingly few particles, including
M=1. Most of our experiments were carried out using a
benchmark data set collected with an outdoor vehicle in Victo-
ria Park, Sydney [7]. The vehicle path is 3.5km long, and the
map is 320 meters wide. The vehicle is equipped with differ-
ential GPS that is used for evaluation only. Fig. 1a shows the
map of the terrain, along with the path obtained by raw odome-
try (which is very poor, the average RMS error is 93.6 meters).
This data set is presently the most popular benchmark in the
SLAM research community [3].
Figs. 1b&c show the result of applying FastSLAM with

M=1 particle to the data set, without (Fig. 1b) and with

Raw odometry (controls)
True trajectory (GPS)
Inferred trajectory & landmarks

Control inputs from time 1 to t

Dynamical System Inference

Smoothing
Define shorthand notation:

Compute at each time t

Filtering

Compute full posterior marginal
 at each time t

Dynamical System Inference

Smoothing
Define shorthand notation:

Filtering

If estimates at time t are not needed immediately, then better smoothed
estimates are possible by incorporating future observations

A Note On Smoothing

These formulae then form the basis of a sequence-based
smoother using the weighted sample generated in the
forward pass of the SMC procedure, see [66], and also [32]
and [67].

Assume initially that Monte Carlo filtering has already
been performed on the entire dataset, leading to an
approximate representation of the filtering distribution
!tj0:tðxtjy0:tÞ for each time step t 2 f0; . . . ; Tg, consisting
of weighted particles fðxðiÞt ; !ðiÞ

t Þgi¼1;...;N .
Using this weighted sample representation, it is

straightforward to construct a particle approximation to
pðxtjxtþ1; y0:TÞ from (27) as follows:

pðdxtjxtþ1; y0:TÞ %
XN

i¼1

"ðiÞt ðxtþ1Þ#xðiÞt ðdxtÞ (28)

where the modified weights are defined as

"ðiÞt ðxtþ1Þ ¼
def

!ðiÞ
t f xtþ1jxðiÞt
! "

PN
j¼1 !

ð jÞ
t f xtþ1jxð jÞt

! " : (29)

This revised particle-based distribution can now be used
to generate states successively in the reverse-time
direction, conditioning upon future states, using the
sampling importance resampling idea. Specifically, given
a random sample extþ1:T drawn approximately from
!tþ1:Tj0:T , take one step back in time and sample ext from

the particle approximation (28) to pðdxtjextþ1; y0:TÞ. The
pair ðext;extþ1:TÞ is then approximately a random realization
from !t:Tj0:T . Repeating this process sequentially back over
time produces the general particle smoother outlined in
Algorithm 5.

Algorithm 5 Particle Smoother

for t ¼ 0 to T do . Forward Pass Filter
Run Particle filter, storing at each time step the particles
and weights fxðiÞt ; !ðiÞ

t g1&i&N.
end for
Choose exT ¼ xðiÞT with probability !ðiÞ

t .
for t ¼ T ' 1 to 0 do . Backward Pass Smoother

Calculate "ðiÞt / !ðiÞ
t fðextþ1jxðiÞt Þ, for i ¼ 1; . . . ;N; and

normalize the modified weights.
Choose ext ¼ xðiÞt with probability "ðiÞt .

end for

Further independent realizations are obtained by
repeating this procedure as many times as required. The
computational complexity for each random realization is
OðNTÞ, so the procedure is quite expensive if many
realizations are required. Developments to these basic
techniques that consider the Rao–Blackwellized setting
can be found in [68], see Section II-G.

To illustrate this smoothing technique, consider the
nonlinear time series model of Example 1. Smoothing is
carried out using the above particle smoother, applying
10 000 repeated draws from the smoothing density. A
simple bootstrap particle filter was run through the data
initially, itself with 10 000 particles, and the weighted
particles fðxðiÞt ; !ðiÞ

t Þg1&i&N were stored at each time step,
exactly as in the simulations for this model presented in
the section on particle filtering. Smoothing then follows
exactly as in the above algorithm statement. A small
random selection of the smoothed trajectories drawn from
!0:100j0:100ðx0:100jy0:100Þ is shown in Fig. 12. Note some
clear evidence of multimodality in the smoothing distri-
bution can be seen, as shown by the separated paths of
the process around t ¼ 46 and t ¼ 82. We can also show
the posterior distribution via grey-scale histograms of the
particles, see Fig. 13. Finally, see Figs. 14 and 15 for
visualization of an estimated bivariate marginal,
!3:4j0:100ðx3:4jy0:100Þ, using 2-D scatter plots and kernel
density estimates, again showing evidence of multimodality
and strong non-Gaussianity that will not be well captured
by more standard methods.

This algorithm is quite generic in that it allows joint
random draws from arbitrary groupings of state variables
over time. See also [67] for related methods that generate
smoothed sample paths by rejection sampling ideas.
Sometimes, however, one is specifically interested in the
marginal smoothing distributions, i.e., !tj0:T for some
t G T. There are several specialized methods available for

Fig. 11. Typical plot of the particle trajectories after a few

time steps; the width of the lines is proportional to the number of

current particles which share a particular ancestor path.

Cappé et al. : An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

914 Proceedings of the IEEE | Vol. 95, No. 5, May 2007

Ø Each resampling step discards states and they cannot subsequently restored
Ø Resampling introduces dependence across trajectories (common ancestors)
Ø Smoothed marginal estimates are generally poor
Ø Backwards simulation improves estimates of smoothed trajectories

Particle Filter Smoothing
Smoothing distribution factorizes as,

Markov property removes
dependence on yt+1 … yTFilter distribution at time T

Suggests an algorithm to sample from :

1. Compute and store filter marginals, for t=1,…,T

2. Sample final state from full posterior marginal,

3. Sample in reverse for t=(T-1),(T-2),…,2,1 from,

Use resampling idea to sample from current particle trajectories in reverse

Particle Filter Smoothing
Reverse conditional given by def’n of conditional prob.:

Forward pass sample-based filter marginal estimates:

Thus particle estimate of reverse prediction is:

where

Particle Filter Smoothing

Particle Smoothing Example

Smoothing trajectories for T=100.
True states (*).

Kernel density estimates based on
smoothed trajectories.True states (*).

Additional Particle Filter Topics

Ø Auxiliary particle filter – bias samples towards those more likely to “survive”

Ø Rao-Blackwell PF – analytically marginalize tractable sub-components of the
state (e.g. linear Gaussian terms)

Ø MCMC PF – apply MC kernel with correct target to sample trajectory prior
to the resampling step

Ø Other smoothing topics:
§ Generalized two-filter smoothing
§ MC approximation of posterior marginals

Ø Maximum a posteriori (MAP) particle filter

Ø Maximum likelihood parameter estimation using PF

Sequential Monte Carlo Summary

Ø Importance sampling for inference in nonlinear dynamical systems

Ø Using model dynamics as proposal allows recursive weight updates

Ø All but one weight go to zero as prior/posterior diverge (degeneracy)

Ø Periodic resampling (with replacement) avoids weight degeneracy

Ø Each resampling step increases estimator variance (use sparingly)

Ø In practice, resample when effective sample size (ESS) below thresh

Outline

• Monte Carlo Estimation

• Sequential Monte Carlo

• Markov Chain Monte Carlo

Monte Carlo Estimation

One reason to sample a distribution is to approximate
expected values under that distribution…

Expected value of function w.r.t. distribution given by,

Ø Doesn’t always have a closed-form for arbitrary functions
Ø Suppose we have iid samples:
Ø Monte Carlo estimate of expected value,

Samples must be independent!

Markov chain Monte Carlo methods

• The approximations of expectation that we have looked at so far have assumed
that the samples are independent draws.

• This sounds good, but in high dimensions, we do not know how to get good
independent samples from the distribution.

• MCMC methods drop this requirement.

• Basic intuition
– If you have finally found a region of high probability, stick around for a bit, enjoy yourself,

grab some more samples.

Markov chain Monte Carlo methods

• Samples are conditioned on the previous one (this is the Markov chain).

• MCMC is often a good hammer for complex, high dimensional, problems.

• Main downside is that it is not “plug-and-play”
– Doing well requires taking advantage to the structure of your problem
– MCMC tends to be expensive (but take heart---there may not be any other solution, and at least

your problem is being solved).
– If there are faster solutions, you can incorporate that (and MCMC becomes a way to

improve/select these good guesses).

Metropolis Algorithm

Metropolis Algorithm

If things get better, always accept. If
they get worse, sometimes accept.

Always emit one or the other

Metropolis Algorithm

Metropolis Example

Green follows accepted proposals
Red are rejected moves.

Markov chain view

Markov Chain Monte Carlo (MCMC)

Ø Stochastic 1st order Markov process with transition kernel:

Ø Each full N-dimensional state vector
Ø MCMC samples not independent
Ø New superscript notation indicates dependence:

… …

Independent Dependent

Key Question: How many MCMC
samples T are needed to draw L
independent samples from p(x)?

Stationary Markov chains

• Recall that our goal is to have our Markov chain emit samples from our target
distribution p(z).

• This implies that the distribution being sampled at time t+1 would be the same
as that of time t (stationary).

• If our stationary (target) distribution is p(), then if we imagine an ensemble of
chains, they are in each state with (long-run) probability p().
– On average, a switch from s1 to s2 happens as often as going from s2 to s1, otherwise, the

percentage of states would not be stable.

Markov Chain Monte Carlo (MCMC)

Ø Stochastic 1st order Markov process with transition kernel:

E.g. Let,

Ø Initial state dist’n:
Ø Repeated transitions converge to target

True for any initial state distribution [Source: Andrieu et al.]

… …

z1

z2

z3

How can we formalize this?

Detailed balance

• Detailed balance is defined by:

• Detailed balance is a sufficient condition for p() to be a stationary distribution
with respect to the positive T.

Sufficient but not necessary

Detailed balance implies stationary

(because?)

Detailed balance implies stationary

(because?)

Detailed balance implies stationary

(because?)

Detailed balance implies stationary

(because?)

Detailed balance implies stationary

(because?)

Detailed balance implies stationary

(because?)

Detailed balance implies stationary

(because?)

Detailed balance implies stationary

Detailed balance (continued)

• Detailed balance (for p()) means that if our chain was generating samples from
p(), it would continue to due so.
– We will address how it gets there soon.
– For MCMC algorithms like Metropolis, it is important that the stationary state is the

distribution we want (most Markov chains converge to something),

• Does the Metropolis algorithm have detailed balance?

Metropolis has detailed balance

For detailed balance, we need to show (in general)

Probability of transition from z’ to z is the
probability that z’ is proposed, and it is accepted.

Metropolis has detailed balance

For detailed balance, we need to show (in general)

Probability of transition from z to z’ is the
probability that z’ is proposed, and it is accepted.

In Metropolis this is

Metropolis has detailed balance

(because?)

Metropolis has detailed balance

(because?)

Metropolis has detailed balance

q() is symmetric

(because?)

Metropolis has detailed balance

(switch order
 in min())

q() is symmetric

(because?)

Metropolis has detailed balance

(switch order
 in min())

q() is symmetric

Ergodic chains

• Different starting probabilities will give different chains

• We want our chains to converge (in the limit) to the same stationary state,
regardless of starting distribution.

• Such chains are called ergodic, and the common stationary state is called the
equilibrium state.

• Ergodic chains have a unique equilibrium.

When do our chains converge?

• Important theorem tells us that for finite state spaces* our chains converge to
equilibrium under two relatively weak conditions.
– (1) Irreducible

• We can get from any state to any other state
– (2) Aperiodic

• The chain does not get trapped in cycles

• These are true for detailed balance (there exists a stationary state) with T>0 (you
can get there).
– Detailed balance is sufficient, but not necessary for convergence—it is a stronger

property than (1) & (2)

*Infinite or uncountable state spaces introduces additional complexities,
but the main thrust is similar.

Evolution of ergodic chains

Evolution of ergodic chains

Evolution of ergodic chains

Dies outCannot die!

Evolution of ergodic chains

Matrix-vector representation

Matrix representation

What does this equation look like?

Matrix representation

For any p(0)!

Aside on stochastic matrices

• A right (row) stochastic matrix has non-negative entries, and its rows sum to
one.

• A left (column) stochastic matrix has non-negative entries, and its columns sum
to one.

• A doubly stochastic matrix has both properties.

Aside on stochastic matrices

• In our problem, T is a left (column) stochastic matrix.
– If you want to be right handed, take the transpose

• The column vector, p, also has non-negative elements, that sum to one
(stochastic vector).

Aside on stochastic matrices

• In our problem, T is a left (column) stochastic matrix.
– If you want to be right handed, take the transpose

• The column vector, p, also has non-negative elements, that sum to one
(stochastic vector).

• Fun facts
– The product of a stochastic matrix and vector is a stochastic vector.
– The product of two stochastic matrices is a stochastic matrix.

Aside on (stochastic) matrix powers

?

Aside on (stochastic) matrix powers

Aside on (stochastic) matrix powers

Why not?

Aside on (stochastic) matrix powers

because it is a stochastic matrix.

Aside on (stochastic) matrix powers

Logic:
• Product of stochastic matrix is a stochastic matrix
• Columns of (left) stochastic matrix sum to 1
• Power is a bunch of products

because it is a stochastic matrix.

Aside on (stochastic) matrix powers

Aside on (stochastic) matrix powers

Aside on (stochastic) matrix powers

?

Aside on (stochastic) matrix powers

Aside on (stochastic) matrix powers

?

Aside on (stochastic) matrix powers

Aside on (stochastic) matrix powers

Aside on (stochastic) matrix powers

Aside on (stochastic) matrix powers

Aside on (stochastic) matrix powers

?

Aside on (stochastic) matrix powers

Aside on (stochastic) matrix powers

Justification relies on Perron Frobenius theorem

From Wikipedia

Optional

Main points about P-F for positive square matrices

• The maximal eigenvalue is strictly maximal and real valued (item 1).

• Its eigenvector (as computed by software*) has all positive (or negative) real
components (item 3).

• The maximal eigenvalue of a stochastic matrix has absolute value 1 (item 8
applied to stochastic matrix).

*P-F says that the positive version exists, but software might hand you
the negative of that, but you can negate it to be consistent with P-F.

Summary on matrix version of stationarity

Neal ’93 provides an algebraic proof which does not rely on
spectral theory.

MCMC so far

• Under reasonable conditions (ergodicity) ensembles of chains over discretized states converge to an
equilibrium state (stationary distribution)

• Easiest way to prove (or check) that this is the case is to show detailed balance and use T>0 (sufficient but
not necessary)

• There is a nice analogy with powers of stochastic matrices, which converge to an operator based on the
largest magnitude eigenvector (with |eigenvalue|=1)

• In theory, to use MCMC for sampling a distribution, we simply need to ensure that our target distribution is
the equilibrium state.

• In practice we do not know even know if we have visited the best place yet. (The ensemble metaphor runs
into trouble if you have a small number of chains compared to the number of states).

MCMC Theory vs. Practice

• The time it takes to get reasonably close to equilibrium (where samples come
from the target distribution) is called “burn in” time.
– I.E., how long does it take to forget the starting state.
– There is no general way to know when this has occurred.

• The average time it takes to visit a state is called “hit time”.

• What if we really want independent samples?
– In theory we can take every Nth sample (some theories about how long to wait exist, but it

depends on the algorithm and distribution).

MCMC for ML in practice

• We use MCMC for machine learning problems with very complex distributions over high
dimensional spaces.

• Variables can be either discrete or continuous (often both)

• Despite the gloomy worst case scenario, MCMC is often a good way to find good solutions
(either by MAP or integration).
– Key reason is that there is generally structure in our distributions.
– We need to exploit this knowledge in our proposal distributions.
– Instead of getting hung up about whether you actually have convergence

• Enjoy that fact that what you are doing is principled and can improve any answer (with respect to your
model) that you can get by other means

– Your model should be able to tell you which proposed solution are good.

A View of Metropolis

Transition kernel with target distribution:

1. Sample proposal:
2. Accept with probability:

Proposal must be symmetric

Example: Symmetric Gaussian proposal

[Source: D. MacKay]

where

Metropolis Efficiency

Consider Gaussian proposal:

• Typically for adequate acceptance rate

• Leads to random walk dynamics
 that are slow to converge

• Rule of Thumb:
If average acceptance is need
to run for roughly
iterations for an independent sample

[Source: D. MacKay]

This is only a lower bound (and potentially very loose)

How many samples needed for an independent sample?

Example: Random Walk Dynamics

Target:

Proposal:

Metropolis Independent

From need ~400 steps to
reach both end states (0 and 20).
So, ~400 steps to generate 1
independent sample!

[Source: D. MacKay]

Very important to avoid random walk dynamics

State evolution for t=1…600, horizontal bars denote intervals of 50

Beyond the Metropolis Method

Metropolis requires the proposal to be symmetric,

This often results in a chain that takes a long time to converge
to a stationary distribution (long burn in time)

Example The most common proposal (Gaussian),

exhibits random walk dynamics that are inefficient

Metropolis-Hastings relaxes this symmetry requirement…

Metropolis-Hastings MCMC method

• Like Metropolis, but now q() is not necessarily symmetric.

• If Metropolis-Hastings has detailed balance, then it
converges to the target distribution under weak conditions.
– The converse is not true, but generally samplers of interest will

have detailed balance

Does Metropolis-Hastings converge to the target distribution?

Does Metropolis-Hastings have detailed balance?

Does Metropolis-Hastings have detailed balance?

Does Metropolis-Hastings have detailed balance?

Does Metropolis-Hastings have detailed balance?

Does Metropolis-Hastings have detailed balance?

Metropolis-Hastings comments

• Again it does not matter if we use unnormalized probabilities in the M-H
acceptance ratio A(z,z’)

• It should be clear that the Metropolis method (where q() is symmetric) is a
special case of M-H

• q(z’|z) can be anything, but you need to specify the reverse move q(z|z’), which
can be tricky

MCMC So Far…

Metropolis Algorithm
• Sample RV from proposal
• Proposal must be symmetric
• Accept with probability

Metropolis-Hastings Algorithm
• Proposal does not have to be symmetric
• Accept with probability

Both methods require choosing proposal, which can be hard

Gibbs Sampling

Let be the target distribution on random variables,

Consider the complete conditional distribution

where all RVs except

Idea Don’t sample all RVs from one proposal. Sample each
from its corresponding complete conditional,

We call this method Gibbs Sampling

Gibbs Sampling

Recall that an RV is conditionally independent of
all RVs given its Markov Blanket

Bayes NetMRF

So complete conditionals only depend on Markov Blanket,

Immediate
Neighbors

Parents, Children,
Co-Parents

[Source: Bishop, C. PRML]

Condition on most recent samples

Can choose any order (or randomize)

Gibbs sampling

• Gibbs sampling is special case of M-H (but we always accept)
• Unlike M-H we do not have to choose proposal
• The proposal distribution will be cycle over
• Transition function T() varies (cycles) over time

– Relaxation of our assumption used to provide intuition about convergence
– It still OK because the concatenation of the T() for a cycle converge

• We must be able to compute and sample from
– This is not always possible in general!

• This is not the sample as sampling from the generative model, e.g.
Ancestral Sampling in a Bayes Net samples from

(Source: D. MacKay)

(Source: D. MacKay)

(Source: D. MacKay)

(Source: D. MacKay)

Examples of Gibbs

• Gibbs can be very good if one can compute and sample from the complete
conditional distributions

• This is often feasible for MRFs of discrete RVs
– Typical examples include symmetric systems like the Markov random field grids we had for

images
– Complete conditionals only depend on immediate neighboring pixels

• Continuous models are more complicated, and typically restricted to exponential
family distributions (we will discuss in the next lecture)

Example: Image Denoising

Problem Given observed image corrupted by i.i.d.
noise, infer “clean” denoised image.

[Source: Bishop, C. PRML]

Noisy Image Latent Image

Example: Image Denoising

Observation noise

Use a “grid graph” where each pixel is
connected to its up/down/left/right neighbors,

Where for convenience

Observation Likelihood:

Pairwise Similarity:
Smoothness prior

Complete conditional only depends on immediate neighbors,

Normalizer only requires summing
over 4 neighbors .

Examples of Gibbs

(From Dellaert and Zhu tutorial)

Examples of Gibbs

(From Dellaert and Zhu tutorial)

Gibbs as Metropolis Hastings (M-H)

To see Gibbs as MH, and to understand why we always
accept, consider that if it were MH, then our proposal
distribution, qi(), for a given variable, i, would be

The “*” here means next state, NOT stationary state.

Gibbs as M-H

(def’n of “bar”)

(def’n of A())

(Gibbs, coloring)

Gibbs as M-H

(def’n of A())

(Gibbs, coloring)

(because?)

Gibbs as M-H

(def’n of “bar”)

(def’n of A())

(because?)

Gibbs as M-H

(def’n of “bar”)

(def’n of A())

(Gibbs, coloring)

Gibbs Sampling Extensions

Standard Gibbs suffers same random walk behavior as M-H
(but no adjustable parameters, so that’s a plus…)

Block Gibbs Jointly sample subset from
• Reduces random walk caused by highly correlated variables
• Requires that conditional can be sampled efficiently

Collapsed Gibbs Marginalize some variables out of joint:

• Reduces dimensionality of space to be sampled
• Requires that marginals are computable in closed-form

Combined samplers

Different samplers fail in different ways, so combine them…

…can also combine with Gibbs proposals

Mixing MCMC Kernels

Consider a set of MCMC kernels all having target
distribution p(x) then the mixture:

Is a valid MCMC kernel with target distribution p(x)

Mixture MCMC Transition kernel given by:
1. Sample
2. Sample

Mixing weights

Can do this more generally….

Inference (and related) Tasks

• Simulation:

• Compute expectations:

• Optimization:

• Compute normalizer:

Inference (and related) Tasks

• Simulation:

• Compute expectations:

• Optimization:

• Compute normalizer:

Simulated Annealing

• Analogy with physical systems

• Relevant for optimization (not integration)

• Powers of probability distributions emphasize the peaks

• If we are looking for a maximum within a lot of distracting peaks, this can help.

Simulated Annealing

• Define a temperature T, and a cooling schedule (black magic part)

• Lower temperatures correspond to emphasized maximal peaks.
– Hence we exponentiate by (1/T).

• The terminology makes sense because the number of states accessible to a
physical system decreases with temperature.

Simulated Annealing

(From Andrieu et al)

Basically M-H but we are annealing
target distribution with temperature T

Annealing

(From Andrieu et al)

Annealing

(From Andrieu et al)

Annealing

(From Andrieu et al)

Annealing

(From Andrieu et al)

Simulated Annealing

Let annealing distribution at temp be given by:

As we have:

Simulated Annealing (SA) for Global Optimization:
Annealing schedule

1. Sample from MCMC kernel with target
2. Set according to annealing schedule

SA for Convergence: Final temperature = 1

where

MCMC Summary

• Markov chain induced by MCMC transition kernel T(z,z’)

• Converges to stationary distribution iff chain is ergodic
• Chain is ergodic if it is irreducible (can get from any z to any z’)

and aperiodic (doesn’t get trapped in cycles)

• Easier to prove detailed balance, which implies ergodicity

• Metropolis algorithm samples from symmetric proposal q(z’|z)
and accepts sample z’ with probability,

MCMC Summary

• Metropolis-Hastings allows non-symmetric proposal q(z’|z)
and accepts sample z’ with probability,

• Gibbs sampler on random vector
successively samples from complete conditionals,

• Gibbs is instance of M-H which always accepts

MCMC Summary

• Simulated annealing adjusts target distribution at each stage
with temperature T

• For decreasing temperatures support of target
approaches set of global maximizers

• Convenient to use for global maximization
• Can prove that this will find the global maximum in the limit (need to

wait for the heat death of the universe, however…)

• For increasing temp ending at approaches p(x)

• Helps avoid getting stuck in local optima

Monte Carlo Methods Summary

• Simulation:

• Compute expectations:

• Optimization:

• Compute normalizer / marginal likelihood:

Rejection sampling, MCMC

Importance sampling or
any simulation method

Simulated annealing

Reverse importance sampling (Did not cover)

Monte Carlo Methods Summary

• In complex models we often have no other choice than to simulate
realizations

• Rejection sampler choose proposal/constant s.t.

• Monte carlo estimate via independent samples ,
• Unbiased
• Consistent
• Law of large numbers
• Central limit theorem (if f is finite variance)

Monte Carlo Methods Summary

• Importance sampling estimate over samples ,

• Avoids simulation of p(z) but variance scales exponentially with dim.
• Sequential importance sampling extends IS for sequence models, with

proposal given by dynamics,

• Resampling step necessary to avoid weight degeneracy

Importance Weights

Proposal

Recursively update weights“Bootstrap” Particle Filter

Monte Carlo Methods Summary

• Lots of other methods to explore…
• Hamiltonian Monte Carlo
• Slice Sampling
• Reversible Jump MCMC (and other transdimensional samplers)
• Parallel Tempering

• Some good resources if you are interested…
Neal, R. “Probabilistic Inference Using Markov Chain Monte Carlo Methods”, U. Toronto, 1993
MacKay, D. J. “Introduction to Monte Carlo Methods”, Cambridge U., 1998
Andrieu, C., et al., “Introduction to MCMC for Machine Learning”, 2001

