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1. Preliminary: Contrastive Learning and Predictive Coding

- Contrastive + Predictive Coding

- Contrastive Learning: from triplet loss to Noise Contrastive Estimation (NCE).
Lil'log refs: [1] [2]
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Fig. 1. lllustration of triplet loss given one positive and one negative per X X3 ™ XM X X
anchor. (Image source: Schroff et al. 2015) (A siraonmd embediling

Fig. 2. lllustration compares contrastive loss, triplet loss and lifted structured
loss. Red and blue edges connect similar and dissimilar sample pairs

respectively. (Image source: Song et al. 2015)


https://lilianweng.github.io/posts/2021-05-31-contrastive/
https://lilianweng.github.io/posts/2017-10-15-word-embedding/#noise-contrastive-estimation-nce

1. Preliminary: Contrastive Learning and Predictive Coding

- Contrastive Learning:

- NCE: construct a noise distribution over the negative samples (not just uniformly select
negative samples)

- Key factors (from empirical results):
- Data augmentation for positive samples. SICLR: random crop + random color distortion

- Large batch size (diverse negative samples)
- Hard Negative Mining (supervised?) X1 Xz X3 X4 X5 Xg
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Fig. 2. lllustration compares contrastive loss, triplet loss and lifted structured
loss. Red and blue edges connect similar and dissimilar sample pairs
respectively. (Image source: Song et al. 2015)



1. Preliminary: Contrastive Learning and Predictive Coding

- Predictive Coding
- Theory of brain function (wiki): build an internal model to predict the input signals and update it
by compare with the true signals.
- Back prop is a special case
- Used in sequential data tasks: speech, video, RL, etc.



2. Representation learning motivation

- Motivation: transfer representation to reduce the sample complexity
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2. Representation learning motivation

- Conditional on the context (i.e. Supervised learning):
- Layers in NNs trained with labeled data: future, missing, or contextual information
- p(x|c): thousands bits of info in an images but only 10 bits in the labels (1024 classes)

- Unconditional (i.e. Un/Self-supervised learning):
- E.g. predicting missing words, colorization from grayscale
- Generative losses are better compared to unimodal losses (MSE, Cross-entropy) in learning
(representation) for high-dimensional data

- Obijective:
° a ° - Maximize the mutual information 1(z; c)

- Different from the Information bottleneck:

6 l(z; ) - I(x; z)



3. Problem setup and assumptions

- Architecture: encoder + an autoregressive model for summarizing previous

latent info (Non-Markovian) JEPA: Markovian and

Predictions Ct = Zt+1
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Figure 1: Overview of Contrastive Predictive Coding, the proposed representation learning approach.
Although this figure shows audio as input, we use the same setup for images, text and reinforcement
learning.



4. Contrastive Predictive Coding and InfoNCE

- Obijective:
- Maximize the mutual information I(z; c)

- Different from the Information bottleneck:
6 l(z; c) - I(x; z)
- Actual objective: maximize a function f that’s proportional to the density ratio:
I(z;¢) = 2, . p(x,c)log ngZz':;)

fe (@eip,c) = eXP(ZﬂkaCt) X

P(-’Bt+k ’Ct)
p(33t+k)

k: future step
Why log-bilinear model?

- Consider x=z and W=I. Then, f is maximized when z = ¢ (Cauchy-Schwarz inequality)



4. Contrastive Predictive Coding and InfoNCE

samples and one
positive sample

X: (N-1) negative J

INfoNCE Loss and Mutual Information Estimation

Assume data from

Ly = —I)[% [log Efk(mt+k’ct) ] each step comes }

zjeX ACHEY from a distribution?

- The noise/proposal distribution for negative samples: p (z:1)
- Optimizing this loss as a categorical cross-entropy to classify pos/neg
samples:

p(z; | )l p (i) o f (@ &) p(@iorle:)

S p (@ | e) [P (@) e
p(zilc)

(

p(z:)
N P(xj|ct) )
Zj:l p(z;)

p(d:i|Xact):




4. Contrastive Predictive Coding and InfoNCE

- Minimizing the InfoNCE loss maximizes a lower bound on mutual information
I(z44k,ct) > log(N) — Ln.

P(”(’ttkl")t)
opt _ P(Teqn
[,N = I)[‘El()g e P P N p(z;|ce) (6)
p(Te+k) z;€EXnez  p(x;)
=Elog |1+ P(Ziik) Z p(zjled) )
X P(Eskle) S5 plz;)
J ncg
X | pTeyk|e) z; p(x;)
= Elog 1+M(N—l)] 9)
X 7L p(zegkle)
X | p(zeyk|ce)

= —I(Zt4k,ct) + log(N), (1



4. Contrastive Predictive Coding and InfoNCE

- InfoNCE is equivalent to the MINE estimator (up to a constant)

E [log Zm,fiw}((:a)vj,c)] = :F(m’ C): (@) [log I;X CF(wj’C)] (12)
= o) jF(m’ "')i - [log N 1— 1 x},;“ R 1)]

(15)

- “Using MINE directly gave identical performance when the task was nontrivial, but
became very unstable if the target was easy to predict from the context (e.g., when

predicting a single step in the future and the target overlaps with the context).”
Cr — 7411
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Figure 1: Overview of Contrastive Predictive Coding, the proposed representation learning approach.
Although this figure shows audio as input, we use the same setup for images, text and reinforcement
learning.



5. Experiments

Audio: 100h of LibriSpeech. Generate label by force-aligned phone sequences

with Kaldi toolkit

2 tasks: Phone classification and Speaker classification (linear last layer)
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Figure 2: t-SNE visualization of audio (speech)
representations for a subset of 10 speakers (out
of 251). Every color represents a different
speaker.
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Figure 3: Average accuracy of predicting the
positive sample in the contrastive loss for 1 to 20
latent steps in the future of a speech waveform.
The model predicts up to 200ms in the future as
every step consists of 10ms of audio.



5. Experiments

Method | ACC
Method | ACC
Phone classification . A bit counter intuitive
Random initialization | 27.6 fisteps predicted
MFCC features 39.7 2 steps 28.5
CPC 64.6 4 steps 57.6
Supervised 74.6 8 steps 63.6
- - 12 steps 64.6
Speaker classification 16 steps 63.8
MECC features 17.6 Mixed speaker 64.6
CPC ) 97.4 Same speaker 65.5
Supervised 98.5 Mixed speaker (excl.) 57.3
" Same speaker (excl.) 64.6
Table 1: LibriSpeech phone and speaker i it
classification results. For phone classifi- Chrent sequence galy i
cation there are 41 possible classes and Table 2: LibriSpeech phone classifica-
for speaker classification 251. All mod- tion ablation experiments. More details
els used the same architecture and the can be found in Section[3.1.

same audio input sizes.

- “Table 2 ... showing that predicting multiple steps is important for learning
useful features”



5. Experiments

Vision:

- ImageNet data with augmentation (crop + flip).

- ResNet v2 101 architecture for encoder (not pretrained)

- Linear layer on top after unsupervised learning

- PixelCNN autoregressive model.

- Task: crop the (grayscale converted) image into overlapping patches. Use
these patches as the sequential data and try to predict the activations of the
future patches.



5. Experiments
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Figure 4: Visualization of Contrastive Predictive Coding for images (2D adaptation of Figure[]).



5. Experiments
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Figure 5: Every row shows image patches that activate a certain neuron in the CPC architecture.




5. Experiments

Natural Language:

BookCorpus dataset

Using CPC representations for a set of classification tasks

Movie review sentiment (MR)

Customer product reviews (CR)

Subjectivity/objectivity [45]

Opinion polarity (MPQA)

Question-type classification (TREC)
Logistic regression classifier on top

Simple 1D CNN for encoder + GRU for autoregressive model



Method | Top-1 ACC

Using AlexNet conv5
Video [28] 29.8
5 E : t Relative Position [T1] 304
. Experiments scats s
Colorization [10] 35.2 Method | Top-5ACC
Jigsaw [29] * 38.1 Motion Segmentation (MS) 483
Using ResNet-V2 Exemplar (Ex) 53.1
Motion Segmentation [36] 27.6 Relative Position (RP) 59.2
Exemplar |36] 31.5 Colorization (Col) 62.5
Relative Position [36] 36.2 Combination of
Colorization [36] 39.6 MS +Ex + RP + Col 69.3
CpPC 48.7 CPC 73.6
Table 3: ImageNet top-1 unsupervised classifi- Table 4: ImageNet top-5 unsupervised classi-
cation results. *Jigsaw is not directly compa- fication results. Previous results with MS, Ex,
rable to the other AlexNet results because of RP and Col were taken from [36] and are the
architectural differences. best reported results on this task.
Method | MR | CR | Subj | MPQA | TREC
Paragraph-vector [40)] 74.8 | 78.1 | 90.5 74.2 91.8
Skip-thought vector [26] | 75.5 | 79.3 | 92.1 86.9 914
Skip-thought + LN [41] | 79.5 | 82.6 | 93.4 89.0 -
CPC | 76.9 | 80.1 | 91.2 | 87.7 | 96.8

Table 5: Classification accuracy on five common NLP benchmarks. We follow the same transfer
learning setup from Skip-thought vectors [26] and use the BookCorpus dataset as source. [40] is an
unsupervised approach to learning sentence-level representations. [26] is an alternative unsupervised
learning approach. [41] is the same skip-thought model with layer normalization trained for 1M
iterations.



5. Experiments

Reinforcement Learning

5 DeepMind Lab tasks

Batched A2C agent as base model and add CPC as an auxiliary loss
Violating the Markov property? Same as the trick of using multiple frames as input in DQN
paper

- No replay buffer (harder, requires good representation)

- CNN encoder + LSTM

- “Use the same encoder as in the baseline agent and only add the linear

prediction mappings for the contrastive loss”

- “We do not use a replay buffer, so the predictions have to adapt to the

changing behavior of the policy. The learned representation encodes a

distribution over its future observations.”



5. Experiments

" rooms_watermaze o axplora_goal_locations_small % see<avold_arena_01 4, lasanag_three_opponents_smal «  Tooms_keys_coors_puzzle
4
() an «“
"
E N
¢ o - c 15
£ £ £€n € £
o o = = o
& 2 15 R & 25
5
10 10
W
w B
S
u u H - 1
0 ZON  %00M  7ION 15 0 250  500M 730N 15 0 25004 W0OM 730N 18 o 2500 S0ON 7500 1B o 250N S0IM 75004 1B
Frame Frame Frame Frame Frame

Figure 6: Reinforcement Learning results for 5 DeepMind Lab tasks used in [80]. Black: batched
A2C baseline, Red: with auxiliary contrastive loss.



6. Discussion

Not easy to learn a “good” autoregressive model here.
- 1-2 directional LSTM vs Transformer. The authors suggested alternative: masked convnet and
self-attention nets.

Each word has less information compared to an image => may be easier to
model a complex graph this way.

For high-dimensional data (sounds, image, etc.) => may work if the graph is
simple (such as having Markov property + simple dynamic (e.g. low-rank,
simple local dynamic))

For RL: select action from the representation directly?
- The architecture roughly describes using RNN to solve RL (by MLE with backprop through
time). Even for simple toy examples, the performance is not very good.
- With Markov property (i.e. JEPA) this turned into RL with rich observation (or Block MDP in

particular)



Summary

Contrastive Predictive Coding (CPC): “combines autoregressive modeling and
noise-contrastive estimation with intuitions from predictive coding to learn
abstract representations in an unsupervised fashion”

Simple + low computational requirement returns strong or SOTA results in a
wide variety of domains: audio, images, natural language and reinforcement
learning

CPC extends the Noise Contrastive Estimation to INfoNCE, which is
equivalent to Mutual Information lower bound, MINE (up to a constant). It has
some connection with Information Bottleneck objective.



