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1. Optimal Representation and the Information Bottleneck loss

a. Define optimal Representation

- Sufficient: cross-entropy loss enforce sufficient representation

- Minimality: typically reduce the number of dimension. Better to measure with
mutual information

- Invariance: all features are independent of each other
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1. Optimal Representation and the Information Bottleneck loss

b. The Information Bottleneck loss

(i) z is a representation of x; that is, its distribution
depends only on x, as expressed by the following
Markov chain:
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(ii) z is sufficient for the task y, that is I(x;y) = I(z;y),
expressed by the Markov chain:
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minimize [(x;z)
st. I(x;y|z) =0.



1. Optimal Representation and the Information Bottleneck loss

b. The Information Bottleneck loss  minimize I(x;z)
sit. I(x:y|z) =0.
min £y = I(z,y | 2) + BI(x; 2)
=H(y|z)— H(y | z) + BI(z; 2)
<=>min L = H(y | 2) + BI(z; 2)
~ E:t,ywp(a:,y) [Ezwp,,(zkr) [_ logpf) (y | Z)” + 5KL (pf)(z l w)llpﬁ(z)
<=>min L) = I(y; z) — f11(z; 2)
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The Information
Bottleneck loss shown in
the “Deep Variational
Information Bottleneck”

aper
pap .




1. Optimal Representation and the Information Bottleneck loss

z The paper points to [*], I
c. Disentanglement TC(z) := KL(q(2) || TI; 2;(25)) who shows hai a more

complex prior (without
disentanglement
constraint) returns better
\_ compression result

N
o 1 "
[ Nothing says that ? BRI LG Enp(zix:) [~ log p(yilz)]+
p(z|x) is disentangle N -
+ B{KL(p(z[x:) || p(z)) + TC(2)},

is equivalent to the following minimization in two variables

d. Loss function Proposition 1. The minimization problem
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“Improved variational inference with inverse autoregressive flow,” in Advances in + B KL(p(Z |xz) || lezl 1 q'l, (Zi ) ) L

Neural Information Processing Systems, 2016, pp. 4743—-4751.



2. Information Dropout

Adding stochastic noise: ¢ ~ Pa(x) (6) = logN ((), ag (x))
z=¢0O f(z)
- \odot is element-wise product (Bernoulli distribution => vanilla dropout)

- The choice of log-normal distribution is to simplify the calculation for the KL
divergence term with invariant z




2. Information Dropout

Choosing prior:

- ReUL + Softmax only NNs: scale invariant
- =>want scale-invariant prior: ¢(log(z)) = c

or q(z) =c/z
- Because of RELU, assume

q(z=10)=¢p,0<¢g <1

- Final: q(z) = qodo(z) + ¢/=

Sub-gradient ?
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(a) Histogram of ReLU acti-(b) Histogram of Softplus
vations activations

Fig. 1: Comparison of the empirical distribution p(z) of the
post-noise activations with our proposed prior when using:
(a) ReLU activations, for which we propose a log-uniform
prior, and (b) Softplus activations, for which we propose a
log-normal prior. In both cases, the empirical distribution
approximately follows the proposed prior. Both histograms
where obtained from the last dropout layer of the All-CNN-
32 network described in Table 2, trained on CIFAR-10.



2. Information Dropout

Calculating the KL
divergent with the
new prior

Proposition 2 (Information dropout cost for ReLU). Let z =
e - f(x), where € ~ p,(g), and assume p(z) = qdp(2) + ¢/z.
Then, assuming f(x) # 0, we have

KL(po(z|z) || p(2)) = —H (pa(x)(log€)) +loge

In particular, if p,(€) is chosen to be the log-normal distribution
Pa(€) =1log N (0, az(z)), we have

KL(po(z|z) || p(2)) = —log ag(x) + const. (5)
If instead f(x) = 0, we have
KL(ps(z|z) || p(2)) = —loggq.

Proposition 3 (Information dropout cost for Softplus). Let
z = ¢ - f(z), where e ~ po(e) = log N (0, a3(x)), and assume
po(2) = log N (1, 02). Then, we have

1
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KL(po(2le) || p(2)) = 55 (0%(@) + %) ~ log
(6)



3. Connection to other frameworks

- This paper: £(8) = £+ S E. o ofen) [~ logpo(yi | 2)] + BKL (po(z | z:)||TL;q5(2;))
- VAE: L(O) = % Xit1 Eavpy(clay) [~ logpo(wi | 2)] + KL (po(z | )| T;g0(25))

- References on different prior p(z) and different value

- Independent Component Analysis (ICA):

ﬁ(o) - % 27],11 EZNpg(ZIZi) [_ logpg(:vi | Z)] + '7TC(Z)

- € ~ Po(z) (€) @s Bernoulli distribution results in vanilla Dropout



4. Experiments
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Fig. 2: Plot of the total KL-divergence at each spatial location
in the first three Information Dropout layers (of sizes 48x48,
24x24 and 12x12 respectively) of AlI-CNN-96 (see Table 2)
trained on Cluttered MNIST with different values of . This
measures how much information from each part of the
image the Information Dropout layer is transmitting to the
next layer. For small  information about the nuisances is
transmitted to the next layers, while for higher values of
B the dropout layers drop the information as soon as the
receptive field is big enough to recognize it as a nuisance.
The resulting representation is thus more robust to nuisances,
improving generalization. Notice that the noise added by
Information Dropout is tailored to the specific sample, to the
point that the digit can be localized from the noise mask.



4. Experiments

[ Fixed rate drop-out (Constant) is worse than adaptive (Information) ]
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Fig. 3: (a) Average classification error on MNIST over 3 runs
of several dropout methods applied to a fully connected

network with three hidden layers and RelLU activations.

Information dropout outperforms binary dropout, especially
on smaller networks, possibly because dropout severely
reduces the already limited capacity of the network, while
Information Dropout can adapt the amount of noise to the
data and the size of the network. Information dropout also
outperforms a dropout layer that uses constant log-normal
noise with the same variance, confirming the benefits of
adaptive noise. (b) Classification error on CIFAR-10 for
several dropout methods applied to the AlI-CNN-32 network
(see Table 2) using Softplus activations.
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Fig. 4: A few samples from our Occluded CIFAR dataset
and the plot of the testing error on the main task (classifying
the CIFAR image) and on the nuisance task (classifying
the occluding MNIST digit) as 3 varies. For both tasks,
we use the same representation of the data trained for the
main task using Information Dropout. For larger values
of [ the representation is increasingly more invariant to
nuisances, making the nuisance classification task harder, but
improving the performance on the main task by preventing
overfitting. For the nuisance task, we test using the learned
noisy representation of the data, since we are interested
specifically in the effects of the noise. For the main task, we
show the result both using the noisy representation (N), and
the deterministic representation (D) obtained by disabling
the noise at testing time.
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Fig. 5: For different values of 3, plot of the test error and
total correlation of the final layer of the AlI-CNN-32 network
with Softplus activations trained on CIFAR-10 with 25% of
the filters. Increasing /3 the test error decreases (we prevent
overfitting) and the representation becomes increasingly
disentangled. When f3 is too large, it prevents information
from passing through, jeopardizing sufficiency and causingi
a drastic increase in error.
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Fig. 6: Plots of (a) the total information transmitted through
the two dropout layers of a All-CNN-32 network with
Softplus activations trained on CIFAR and (b) the average
quantity of information transmitted through each unit in
the two layers. From (a) we see that the total quantity
of information transmitted does not vary much with the
number of filters and that, as expected, the second layer
transmits less information than the first layer, since prior to
it more nuisances have been disentangled and discarded. In
(b) we see that when we decrease the number of filters, we
force each single unit to let more information flow (i.e. we
apply less noise), and that the units in the top dropout layer
contain on average more information relevant to the task
than the units in the bottom dropout layer.



