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1. Optimal Representation and the Information Bottleneck loss

a. Define optimal Representation

- Sufficient: cross-entropy loss enforce sufficient representation
- Minimality: typically reduce the number of dimension. Better to measure with 

mutual information
- Invariance: all features are independent of each other

(My opinion) Why bother learning representation?
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b. The Information Bottleneck loss

The Information 
Bottleneck loss shown in 

the “Deep Variational 
Information Bottleneck” 

paper



1. Optimal Representation and the Information Bottleneck loss

c. Disentanglement

d. Loss function

*D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling, 
“Improved variational inference with inverse autoregressive flow,” in Advances in 
Neural Information Processing Systems, 2016, pp. 4743–4751.

The paper points to [*], 
who shows that a more 
complex prior (without 

disentanglement 
constraint) returns better 

compression result

Nothing says that 
p(z|x) is disentangle



2. Information Dropout

Adding stochastic noise:

- \odot is element-wise product (Bernoulli distribution => vanilla dropout)
- The choice of log-normal distribution is to simplify the calculation for the KL 

divergence term with invariant z



2. Information Dropout

Choosing prior: 

- ReUL + Softmax only NNs: scale invariant
- => want scale-invariant prior:                      

or 
- Because of RELU, assume

- Final: Sub-gradient ?



2. Information Dropout

Calculating the KL 
divergent with the 
new prior



3. Connection to other frameworks

- This paper:
- VAE:
- References on different prior p(z) and different value 𝛽
- Independent Component Analysis (ICA):

-                as Bernoulli distribution results in vanilla Dropout
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