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Posterior Inference Review

Posterior on latent variable x given data ) by Bayes' rule:

p(z)p(Y | x)

Pz | V)= p(Y)

Marginal likelihood given by,
p0) = [ p@)p(y| 2)da

» Posterior: belief over unknowns, given observed data (knowns)

» Marginal Likelihood: quality of model fit to the observed data



Variational Inference Preview

» Formulate statistical inference as an optimization problem
» Maximize variational lower bound on marginal likelihood

logp(Y) > max L(q)

» Solution to RHS yields posterior approximation

q" = argmax (@) = p(x|Y)

» Constraint set O defines tractable family of approximating distributions
» Very often Q is an exponential family



Variational Inference
p(z DY),

[ Source: David Blei ]



Expectation Maximization (EM) Lower Bound

Recall EM lower bound of marginal likelihood

log p(I) = log / p(2)p(Y | x) da

( Multiply by q(x)/q(x)=1) = log/p(a:)p(y | x) (q_a:)) dx

( Definition of Expected Value) — log Eq [
q(z)

z)p(Y | x)
q(z)

q
p(z)p(Y | 93)}
|

( Jensen’s Inequality ) > Eq {log p(



A Little Information Theory

The entropy is a natural measure of the inherent uncertainty:
H(p) = — /p(:v) logp(x) de = E,|—logp(x)]

Interpretation Difficulty of compression of some random variable

The relative entropy or Kullback-Leibler (KL) divergence is a non-negative, but
asymmetric, “distance” between a given pair of probability distributions:

D\X
KLplo) = [p)los 3 ds KLol)=0 KLl # KL(dlp)
The KL divergence equals zero if and only if p(z) = q(x) for all x.
Interpretation The cost of compressing data from distribution p(x) with a code
optimized for distribution g(x)



EM Lower Bound

p(z)p(Y | x) p(;)/)}

]qu [log g(z)  p)

= logp(Y) — KL(q(z)lp(z [ V)

Bound gap is the Kullback-Leibler divergence KL(q||p),

q(z)
(x| Y)

KL(q(z)|lp(z | V) = / d(z) log -

Solution to E-step is,
q" = argmin KL(q(z)|p(z | ) = p(z | V)

( Multiply by 1)

( Definition of KL )

This doesn’t help us if
p(z | DY)
is intractable




Variational Lower Bound

Idea Restrict optimization to a set O of analytic distributions

p(z)p(Y | a;)}
q(x)

logp(Y) > max L(q) = E, {log
qeQ

> If posterior is in set p(x | V) € O then exact inference g(z) = p(x | V)

> Otherwise, if p(x | V) ¢ Q posterior is closest approximation in KL

" = argmin KL(q(x) [p(z | V)

... and we recover strict lower bound on marginal likelihood with gap

logp(Y) — L(¢*) = KL(¢*(2)||p(z | ¥))



Variational Lower Bound

Two competing terms in variational bound...

Average (negative) Energy Entropy
Encourages q(x) to “agree” Encourages q(x) to have
with model p(x,y) large uncertainty (good for

generalization)



Variational Approximation
p(z DY),

Minimize KL between ¢(z) and posterior p(x | ))).

[ Source: David Blei ]



Relation to EM

» EM is means for approximate learning, but we are using it to
motivate approximate inference

» EM lower bound takes same form as VI lower bound, but with
different constraint sets

» Connection with variational inference (V1) is in E-step, which
performs inference with fixed parameters



Variational Inference

logp(Y) > max L(q) = Eqllogp(x, V)| + H(q)

Different sets O yield different VI algorithms to optimize bound:

» Mean Field Ignore posterior dependencies among variables

» Loopy BP Locally consistent marginals (exact for tree-
structured models)

» Expectation Propagation (EP) Locally consistent moments
(equivalent to Loopy BP for tree-structure exponential families)



Why is it called “variational™?

Differential Calculus

» Typically, we optimize a function max, f(x) w.r.t. a variable X
» Use standard derivatives/gradients V. f(x)

» Extrema given by zero-gradient conditions | V. f(x)|| = 0

Calculus of Variations
» Optimize a functional (function of a function): max, ) f(q¢(z))
» Functional derivative characterizes change w.r.t. function q(x)

» Extrema given by Euler-Lagrange equation; analogous to zero-
gradient condition

In practice, we typically parameterize q,,(z) and take standard gradients
w.r.t. parameters



Summary: Variational Inference

1) Begin with intractable model posterior:
p(z)p(Y | x)
p(CE ’ y) — rgin
p(Y) ~— LI:,II(aelighozld
2) Choose a family of approximating distributions O that is tractable

3) Maximize variational lower bound on marginal likelihood:

logp(Y) > max L(q) = E4[log p(x,Y)] + H(q)

4) Maximizer is posterior approximation (in KL divergence)

- L(q) = in KL
q" = argmax () arg min (q¢(@)|lp(z | V))

Still need to show...
a) How to define approximating variational family 9

b) How to optimize lower bound



e VVariational Inference

» Stochastic Variational



A Generic Class of Directed Models

Global variables R 'B

Xi
Local variables ‘ !

p(B.z.x)=p(B)| [pGx18)
i=1

» Bayesian mixture models » Multilevel regression
(linear, probit, Poisson)

» Time series & sequence models

(HMMs, Linear dynamical systems) » Stochastic block models
» Matrix factorization » Mixed-membership models
(factor analysis, PCA, CCA) (Linear discriminant analysis)

[ Source: David Blei ]



Example: Gaussian Mixture Model

Global variables:
6:{7-‘-7“170-17"'7“}(70-}(} y:{y177yN}

Local variables Z control component assignments

GMM

Low L|keI|hood | [ | High Likelihood | ]

Q O
[ ] ° “.
O .;.@..&. : .? |
.s . -~

~ Source: Bishop, PRML |




Variational Approximation

p(z|x)

o

" KL(g(z:v*) || p(z]x))

Minimize KL between ¢(f, z; v) and posterior p(3,z | x) .

[ Source: David Blei ]



Variational Lower Bound — ELBO

L(v) =Ey, [logp(B8,2,x)] — Ey, [logq(8,2z;v)]

» KL is intractable; VI optimizes evidence lower bound (ELBO)
» Lower bounds log p(x) — marginal likelihood, or evidence
» Maximizing ELBO is equivalent to minimizing KL w.r.t. posterior

> The ELBO trades off two terms

» The first term prefers (.) to place mass on the MAP estimate
» Second term encourages q(.) to be diffuse (maximize entropy)

» The ELBO is

[ Source: David Blei ]



Conditionally conjugate models

Global variables R 'B

X
Local variables ‘ !

p(B.z.x)=p(B)] |pCzux|B)
i=1

The observations are x = xy.,.

The local variables are z = z;.,,.

The global variables are f3.

The ith data point x; only depends on z; and f3.

Compute p(f3,z]| x).

[ Source: David Blei ]



Conditionally conjugate models

Global variables R IB

X
Local variables ‘ !

p(B.z.x)=p(B)] |pCzux|B)
i=1

= A complete conditional is the conditional of a latent variable given the
observations and other latent variables.

= Assume each complete conditional is in the exponential family,

p(z; | B,x;) = expfam(z; ; ,(f,x;))
p(B |z, x) = expfam(f ; n,(z,x)),

where expfam(z; 1) = h(z) exp{n 'z —a(n)).

[ Source: David Blei ]



Aside: The exponential family

p(x) = h(x)exp{n ' t(x) —a(n)}

Terminology:

1 the natural parameter
t(x) the sufficient statistics
a(n) the log normalizer
h(x) the base density

[ Source: David Blei ]



Aside: The exponential family

p(x) = h(x)exp{n ' t(x) —a(n)}

= The log normalizer is

a(n) = logJ exp{n " t(x)}dx

= It ensures the density integrates to one.

= Its gradient calculates the expected sufficient statistics

E[t(X)] =V, a(n).

[ Source: David Blei ]



Aside: The exponential family

p(x) = h(x)exp{n ' t(x) —a(n)}

= Many common distributions are in the exponential family
— Bernoulli, categorical, Gaussian, Poisson, Beta, Dirichlet, Gamma, etc.

= Qutlines the theory around conjugate priors and corresponding posteriors

= Connects closely to variational inference [Wainwright and Jordan, 2008]

[ Source: David Blei ]



Conditionally conjugate models

Global variables R ’3

X
Local variables . !

p(B.z.x)=p(B)] |pCzuxi| B)
i=1

= Each complete conditional is in the exponential family.

= The global parameter comes from conjugacy [Bernardo and Smith, 1994]

ng(za X) =a+ er;l t(ziaxi)a

where a is a hyperparameter and t(-) are sufficient statistics for [z;,x;].

[ Source: David Blei ]



Conditionally conjugate models

Global variables R ’B

X
Local variables . !

p(B.z.x)=p(B)] |pCzuxi| B)
i=1

= Bayesian mixture models = Dirichlet process mixtures, HDPs
= Time series models = Multilevel regression
(HMMs, linear dynamic systems) (linear, probit, Poisson)
= Factorial models = Stochastic block models
= Matrix factorization = Mixed-membership models
(factor analysis, PCA, CCA) (LDA and some variants)

[ Source: David Blei ]



Mean Field for Generic Directed Model

Xj

Q p
d—’\

n

ELBO

Recall: mean field family is fully factorized

q(B,2z; X\, @) —qﬁ,

A

—>©ﬁ

i

0=

n

PGM of Mean Field Approximation

':]s

q zza¢z

1=1 1

Variational Parameters

Conditional conjugacy: Each factor is the same expfam as complete conditional

p(B12,%) = h(B)exp{ny(z,%)' B — a(n,(z,x))}

q(B; 1) =h(p)exp{A' B —a(L)}.

[ Source: David Blei ]



Mean Field for Generic Directed Model

Y O
¥ oK ELBO
Q—»‘ X; Q; —»Q Zj

n n

PGM of Mean Field Approximation

Recall: mean field family is fully factorized

q9(8,2; X, ¢) = q(3 Hq zc?
1=1

Variational Parameters

Global parameter ensure conjugacy to (z,x).

N,(z,X) =a+ Z:lzl t(2;,X;),

where « is prior hyperparameter and t(.) are sufficient statistics for [z;x;]
[ Source: David Blei ]



Mean Field for Generic Directed Model

Q p A ) B
% X ELBO
Z; Q—». Xj O; —>© Zj

n n

PGM of Mean Field Approximation

Optimize ELBO, |
Don’t forget... entropy

LN ¢) =E,|logp(8,z,x)] —E,[logq(5,2z)] decomposes as sum

i : over individual entropies
Traditional VI uses coordinate ascent,

A =Eg[n,(z,%)]; ¢ =E; [10,(B,x)]

lteratively update each parameter, holding others fixed
« Obvious relationship with Gibbs sampling

« Remember, ELBO is not convex
[ Source: David Blei ]



Coordinate Ascent Mean Field for Generic Model

Input: data X, model p(f3, z,X).

Initialize A randomly:.
Need to visit every

repeat / data point

for each data point i do
| Set local parameter ¢; < E; [1,(S,x;)].

end

Need to sum every
Set global parameter / data point

A — a+Z L Eg, [tH(Z,x:) ]

until the ELBO has converged

[ Source: David Blei ]



Stochastic (Mean Field) Variational Inference

GLOBAL HIDDEN STRUCTURE
MASSIVE
DATA

[} ’
] ’
1 ’
v y

Subsample \ ;[ Infer local \ ‘/ Update global
data j K structure / structure
O O ® @
O O @ O

Classical mean field VI is inefficient for large data
* Do some local computation for each data point

» Aggregate computations to re-estimate global structure
* Repeat

Idea visit of data to estimate gradient updates on full dataset

[ Source: David Blei ]



Stochastic Gradient Ascent/Descent

A STOCHASTIC APPROXIMATION METHOD'

By HerBerT RosBINs AND SuTroN MoONRO

University of North Corolina

1. Summary. Let M (x) denote the expected value at level x of the response
to a certain experiment. M (a) is assumed to be a monotone function of z but is |
unknown to the experimenter, and it is desired to find the solution 2 = @ of the
equation M (r) = «, where & 1s 3 given constant. We give a method for making
successive expeviments at levels v, z;, - - - in sitich 2 way that z, will tend to ¢ in
probability.

» Use cheaper noisy gradient estimates [Robbins and Monro, 1951]
» Guaranteed to converge to local optimum [Bottou, 1996]

» Popular in modern machine learning (e.g. learning deep neural nets)

[ Source: David Blei ]



Stochastic Gradient Ascent/Descent

» Stochastic gradients update:
Vit1 = Vg + ptvyﬁ(w) 15l - e
> Gradient estimator must be
E[V,L(V)] = V,L(v) o _/ -

» Sequence of step sizes p+ must follow

00 00
Zpt — 00, Z’O? < 0
t=0 t=0

[ Source: David Blei ]



Stochastic Variational Inference

= The natural gradient of the ELBO [Amari, 1998; Sato, 2001]

Vi) = (a+ 3L, By [6(Z,x)]) = A

= Construct a noisy natural gradient,

j ~ Uniform(1,...,n)
@E{at,%(k) =a+ nE(f,;[t(Z- x:)]— A.

J2°7]

= This is a good noisy gradient.

o Its expectation is the exact gradient (unbiased).
o It only depends on optimized parameters of one data point (cheap).

[ Source: David Blei ]



Stochastic Variational Inference

Input: data x, model p(f3, z,x).

Initialize A randomly. Set p, appropriately.

repeat
Sample j ~ Unif(1,...,n).

Set local parameter ¢ < E, [n((/i,x_,-)].

Set intermediate global parameter

A

A=a+nEy[t(Z;,x;)].

]2

Set global parameter

A=1—-pJr+ Pti-

until forever

[ Source: David Blei ]



Topic Models

Topic models discover hidden thematic structure in large
collections of documents

[ Source: David Blei ]



Topics

gene

0.04

Documents

Topic Models

0.02
genetic 0.01

\-..-""‘_--.

life 0.02
evolve 0.01
organism 0.01

\\__,/”/”ﬂ_‘

brain 0.04
neuron 0.02
nerve 0.01

~;;;__——”"—___\

data 0.02
number 0.02

Seeking Life’s Bare (Genetic) Necessities

wwwww

L wesmepnies

Topic proportions and

Documents ;
assighments

COLP SPRING Ha RK— I B o apare” cpecnille me
ey part he 73000 e the
s T

computer 0.01

S ——

Topic proportions and Topics
assignments
& S
)
——
L
-

Each fopic is a distribution over words (vocabulary)

Each document is a mixture of corpus-wide topics
Each word is drawn from one of the topics (they are distributions)

Seeking Life’s Bare (Genetic) Necessities

COD SPRING HARBOR
Elos iy zenes doesinmy

W OYORK—  “aze tiea ll sht tor apan "
Lo miparson G the T3000 cen,

But we only observe documents; everything else is hidden (unsupervised learning problem)
Need to calculate posterior (for millions of documents; billions of latent variables):

P(topics, proportions, assignments | documents)

[ Source: David Blei ]



Topic Models

Latent Dirichlet Allocation (LDA) “Arts” ‘Budgets” “Children” “Education”
NEW MILLION CHILDREN SCHOOL
Topic FILM TAX WOMEN STUDENTS
/_ /Qp\ SHOW PROGRAM PEOPLE SCHOOLS
n [ | E— B MUSIC BUDGET CHILD EDUCATION
\__/ \_/ "k MOVIE  BILLION YEARS TEACHERS
— PLAY FEDERAL FAMILIES HIGH
Topic Topic MUSICAL YEAR WORK PUBLIC
Proportion | Assignment Word BEST SPENDING PARENTS TEACHER
/_\ /_\ /’-\ ACTOR NEW SAYS BENNETT
e E— R —— FIRST STATE FAMILY MANIGAT
K_ J N . YORK PLAN WELFARE  NAMPHY
_ . OPERA MONEY MEN STATE
o e - W N THEATER PROGRAMS PERCENT PRESIDENT
i J[ ACTRESS GOVERNMENT CARE ELEMENTARY
/ f— LOVE CONGRESS LIFE HAITI

# Words # Documents

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research. education

A”OWS unsuper\/lsed Iearnlng and the social services” Hearst Foundation President Randolph A. Hearst said Monday in
of document corpus via mixture | ez -

Lincoln Center’s share will be $200.000 for its new building. which

will house young artists and provide new public facilities. The Metropolitan Opera Co. and

mOdeIing New York .Philharmonic will receive S4 _iw‘i‘ each. The Juilliard School. whe.re music and
the performing arts are taught, will get $250.000. The Hearst Foundation. a leading supporter

of the Lincoln Center Consolidated Corporate Fund. will make its usual annual $100.000

donation, too.




Proportions
parameter

]

Per-document
topic proportions

Example

Per-word
topic assignment

Observed
word

|

: Latent Dirichlet Allocation

Topics

|

parameter

.«
Qd

D

O._

Bi

K

Topic

Latent Dirichlet Allocation (LDA):
By ~ Dirichlet(n)
64 ~ Dirichlet(a)
Zan | 0 ~ Cat(6y)
Wd,n | Zdn, B~ Cat(Bz,,,)

« Assumes words are exchangeable (“bag-of-words” model)
* Reduces parameters while still yielding useful insights
« Complete conditionals are closed-form (we can do mean field)

[ Source: David Blei ]



Game
Season
Team
Coach
Play
Points
Games
Giants
Second
Players

Bush
Campaign
Clinton
Republican
House
Party
Democratic
Political
Democrats
Senator

Children
School
Women
Family
Parents
Child
Life
Says
Help
Mother

Life
Know
School
Street

Man
Family

Says
House

Children

Night

Building
Street
Square
Housing
House
Buildings
Development
Space
Percent
Real

Stock
Percent
Companies
Fund
Market
Bank
Investors
Funds
Financial
Business

Example: Latent Dirichlet Allocation

Film
Movie
Show

Life

Television

Films

Director

Man
Story

Says

Won
Team
Second
Race
Round
Cup
Open
Game
Play
Win

Church
War
Women
Life
Black
Political
Catholic
Government
Jewish
Pope

Book
Life
Books
Novel
Story
Man
Author
House
War
Children

Yankees
Game
Mets
Season
Run
League
Baseball
Team
Games
Hit

Art
Museum
Show
Gallery
Works
Artists
Street
Artist
Paintings
Exhibition

Wine
Street
Hotel
House
Room
Night
Place
Restaurant
Park
Garden

Government
War
Military
Officials
Iraq
Forces
Iraqi
Army
Troops
Soldiers

Police
Yesterday
Man
Officer
Officers
Case
Found
Charged
Street
Shot

Topics found in 1.8M articles from the New York Times

900 - Online 98K [Hoffman et al., 2010]

850 -

>800 1 \ Batch 98K

= Online 3.3M T

2 750 -

Q700 -

)

0 650 -
600 -

I [

Documents seen (log scale)

» Stochastic VI (online) shows faster learning as compared to
standard (batch) updates

« Similar learning rate when dataset increased from 98K to 3.3M
documents

» Perplexity measures posterior uncertainty (lower is better)

Perplexity = 27 (P) = 9= 2., p(z) log p(z)

[ Source: David Blei ]



Summary: Variational Inference

1) Begin with intractable model posterior:
p(z)p(Y | x)
p(CE ’ y) — rgin
p(Y) ~— LI:,II(aelighozld
2) Choose a family of approximating distributions O that is tractable

3) Maximize variational lower bound on marginal likelihood:

logp(Y) > max L(q) = E4[log p(x,Y)] + H(q)

4) Maximizer is posterior approximation (in KL divergence)

* L — in KL S
q" = argmax () arg mip (Q(aﬁ)Hp(xW)_v

Different approximating families ¢ lead to different
forms of optimizing variational bound

7 KL(g(z:v*) || p(z]x))



Summary: Mean Field Vi

» Mean field family assumes approximating distribution

— H QS('TS)

seV
» Mean field algorithm performs coordinate ascent on lower bound

qs(ws) o< exp {Eq, [log p(z, V)] }

» Coordinate ascent updates require complete conditionals to be conjugate
» Similar, but stricter, assumption to Gibbs sampling

» MF update takes specific form depending on model p(.), e.g. pairwise MRF:



Summary: Stochastic (Mean Field) VI

3

2.5/

» MF coordinate ascent updates require visiting
» Doesn't scale to large datasets

2,

» Stochastic VI updates using stochastic gradient ascent ih

\ :
\ | \
N\

» Randomly subsample dataset

» Compute stochastic estimate of full gradient based on subsample o

» Stochastic gradient step on variational parameters (v here):

150 |

0.5k

-0.5¢

N\

Ny

—~

N\

: ‘\\ -
N

N
|

Vigrl = V¢ T ,Ot@u/:(Vt) -1,

0 1

2

» Step sizes must decrease over time while satisfying Robbins-Monro conditions

00 00
Z’Ot = 00, Zp? <X
t=0 t=0

» Often call standard MF “batch” since updates based on full data

3



