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Abstract

Intracortical brain-computer interfaces (iBCIs) have allowed people with tetraplegia
to control a computer cursor by imagining the movement of their paralyzed arm
or hand. State-of-the-art decoders deployed in human iBCIs are derived from a
Kalman filter that assumes Markov dynamics on the angle of intended movement,
and a unimodal dependence on intended angle for each channel of neural activity.
Due to errors made in the decoding of noisy neural data, as a user attempts to
move the cursor to a goal, the angle between cursor and goal positions may change
rapidly. We propose a dynamic Bayesian network that includes the on-screen goal
position as part of its latent state, and thus allows the person’s intended angle of
movement to be aggregated over a much longer history of neural activity. This
multiscale model explicitly captures the relationship between instantaneous angles
of motion and long-term goals, and incorporates semi-Markov dynamics for motion
trajectories. We also introduce a multimodal likelihood model for recordings
of neural populations which can be rapidly calibrated for clinical applications.
In offline experiments with recorded neural data, we demonstrate significantly
improved prediction of motion directions compared to the Kalman filter. We derive
an efficient online inference algorithm, enabling a clinical trial participant with
tetraplegia to control a computer cursor with neural activity in real time. The
observed kinematics of cursor movement are objectively straighter and smoother
than prior iBCI decoding models without loss of responsiveness.

1 Introduction
Paralysis of all four limbs from injury or disease, or tetraplegia, can severely limit function, inde-
pendence, and even sometimes communication. Despite its inability to effect movement in muscles,
neural activity in motor cortex still modulates according to people’s intentions to move their paralyzed
arm or hand, even years after injury [Hochberg et al., 2006, Simeral et al., 2011, Hochberg et al.,
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Figure 1: A microelectrode array (left) is implanted in the motor cortex (center) to record electrical activity.
Via this activity, a clinical trial participant (right, lying on his side in bed) then controls a computer cursor with
an iBCI. A cable connected to the electrode array via a transcutaneous connector (gray box) sends neural signals
to the computer for decoding. Center drawing from Donoghue et al. [2011] and used with permission of the
author. The right image is a screenshot of a video included in the supplemental material that demonstrates real
time decoding via our MSSM model.

2012, Collinger et al., 2013]. Intracortical brain-computer interfaces (iBCIs) utilize neural signals
recorded from implanted electrode arrays to extract information about movement intentions. They
have enabled individuals with tetraplegia to control a computer cursor to engage in tasks such as
on-screen typing [Bacher et al., 2015, Jarosiewicz et al., 2015, Pandarinath et al., 2017], and to regain
volitional control of their own limbs [Ajiboye et al., 2017].

Current iBCIs are based on a Kalman filter that assumes the vector of desired cursor movement
evolves according to Gaussian random walk dynamics, and that neural activity is a Gaussian-corrupted
linear function of this state [Kim et al., 2008]. In Sec. 2, we review how the Kalman filter is applied
to neural decoding, and studies of the motor cortex by Georgopoulos et al. [1982] that justify its use.
In Sec. 3, we improve upon the Kalman filter’s linear observation model by introducing a flexible,
multimodal likelihood inspired by more recent research [Amirikian and Georgopulos, 2000]. Sec. 4
then proposes a graphical model (a dynamic Bayesian network [Murphy, 2002]) for the relationship
between the angle of intended movement and the intended on-screen goal position. We derive an
efficient inference algorithm via an online variant of the junction tree algorithm [Boyen and Koller,
1998]. In Sec. 5, we use recorded neural data to validate the components of our multiscale semi-
Markov (MSSM) model, and demonstrate significantly improved prediction of motion directions in
offline analysis. Via a real time implementation of the inference algorithm on a constrained embedded
system, we then evaluate online decoding performance as a participant in the BrainGate21 iBCI pilot
clinical trial uses the MSSM model to control a computer cursor with his neural activity.

2 Neural decoding via a Kalman filter

The Kalman filter is the current state-of-the-art for iBCI decoding. There are several configurations
of the Kalman filter used to enable cursor control in contemporary iBCI systems [Pandarinath et al.,
2017, Jarosiewicz et al., 2015, Gilja et al., 2015] and there is no broad consensus in the iBCI field on
which is most suited for clinical use. In this paper, we focus on the variant described by Jarosiewicz
et al. [2015].

Participants in the BrainGate2 clinical trial receive one or two microelectrode array implants in the
motor cortex (see Fig. 1). The electrical signals recorded by this electrode array are then transformed
(via signal processing methods designed to reduce noise) into a D-dimensional neural activity vector
zt ∈ RD, sampled at 50 Hz. From the sequence of neural activity, the Kalman filter estimates the
latent state xt ∈ R2, a vector pointing in the intended direction of cursor motion. The Kalman filter
assumes a jointly Gaussian model for cursor dynamics and neural activity,

xt | xt−1 ∼ N (Axt−1,W ), zt | xt ∼ N (b+Hxt, Q), (1)

with cursor dynamics A ∈ R2×2, process noise covariance W ∈ R2×2, and (typically non-diagonal)
observation covariance Q ∈ RD×D. At each time step, the on-screen cursor’s position is moved by
the estimated latent state vector (decoder output) scaled by a constant, the speed gain.

The function relating neural activity to some measurable quantity of interest is called a tuning curve.
A common model of neural activity in the motor cortex assumes that each neuron’s activity is highest

1Caution: Investigational Device. Limited by Federal Law to Investigational Use.
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for some preferred direction of motion, and lowest in the opposite direction, with intermediate activity
often resembling a cosine function. This cosine tuning model is based on pioneering studies of
the motor cortex of non-human primates [Georgopoulos et al., 1982], and is commonly used (or
implicitly assumed) in iBCI systems because of its mathematical simplicity and tractability.

Expressing the inner product between vectors via the cosine of the angle between them, the expected
neural activity of the jth component of Eq. (1) can be written as

E[ztj | xt] = bj + hTj xt = bj + ||xt|| · ||hj || · cos

(
θt − atan

(
hj2
hj1

))
, (2)

where θt is the intended angle of movement at timestep t, bj is the baseline activity rate for channel j,
and hj is the jth row of the observation matrix H = (hT1 , . . . , h

T
D)T . If xt is further assumed

to be a unit vector (a constraint not enforced by the Kalman filter), Eq. (2) simplifies to hTj xt =
mj cos(θt−pj), where mj is the modulation of the tuning curve and pj specifies the angular location
of the peak of the cosine tuning curve (the preferred direction). Thus, cosine tuning models are linear.

To collect labeled training data for decoder calibration, the participant is asked to attempt to move
a cursor to prompted target locations. We emphasize that although the clinical random target
task displays only one target at a time, this target position is unknown to the decoder. Labels are
constructed for the neural activity patterns by assuming that at each 20ms time step, the participant
intends to move the cursor straight to the target [Jarosiewicz et al., 2015, Gilja et al., 2015]. These
labeled data are used to fit the observation matrix H and neuron baseline rates (biases) b via ridge
regression. The observation noise covariance Q is estimated as the empirical covariance of the
residuals. The state dynamics matrix A and process covariance matrix W may be tuned to adjust the
responsiveness of the iBCI system.

3 Flexible tuning likelihoods

The cosine tuning model reviewed in the previous section has several shortcomings. First, motor
cortical neurons that have unimodal tuning curves often have narrower peaks that are better described
by von Mises distributions [Amirikian and Georgopulos, 2000]. Second, tuning can be multimodal.
Third, neural features used for iBCI decoding may capture the pooled activity of several neurons,
not just one [Fraser et al., 2009]. While bimodal von Mises models were introduced by Amirikian
and Georgopulos [2000], up to now iBCI decoders based on von Mises tuning curves have only
employed unimodal mean functions proportional to a single von Mises density [Koyama et al., 2010].
In contrast, we introduce a multimodal likelihood proportional to an arbitrary number of regularly
spaced von Mises densities and incorporate this likelihood into an iBCI decoder. Moreover, we can
efficiently fit parameters of this new likelihood via ridge regression. Computational efficiency is
crucial to allow rapid calibration in clinical applications.

Let θt ∈ [0, 2π) denote the intended angle of cursor movement at time t. The flexible tuning likelihood
captures more complex neural activity distributions via a regression model with nonlinear features:

zt | θt ∼ N
(
b+ wTφ(θt), Q

)
, φk(θt) = exp [ε cos (θt − ϕk)] . (3)

The features are a set of K von Mises basis functions φ(θ) = (φ1(θ), . . . , φK(θ))T . Basis functions
φk(x) are centered on a regular grid of angles ϕk, and have tunable concentration ε.

Using human neural data recorded during cued target tasks, we compare regression fits for the flexible
tuning model to the standard cosine tuning model (Fig. 2). In addition to providing better fits for
channels with complex or multimodal activity, the flexible tuning model also provides good fits to
apparently cosine-tuned signals. This leads to higher predictive likelihoods for held-out data, and as
we demonstrate in Sec. 5, more accurate neural decoding algorithms.

4 Multiscale Semi-Markov Dynamical Models

The key observation underlying our multiscale dynamical model is that the sampling rate used for
neural decoding (typically around 50 Hz) is much faster than the rate that the goal position changes
(under normal conditions, every few seconds). In addition, frequent but small adjustments of cursor
aim angle are required to maintain a steady heading. State-of-the-art Kalman filter approaches to iBCIs
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Figure 2: Flexible tuning curves. Each panel shows the empirical mean and standard deviation (red) of
example neural signals recorded from a single intracortical electrode while a participant is moving within
45 degrees of a given direction in a cued target task. These signals can violate the assumptions of a cosine
tuning model (black), as evident in the left two examples. The flexible regression likelihood (cyan) captures
neural activity with varying concentration (left) and multiple tuning directions (center), as well as cosine-tuned
signals (right). Because neural activity from individual electrodes is very noisy (the standard deviation within
each angular bin exceeds the change in mean activity across angles), information from multiple electrodes is
aggregated over time for effective decoding.

are incapable of capturing these multiscale dynamics since they assume first-order Markov dependence
across time and do not explicitly represent goal position. To cope with this, hyperparameters of the
linear Gaussian dynamics must be tuned to simultaneously remain sensitive to frequent directional
adjustments, but not so sensitive that cursor dynamics are dominated by transient neural activity.

Our proposed MSSM decoder, by contrast, explicitly represents goal position in addition to cursor
aim angle. Through the use of semi-Markov dynamics, the MSSM enables goal position to evolve
at a different rate than cursor angle while allowing for a high rate of neural data acquisition. In this
way, the MSSM can integrate across different timescales to more robustly infer the (unknown) goal
position and the (also unknown) cursor aim. We introduce the model in Sec. 4.1 and 4.2. We derive
an efficient decoding algorithm, based on an online variant of the junction tree algorithm, in Sec. 4.3.

4.1 Modeling Goals and Motion via a Dynamic Bayesian Network

The MSSM directed graphical model (Fig. 3) uses a structured latent state representation, sometimes
referred to as a dynamic Bayesian network [Murphy, 2002]. This factorization allows us to discretize
latent state variables, and thereby support non-Gaussian dynamics and data likelihoods. At each time
t we represent discrete cursor aim θt as 72 values in [0, 2π) and goal position gt as a regular grid
of 40× 40 = 1600 locations (see Fig. 4). Each cell of the grid is small compared to elements of a
graphical interface. Cursor aim dynamics are conditioned on goal position and evolve according to a
smoothed von Mises distribution:

vMS(θt | gt, pt) , α/2π + (1− α)vonMises(θt | a(gt, pt), κ̄). (4)

Here, a(g, p) = tan−1((gy − py)/(gx − px)) is the angle from the cursor p = (px, py) to the goal
g = (gx, gy), and the concentration parameter κ̄ encodes the expected accuracy of user aim. Neural
activity from some participants has short bursts of noise during which the learned angle likelihood is
inaccurate; the outlier weight 0 < α < 1 adds robustness to these noise bursts.

4.2 Multiscale Semi-Markov Dynamics

The first-order Markov assumption made by existing iBCI decoders (see Eq. (1)) imposes a geometric
decay in state correlation over time. For example, consider a scalar Gaussian state-space model:
xt = βxt−1 +v, v ∼ N (0, σ2). For time lag k > 0, the covariance between two states cov(xt, xt+k)
decays as β−k. This weak temporal dependence is highly problematic in the iBCI setting due to the
mismatch between downsampled sensor acquisition rates used for decoding (typically around 50Hz,
or 20ms per timestep) and the time scale at which the desired goal position changes (seconds).

We relax the first-order Markov assumption via a semi-Markov model of state dynamics [Yu, 2010].
Semi-Markov models, introduced by Levy [1954] and Smith [1955], divide the state evolution into
contiguous segments. A segment is a contiguous series of timesteps during which a latent variable is
unchanged. The conditional distribution over the state at time xt depends not only on the previous
state xt−1, but also on a duration dt which encodes how long the state is to remain unchanged:

4
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Figure 3: Multiscale semi-Markov dynamical model. Left: The multiscale directed graphical model of how
goal positions gt, angles of aim θt, and observed cursor positions pt evolve over three time steps. Dashed nodes
are counter variables enabling semi-Markov dynamics. Right: Illustration of the junction tree used to compute
marginals for online decoding, as in Boyen and Koller [1998]. Dashed edges indicate cliques whose potentials
depend on the marginal approximations at time t− 1. The inference uses an auxiliary variable rt , a(gt, pt),
the angle from the cursor to the current goal, to reduce computation and allow inference to operate in real time.

p(xt | xt−1, dt). Duration is modeled via a latent counter variable, which is drawn at the start of
each segment and decremented deterministically until it reaches zero, at which point it is resampled.
In this way the semi-Markov model is capable of integrating information over longer time horizons,
and thus less susceptible to intermittent bursts of sensor noise.

We define separate semi-Markov dynamical models for the goal position and the angle of intended
movement. As detailed in the supplement, in experiments our duration distributions were uniform,
with parameters informed by knowledge about typical trajectory durations and reaction times.

Goal Dynamics A counter ct encodes the temporal evolution of the semi-Markov dynamics on
goal positions: ct is drawn from a discrete distribution p(c) at the start of each trajectory, and then
decremented deterministically until it reaches zero. (During decoding we do not know the value of
the counter, and maintain a posterior probability distribution over its value.) The goal position gt
remains unchanged until the goal counter reaches zero, at which point with probability η we resample
a new goal, and we keep the same goal with the remaining probability 1− η:

p(ct | ct−1) =

{
1, ct = ct−1 − 1, ct−1 > 0, Decrement
p(ct), ct−1 = 0, Sample new counter
0, Otherwise

(5)

p(gt | ct−1, gt−1) =


1, ct−1 > 0, gt = gt−1, Goal position unchanged
η 1
G + (1− η), ct−1 = 0, gt = gt−1, Sample same goal position

η 1
G , ct−1 = 0, gt 6= gt−1, Sample new goal position

0, Otherwise

(6)

Cursor Angle Dynamics We define similar semi-Markov dynamics for the cursor angle via an aim
counter bt. Once the counter reaches zero, we sample a new aim counter value from the discrete
distribution p(b), and a new cursor aim angle from the smoothed von Mises distribution of Eq. (4):

p(bt | bt−1) =

{
1, bt = bt−1 − 1, bt−1 > 0, Decrement
p(bt), bt−1 = 0, Sample new counter
0, Otherwise

(7)

p(θt | bt−1, θt−1, pt, gt) =

{
θt−1 bt−1 > 0, Keep cursor aim
vMS(θt | gt, pt) bt−1 = 0, Sample new cursor aim (8)

4.3 Decoding via Approximate Online Inference

Efficient decoding is possible via an approximate variant of the junction tree algorithm [Boyen and
Koller, 1998]. We approximate the full posterior at time t via a partially factorized posterior:

p(gt, ct, θt, bt | z1...t) ≈ p(gt, ct | z1...t)p(θt, bt | z1...t). (9)

5
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1s 1.5s 2s
Figure 4: Decoding goal positions. The MSSM represents goal position via a regular grid of 40× 40 locations
(upper left). For one real sequence of recorded neural data, the above panels illustrate the motion of the cursor
(white dot) to the user’s target (red circle). Panels show the marginal posterior distribution over goal positions at
0.5s intervals (25 discrete time steps of graphical model inference). Yellow goal states have highest probability,
dark blue goal states have near-zero probability. Note the temporal aggregation of directional cues.

Here p(gt, ct | z1...t) is the marginal on the goal position and goal counter, and p(θt, bt | z1...t) is the
marginal on the angle of aim and the aim counter. Note that in this setting goal position gt and cursor
aim θt, as well as their respective counters ct and bt, are unknown and must be inferred from neural
data. At each inference step we use the junction tree algorithm to compute state marginals at time t,
conditioned on the factorized posterior approximation from time step t− 1 (see Fig. 3). Boyen and
Koller [1998] show that this technique has bounded approximation error over time, and Murphy and
Weiss [2001] show this as a special case of loopy belief propagation.

Detailed inference equations are derived in the supplemental material. Given G goal positions
and A discrete angle states, each temporal update for our online decoder requires O(GA + A2)
operations. In contrast, the exact junction tree algorithm would require O(G2A2) operations; for
practical numbers of goals G, realtime implementation of this exact decoder is infeasible.

Figure 4 shows several snapshots of the marginal posterior over goal position. At each time the
MSSM decoder moves the cursor along the vector E

[
gt−pt

‖gt−pt‖

]
, computed by taking an average of

the directions needed to get to each possible goal, weighted by the inferred probability that each goal
is the participant’s true target. This vector is smaller in magnitude when the decoder is less certain
about the direction in which the intended goal lies, which has the practical benefit of allowing the
participant to slow down near the goal.

5 Experiments

We evaluate all decoders under a variety of conditions and a range of configurations for each decoder.
Controlled offline evaluations allow us to assess the impact of each proposed innovation. To analyze
the effects of our proposed likelihood and multiscale dynamics in isolation, we construct a baseline
hidden Markov model (HMM) decoder using the same discrete representation of angles as the
MSSM, and either cosine-tuned or flexible likelihoods. Our findings show that the offline decoding
performance of the MSSM is superior in all respects to baseline models.

We also evaluate the MSSM decoder in two online clinical research sessions, and compare head-
to-head performance with the Kalman filter. Previous studies have tested the Kalman filter under a
variety of responsive parameter configurations and found a tradeoff between slow, smooth control
versus fast, meandering control [Willett et al., 2016, 2017]. Through comparisons to the Kalman, we
demonstrate that the MSSM decoder maintains smoother and more accurate control at comparable
speeds. These realtime results are preliminary since we have yet to evaluate the MSSM decoder on
other clinical metrics such as communication rate.
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Figure 5: Offline decoding. Mean squared error of angular prediction for a variety of decoders, where each
decoder processes the same sets of recorded data. We analyze 24 minutes (eight 3-minute blocks) of neural data
recorded from participant T9 on trial days 546 and 552. We use one block for testing and the remainder for
training, and average errors across the choice of test block. On the left, we report errors over all time points. On
the right, we report errors on time points during which the cursor was outside a fixed distance from the target.
For both analyses, we exclude the initial 1s after target acquisition, during which the ground truth is unreliable.
To isolate preprocessing effects, the plots separately report the Kalman without preprocessing (“raw”). Dynamics
effects are isolated by separately evaluating HMM dynamics (“HMM”), and likelihood effects are isolated by
separately evaluating flexible likelihood and cosine tuning in each configuration. “KalmanBC” denotes the
Kalman filter with an additional kinematic bias-correction heuristic [Jarosiewicz et al., 2015].

5.1 Offline evaluation

We perform offline analysis using previously recorded data from two historical sessions of iBCI use
with a single participant (T9). During each session the participant is asked to perform a cued target
task in which a target appears at a random location on the screen and the participant attempts to move
the cursor to the target. Once the target is acquired or after a timeout (10 seconds), a new target is
presented at a different location. Each session is composed of several 3 minute segments or blocks.

To evaluate the effect of each innovation we compare to an HMM decoder. This HMM baseline
isolates the effect of our flexible likelihood since, like the Kalman filter, it does not model goal
positions and assumes first-order Markov dynamics. Let θt be the latent angle state at time t and
x(θ) = (cos(θ), sin(θ))

T the corresponding unit vector. We implement a pair of HMM decoders for
cosine tuning and our proposed flexible tuning curves,

zt | θt ∼ N (b+Hx(θt), Q)︸ ︷︷ ︸
Cosine HMM

, zt | θt ∼ N
(
b+ wTφ(θt), Q

)︸ ︷︷ ︸
Flexible HMM

Here, φ(·) are the basis vectors defined in Eq. (3). The state θt is discrete, taking one of 72 angular
values equally spaced in [0, 2π), the same discretization used by the MSSM. Continuous densities
are appropriately normalized. Unlike the linear Gaussian state-space model, the HMMs constrain
latent states to be valid angles (equivalently, unit vectors) rather than arbitrary vectors in R2.

We analyze decoder accuracy within each session using a leave-one-out approach. Specifically, we
test the decoder on each held-out block using the remaining blocks in the same session for training.
We report MSE of the predicted cursor direction, using the unit vector from the cursor to the target
as ground truth, and normalizing decoder output vectors. We used the same recorded data for each
decoder. See the supplement for further details.

Figure 5 summarizes the findings of the offline comparisons for a variety of decoder configurations.
First, we evaluate the effect of preprocessing the data by taking the square root, applying a low-pass
IIR filter, and clipping the data outside a 5σ threshold, where σ is the empirical standard deviation of
training data. This preprocessing significantly improves accuracy for all decoders. The MSSM model
compares favorably to all configurations of the Kalman decoders. The majority of benefit comes from
the semi-Markov dynamical model, but additional gains are observed when including the flexible
tuning likelihood. Finally, it has been observed that the Kalman decoder is sensitive to outliers for
which Jarosiewicz et al. [2015] propose a correction to avoid biased estimates. We test the Kalman
filter with and without this correction.
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Figure 6: Realtime decoding. A realtime comparison of the Kalman filter and MSSM with flexible likelihoods
from two sessions with clinical trial participant T10. Left: Box plots of squared error between unit vectors from
cursor to target and normalized (unit vector) decoder output for each four-minute comparison block in a session.
MSSM errors are consistently smaller. Right: Two metrics that describe the smoothness of cursor trajectories,
introduced in MacKenzie et al. [2001] and commonly used to quantify iBCI performance [Kim et al., 2008,
Simeral et al., 2011]. The task axis for a trajectory is the straight line from the cursor’s starting position at the
beginning of a trajectory to a goal. Orthogonal directional changes measure the number of direction changes
towards or away from the goal, and movement direction changes measure the number of direction changes
towards or away from the task axis. The MSSM shows significantly fewer direction changes according to both
metrics.

5.2 Realtime evaluation

Next, we examined whether the MSSM method was effective for realtime iBCI control by a clinical
trial participant. On two different days, a clinical trial participant (T10) completed six four-minute
comparison blocks. In these blocks, we alternated using an MSSM decoder with flexible likelihoods
and novel preprocessing, or a standard Kalman decoder. As with the Kalman decoding described in
Jarosiewicz et al. [2015], we used the Kalman filter in conjunction with a bias correcting postprocess-
ing heuristic. We used the feature selection method proposed by Malik et al. [2015] to select D = 60
channels of neural data, and used these same 60 channels for both decoders.

Jarosiewicz et al. [2015] selected the timesteps of data to use for parameter learning by taking the
first two seconds of each trajectory after a 0.3s reaction time. For both decoders, we instead selected
all timesteps in which the cursor was a fixed distance from the cued goal because we found this
alternative method lead to improvements in offline decoding. Both methods for selecting subsets of
the calibration data are designed to compensate for the fact that vectors from cursor to target are not a
reliable estimator for participants’ intended aim when the cursor is near the target.

Decoding accuracy. Figure 6 shows that our MSSM decoder had less directional error than the
configuration of the Kalman filter that we compared to. We confirmed the statistical significance
of this result using a Wilcoxon rank sum test. To accommodate the Wilcoxon rank sum test’s
independence assumption, we divided the data into individual trajectories from a starting point
towards a goal, that ended either when the cursor reached the goal or at a timeout (10 seconds). We
then computed the mean squared error of each trajectory, where the squared error is the squared
Euclidean distance between the normalized (unit vector) decoded vectors and the unit vectors from
cursor to target. Within each session, we compared the distributions of these mean squared errors for
trajectories between decoders (p < 10−6 for each session). MSSM also performed better than the
Kalman on metrics from MacKenzie et al. [2001] that measure the smoothness of cursor trajectories
(see Fig. 6).

Figure 7 shows example trajectories as the cursor moves toward its target via the MSSM decoder or
the (bias-corrected) Kalman decoder. Consistent with the quantitative error metrics, the trajectories
produced by the MSSM model were smoother and more direct than those of the Kalman filter,
especially as the cursor approached the goal. The distance ratio (the ratio of the length of the
trajectory to the line from the starting position to the goal) averaged 1.17 for the MSSM decoder and
1.28 for the Kalman decoder, a significant difference (Wilcoxon rank sum test, p < 10−6). Some
trajectories for both decoders are shown in Figure 7. Videos of cursor movement under both decoding
algorithms, and additional experimental details, are included in the supplemental material.

Decoding speed. We controlled for speed by configuring both decoders to average the same fast
speed determined in collaboration with clinical research engineers familiar with the participant’s
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Goal

Near Goal

Figure 7: Examples of realtime decoding trajectories. Left: 20 randomly selected trajectories for the Kalman
decoder, and 20 trajectories for the MSSM decoder. The trajectories are aligned so that the starting position is at
the origin and rotated so the goal position is on the positive, horizontal axis. The MSSM decoder exhibits fewer
abrupt direction changes. Right: The empirical probability of instantaneous angle of movement, after rotating all
trajectories from the realtime data (24 minutes of iBCI use with each decoder). The MSSM distribution (shown
as translucent cyan) is more peaked at zero degrees, corresponding to direct motion towards the goal.

preferred cursor speed. For each decoder, we collected a block of data in which the participant used
that decoder to control the cursor. For each of these blocks, we computed the trimmed mean of
the speed, and then linearly extrapolated the speed gain needed for the desired speed. Although
such an extrapolation is approximate, the average times to acquire a target with each decoder at the
extrapolated speed gains were within 6% of each other: 2.6s for the Kalman decoder versus 2.7s for
the MSSM decoder. This speed discrepancy is dominated by the relative performance improvement
of MSSM over Kalman: the Kalman had a 30.7% greater trajectory mean squared error, 249% more
orthogonal direction changes, and 224% more movement direction changes.

This approach to evaluating decoder performance differs from that suggested by Willett et al. [2016],
which discusses the possibility of optimizing the speed gain and other decoder parameters to minimize
target acquisition time. In contrast, we matched the speed of both decoders and evaluated decoding
error and smoothness. We did not extensively tune the dynamics parameters for either decoder,
instead relying on the Kalman parameters in everyday use by T10. For MSSM we tried two values of
η, which controls the sampling of goal states (6), and chose the remaining parameters offline.

6 Conclusion

We introduce a flexible likelihood model and multiscale semi-Markov (MSSM) dynamics for cursor
control in intracortical brain-computer interfaces. The flexible tuning likelihood model extends the
cosine tuning model to allow for multimodal tuning curves and narrower peaks. The MSSM dynamic
Bayesian network explicitly models the relationship between the goal position, the cursor position,
and the angle of intended movement. Because the goal position changes much less frequently than
the angle of intended movement, a decoder’s past knowledge of the goal position stays relevant for
longer, and the MSSM model can use longer histories of neural activity to infer the direction of
desired movement.

To create a realtime decoding algorithm, we derive an online variant of the junction tree algorithm
with provable accuracy guarantees. We demonstrate a significant improvement over the Kalman
filter in offline experiments with neural recordings, and demonstrate promising preliminary results in
clinical trial tests. Future work will further evaluate the suitability of this method for clinical use.
We hope that the MSSM graphical model will also enable further advances in iBCI decoding, for
example by encoding the structure of a known user interface in the set of latent goals.

Author contributions DJM, JLP, and EBS created the flexible tuning likelihood and the multiscale
semi-Markov dynamics. DJM derived the inference (decoder), wrote software implementations of
these methods, and performed data analyses. DJM, JLP, and EBS designed offline experiments. DJM,
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pilot clinical trial. DJM, JLP, and EBS wrote the manuscript with input from all authors.
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