
Supplemental: Nonparametric Object and Parts Modeling
with Lie Group Dynamics

1 Inference

1.1 Linear Gaussian Conditionals

Consider the multivariate Gaussian

N
((

Cx1 + u
x2

)
|
(

µ1
µ2

)
,
(

Σ11 Σ12
Σ>12 Σ22

))
(1)

where x1, u, µ1 ∈ RD1 , x2, µ2 ∈ RD2 and covariance Σ ∈ RD1+D2 has blocks Σ11 ∈ RD1×D1 , Σ12 ∈
RD1×D2 , Σ21 ∈ RD2×D1 , Σ22 ∈ RD2×D2 . Then, because Gaussian conditionals are Gaussian (see [?], Ch.
4), it follows that the conditional Cx1 + u | x2 is Gaussian:

Cx1 + u | x2 ∼ N
(
Cx1 + u | µ′, Σ′

)
(2)

µ′ = µ1 + Σ12Σ−1
22 (x2 − µ2) (3)

Σ′ = Σ11 − Σ12Σ−1
22 Σ21 (4)

And, by transformation of random variables, the conditional x1 | x2 is Gaussian with parameters:

x1 | x2 ∼ N
(
x1 | µ′′, Σ′′

)
(5)

µ′′ = C−1 (µ′ − u
)

(6)

Σ′′ = C−1Σ′C−> (7)

1.2 Concentrated Gaussian Priors with Gaussian Likelihoods

In this section, we show that Concentrated Gaussian priors on the Lie Group SE(D) coupled with multi-
variate Gaussian observation models have Gaussian conditionals for the translation component.

Let a, b, c, µ ∈ SE(D) where each contain a rotation component R and translation component d.

a =

(
Ra da
0 1

)
b =

(
Rb db
0 1

)
c =

(
Rc dc
0 1

)
µ =

(
Rµ dµ

0 1

)
(8)

These can be viewed as linear operators on homogeneous coordinates. Let y ∈ RD be a point and E ∈ RD×D

be a covariance matrix. For vector v, let ṽ be the projection of v into homogeneous coordinates (append 1).
For covariance Σ, let Σ̃ be the projection of Σ into homogeneous coordinates (append a 0 row and column).
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Consider the following distribution, for Σ a covariance in the tangent plane about µ:

p(b | y, a, b) ∝ NL (b | µ, Σ)N
(

ỹ | abc0̃, (abc) Ẽ (abc)>
)

(9)

= N
(

Logµb | 0, Σ
)

N
(

a−1ỹ | bc0̃, (bc) Ẽ (bc)>
)

(10)

= N
(

log
(

µ−1b
)
| 0, Σ

)
N
(

a−1ỹ | bc0̃, (bc) Ẽ (bc)>
)

(11)

= N

((
V−1

µ−1bdµ−1b

φµ−1b

)
| 0, Σ

)
N
(

R>a (y− da) | db + Rbdc (RbRc) E (RbRc)
>
)

(12)

= N

((
V−1

µ−1b

(
R>µ
(
db − dµ

))
φµ−1b

)
| 0, Σ

)
N
(

R>a (y− da) | db + Rbdc (RbRc) E (RbRc)
>
)
(13)

Homogeneous coordinates are used up to Eqn. (11), then dropped in Eqn. (12). Observe that Eqn. (12) is of
the form:

N
((

Cdb + u
φ

)
|
(

0
0

)
,
(

Σ11 Σ12
Σ21 Σ22

))
N (z | db + g, Λ) (14)

where

C = V−1
µ−1bR>µ u = −Cdµ z = R>a (y− da) (15)

g = Rbdc Λ = (RbRc) E (RbRc)
> φ = φµ−1b (16)

The conditional p(db | Rb, y, a, b) is proportional to Eqn. (14), which is of the form of Eqn. (1), and C, u, z, g, Λ, φ
are all computable given Rb, y, a, b (and C is invertible), hence p(db | Rb, a, b) = N (db | µ′, Σ′) for some
µ′, Σ′. Then,

p(db | Rb, y, a, b) ∝ N
(
db | µ′, Σ′

)
N (z | db + g, Λ) (17)

∝ N
(
db | µ′′, Σ′′

)
(18)

where Eqn. (18) follows from Eqn. ( 17) because it is a linear Gaussian system, hence is itself proportional
to a Gaussian with some mean and covariance µ′′, Σ′′ (see [?], Ch. 4).

1.3 Translation Full Conditionals

In the following, let xt−1, xt, xt+1, {ωk, θ(t−1)k, θtk, θ(t+1)k}K
k=1, I ∈ SE(D) with rotation and translation com-

ponents defined similarly to Eqn. (8). Let {ytn}Nt
n=1 ∈ RD. Let {Ek}K

k=1 ∈ RD×D be observation covariances
in RD and Q, W, {Sk}K

k=1 be covariances in the Lie algebra se(D). Let {ztn}Nt
n=1 be assignments of observa-

tions to one of K instantiated components.
The full conditional body frame translation update is of the form:

p(dxt | Rxt , xt−1, xt+1, Q, {ωk, θtk}K
k=1, {ytn, ztn}Nt

n=1 (19)

∝ NL (xt | xt−1, Q)NL (xt+1 | xt, Q)
Nt

∏
n=1

N
(

ỹtn | xtωkθtk0̃, (xtωkθtk) Ẽk (xtωkθtk)
>
)I(ztn=k)

(20)

The full conditional for the kth canonical part translation update is of the form:

p(dωk | Rωk , Wk, {xt, θtk, {ytn}Nt
n=1}

T
t=1, Ek) (21)

∝ NL (ωk | I, W)
T

∏
t=1

Nt

∏
n=1

N
(

ỹtn | xtωkθtk0̃, (xtωkθtk) Ẽk (xtωkθtk)
>
)I(ztn=k)

(22)
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Figure 1: Likelihoods are invariant to two rotation symmetries in SE(2) (left) and four rotation symmetries
in SE(3) (right). Notice that the colored observation covariances cover the same volume when drawn at
fixed standard deviations, implying that mahalanobis distances of part covariances to observations will be
equal for each symmetric rotation. While dynamics will typically favor one mode over others, the slice
sampler sometimes locks onto the wrong mode. The remedy is a fixed number of MCMC proposals which,
given a mode, can enumerate and propose all other modes

In both of the above cases, the concentrated Gaussians have Gaussian conditionals for the translation com-
ponent, and combine with a product of Gaussian likelihoods, yielding a Gaussian posterior for translations
dxt , dωk (per Sections 1.1, 1.2).

Suppose θtk has dynamics:

θtk =

(
Rθtk dθtk

0 1

)
=

(
ExpRθ(t−1)k

φtk A dθ(t−1)k + B mtk

0 1

)
(23)

where
(mtk, φtk) ∼ N (0, Sk) (24)

Then p(dθtk | Rθtk , θ(t−1)k) is of the form Eqn. (1) with C = B, u = A dθ(t−1)k
. The conditional p(dθtk |

Rθtk , θ(t+1)k) has a similar Gaussian form. Hence, full conditional translation updates for dθtk have a similar
structure to the above object and canonical part translation updates and are themselves Gaussian.

1.4 Rotation Full Conditionals

We perform univariate slice sampling [?] to sample from the rotation full conditionals of body xt, canon-
ical part ωk and part transformation θtk. This is straightforward because the Lie algebraic coordinates of
each transformation decompose into a set of univariate coordinates corresponding to translation, and a set
corresponding to rotation. Given this decomposition sampling is straightforward: each rotation coordinate
is sampled, holding all others fixed. The task is furthered simplified because the bounds of ±π can be
imposed.

One complication is that the distribution is multi-modal because the observation likelihood is invariant
to 180◦ rotations. There are two such modes in SE(2) and four in SE(3). Given one mode, all others
can be enumerated by inverting any subset of the columns of the sampled rotation matrix such that the
determinant remains +1 (as opposed to −1 for an inversion of an odd number of columns). Figure 1
visually demonstrates these symmetries for SE(2) and SE(3) Although the dynamics will typically penalize
one mode over others, it sometimes happens that the slice sampler locks onto a particular mode. The
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Figure 2: Example ground-truth part segmentations.

solution is simple: we propose a fixed number of MCMC samples, one for each enumerated mode. This is
of minimal cost because there is only one other mode in SE(2) and three other modes in SE(3).

When sampling rotation full conditionals, we use characteristic width w = 0.01π and a maximum of
10 doubling iterations. Ten samples are drawn, then the MCMC proposals for rotation symmetries are
proposed starting from the final sample.

1.5 Conjugate Posteriors

We show that driving noise covariance Q for body frame of reference xt is a product of an Inverse Wishart
prior with a product of multivariate Gaussian likelihoods, yielding analytic sampling updates by conjugacy.
The same reasoning holds for part transformation driving noise covariances {Sk}K

k=1.
The posterior distributions for Q is:

p(Q | x1:T) ∝ IW(Q | ·)
T

∏
t=1

NL (xt | xt−1, Q) (25)

= IW(Q | ·)
T

∏
t=1

N

 V−1
x−1

t−1xt
dx−1

t−1xt

φx−1
t−1xt

 | 0, Q

 (26)

The terms inside the product are all computable given x1:T , so this is an Inverse-Wishart multiplied by a
product of Gaussians. In this case, the posterior is conjugate to the prior, yielding Inverse Wishart updates
(see [?], Appendix A). The same form and reasoning applies for Sk, hence samples can also be analytically
drawn for each Sk.

Part observation covariances Ek have the form:

p(Ek | ωk, {xt, θtk, {ytn, ztn}Nt
n=1}

T
t=1) ∝ IW(Ek | ·)

T

∏
t=1

N
(
(xtωkθtk)

−1 ỹtn | 0̃, Ẽk

)I(ztn=k)
(27)

As above, this posterior is also Inverse Wishart.

1.6 Ground-Truth Segmentations

Figure 2 shows example ground-truth segmentations for each dataset used for quantitative comparison.
Ground-truth was hand-labeled, and the number of parts were chosen at the granularity supported by the
dataset (e.g. marmoset has head, body and tail but not hands or feet because they were not visible from the
top-down RGB-D views).

1.7 Data-Dependent Priors

Results in the paper were computed by using data-dependent priors that are similar in spirit to those used
for static Dirichlet Process Mixture Models. All Inverse Wishart priors (for Q, {Sk, Ek}∞

k=1) were set to ten
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Figure 3: Example of how our model can infer results on multiple videos of the same type, but different
instances, of an object in motion. These results were computed on RGB-D data but are visualized in 2D.

degrees of freedom, making the prior weak in the sense that it accounts for 10 pseudo-observations (among
tens to thousands of observations incorporated into the posterior).

The Inverse Wishart scatter matrix prior for Q was set so that the expected per-timestep body rotation
was 0.25 radians (≈ 15◦) and expected per-timestep body translation was the mean absolute difference
between time-adjacent pairs of observation sets.

The Inverse Wishart scatter matrix prior for Sk was set so that the expected per-timestep part rotation
was 0.025 radians (≈ 1.5◦) and expected per-timestep part translation was the mean absolute difference
between time-adjacent pairs of observation sets (expected translation for parts and body are the same under
the prior).

The Inverse Wishart scatter matrix prior for part observation covariances Ek was set to 0.1 times the
mean observation set variance.

The prior for the initial body transformation was set to identity mean rotation with mean translation
equal to the mean of the first observation set. The initial body transformation covariance was set diag-
onal and broad, so that π radians were within one standard deviation of rotation covariance, and body
translation variances were set equal to the variance of the first observation set.

Canonical part transformations ωk were set to identity mean transformation with π radians being within
one standard deviation of rotation covariance, and canonical part translation variances set equal to the
variance of the first observation set.

2 Generalization Across Videos

We demonstrate that our model can reason about the motion and parts of different instances of the same
type of object across multiple videos. This is accomplished by assuming that the number of parts and the
canonical part transformations, ωk, are shared by similar objects, but that the motion parameters are dis-
tinct. In this experiment, we sample all parameters (including number of parts) from a video containing one
instance of an object. In the second video, we restrict sampling to associations ztn, body transformations xt
and part transformations θtk. Figure 3 shows RGB-D data projected into 2D for two videos; all model pa-
rameters are initially sampled in the video of the top row, then body and part transformations are sampled
in the second video.

We note that part assignments correspond reasonably across videos. By reasoning in 3D, our model
accommodates scale changes within and across videos, such as when the object is closer or further from the
camera. While we do see some migration of part locations on the torso, this is due to the proximity of the
respective ωk’s combined with sufficiently free motion dynamics. Regardless, torso parts remain associated
to the torso, and the tail is consistently segmented.
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Figure 4: Novel body and part motions sampled from our model after being fitted to spider. Body frame
is subjected to constant velocity while part transformations are sampled. See supplemental video for more
views.

Figure 5: Original spider video for comparison with synthetic results.

3 Synthesized Part Motions

In Figure 4, we sample new part motions from the model after all parameters have been sampled from
the spider dataset. Specifically, we generate new body transformations, in which the spider is subject to
constant velocity and no rotation. Part transformations θtk are seeded with inference results then resampled
from their full conditionals. Observations are taken from a single frame of the original video, projected into
their respective part coordinate systems according to the inferred part assignments, then reprojected to new
world coordinates using the newly synthesized body and part transformations at each time. We stress that
these are novel part motions and that they can be generated for arbitrary durations and body paths. Video
of these results is available in the video supplemental.

We observe that parts close to the spider’s center exhibit relative stability, and the legs demonstrate the
expected rhythmic walking motion. The pedipalps (the two front appendages) display implausible rota-
tions, however. This is because these parts undergo foreshortening and occlusion in the original dataset.
Since occlusion is not explicitly handled by our model in SE(2), inference permitted large rotations to ex-
plain observations on the pedipalps as they go from visible to not visible and vice versa. Nevertheless, the
spider and it’s basic walking motion remains recognizable.
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4 Stable Dynamics

Stable Motion Dynamics

Random Walk

The random walk model is used to approximate the dynamics of a moving object in many tracking appli-
cations.

xt = Axt−1 + nt (28)
nt ∼ N (nt | 0, Σn) (29)

(nt, ns) ∼ N (nt | 0, Σn)N (ns | 0, Σn) ∀s 6= t (30)

where, depending on the components of the state vector xt (e.g. position only, position and velocity, or
higher-ordered terms), the matrix A encodes linear dynamics used to predict the current kinematic state xt
from the kinematic state xt−1 at the previous time step. The statistics of nt are used to explain deviations
from a deterministic trajectory.

For the purpose of inference, suitable tracking results can often be obtained even with a very approx-
imate model of the dynamics. This is especially true for cases where the results are likelihood dominated
i.e., objects are easily distinguishable based on their appearance).

It is well known that the random walk model is unstable and for the method described in the manuscript
the instability can significantly degrade results as detected parts may be kinematically ambiguous. Here, we
describe a stabilized random walk model that is a special case of models encountered in linear dynamical
control problems for stabilizing unstable plants.

It is straightforward to express the covariance of xt as a function of the covariance xt−1

Σt = AΣt−1 AT + Σn (31)

where instability depends upon the eigen-values of the matrix A. If the system were stable then we could
solve for stationary covariance matrix, Σ (where the dependence on t has been dropped) via the following
expression

Σ = AΣAT + Σn (32)

The expression above is a special case of the well known Algebraic Ricatti Equation. The existence of a
solution depends on whether the eigenvalues of A are less than 1.

For the simple random walk dynamical model, A takes the form

A =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 · · · · · · 1

 (33)

where the dimension of A depends on the number of motion terms used for xt and each element of xt
corresponds to position of the ith dimension. All of the eigenvalues of A equal 1 with multiplicity equal to
the dimension of xt. Furthermore, this form of A results in unstable dynamics and there is no solution to
Eqn. (32).

As described in the manuscript, we adopt a modified form of the random walk model, which we refer
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to as stabilized random walk.

xt =


√

α 0 0 0
0
√

α 0 0

0 0
. . . 0

0 0 0
√

α

 xt−1 +


√

1− α 0 0 0
0

√
1− α 0 0

0 0
. . . 0

0 0 0
√

1− α

 nt (34)

(35)

where 0 < α < 1.

Σt = αΣt−1 + (1− α)Σn (36)

for which the solution to Eqn. (32) becomes

Σ = Σn (37)

This approach can be extended to more complex linear dynamical models and is equivalent to determining
a gain on the state feedback that models the observed motion, although, obtaining solutions can result
in additional complexity. For our purposes, the simple form of A was sufficient. For any 0 < α < 1
the marginal covariance of the position vector will be equal to Σn and as α → 1 the trajectories become
increasingly smooth. This behavior is useful for approximating the motion of parts about a centroid without
inducing instability.
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