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Abstract

Particle belief propagation has been successfully apptesfficiently compute
marginal distributions in graphical models defined overdmn variables with
continuous domains [1]. We show the application of the miadpct particle
belief algorithm to compute the MAP-configuration. We apiilg max-product
particle belief propagation (MP-PBP) algorithm to the stevision problem and
compare its performance with the discretized version gbydeelief propagation.
We show that MP-PBP yields similar performance to the discwersion with
fewer particles.

1 Introduction

Graphical models provide a framework to model the joint piuility distribution of many random
variables. Nodes are used to model variables in the joinbaiility distribution and the edges
express probabilistic relationship between the variabMessage passing algorithms can then be
used to compute quantities of interest like the marginatidigtions of all or a subset of all the
variables in the graph and the MAP-configuration, i.e, thtérggof the variables in the graphical
model that maximizes the joint probability distributionaif the variables in the model.

Belief propagation is a message passing algorithm usedhto idiference on graphical models. The
sum-product version of belief propagation computes thegmat distribution of each variable in
the model and the max-product version computes the MAP-garaiion. When variables are low-
dimensional and the state space of the variables is disdostgy belief propagation can be used
to efficiently compute quantities of interest like the maadidistributions all the variables. When
the variables are continuous, it is necessary to eitheratige the state space of the variables or
approximate the messages in some form. Sudderth et al. {®Jexhthat each message can be
represented as a collection of samples and such messagbe aard to run inference algorithms
on graphical models with continuous state spaces. Pafilieléng on the other hand discretizes the



continuous state space of the variables using a set of lgarbiat has only been applied to Markov
chains [3].

When the variables in the graphical model are univariates giassible to compare the results of
sum-product version of particle belief propagation(PBRhhe discretized version of belief prop-

agation. lhler et al. [1] showed that L1 errors between thegimal distributions computed by PBP

and those of the discretized version decrease as the nurhpartiwles are increased. Sampling
methods that were considered include sampling from the @aservation potential, sampling from

the computed discretized marginals and sampling from theotiestimated belief at each node.

It is natural to consider the max-product version of PBP teieine the MAP-configuration. Max-
Product loopy belief propagation (MP-LBP) has been sudakgapplied to graphs with loops for
discrete variables [4]. In the case where the variableoaralimensional and are continous or have
a large state space, it becomes possible to discretizedtee sgiace using a finite set of particles.
For such small problems, discretizing the state space esablto compare the performance of MP-
PBP with MP-LBP, vis-a-vis the MAP-configuration. Ensuriggod peformance of MP-PBP in
comparison to MP-LBP for low-dimensional problems allovesto generalize MP-PBP for graph-
ical models with continuous state spaces but having langewions where MP-LBP computations
become intractable.

In this paper we analyze the performance of sampling thécpestat each node using Markov chain
Monte Carlo methods like Metropolis-Hastings algorithme ¥pply the Metropolis Hastings sam-
pling method to MP-PBP to compute the MAP-configuration. \&mpare the MAP-configuration
found by PBP with those found by MP-LBP. Finally, we compdre tesults of MP-PBP with Sim-
ulated Annealing, a probabilistic meta-heuristic used nd fa good approximation to a globally
optimum MAP-configuration [5, 6].

2 Background

2.1 Notation

Let G be a graphical model with verticds and edge€. LetT'(v) be the neighbors of vertexin
the graph. Let:, be the random variable associated with the noddth continuous state space
Xv. For simplicity sake, we assume the joint probability dittion of all variables in the graph
factorizes as a pairwise MRF :
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In equation (1)p,(x,) represents the node specific local observation potentitan, (z.,, z,)
represents the pairwise potential function for edgev}. A sample pairwise MRF is shown in
Figure 1.

2.2 Sum-Product Particle Belief Propagation (PBP)

For graphical models with small, discrete state spaces;moaiuct algorithm can be used to effi-
ciently compute marginal distributions of the variablesha model. The sum-product messages in
such graphical models are given by the equation :
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When the variables are continuous, one option is to diserétie continuous state space of each
variable using a finite set of particle locations as in PBP [h] PBP, a finite set of particles for
each node:, are sampled from a proposed distributidf, (z,,) for that node . The particles thus
sampled at each node are used to approximate the sum-prodssage in equation (2) as follows :



Figure 1: A pairwise MRF where any two non-adjacent randonmbiées are conditionally inde-
pendent given all other variables in the model. For exantperandom variable A is conditionally
independent of Z given all the other nodes. [https://facwikbyu.edu/cs677spl0/index.php]
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Given the messages in equation (3), we can compute the twsémated belief at node, as
follows [1] :
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2.3 Max-Product Belief Propagation

Given the potential functions in equation (1), messagedegmassed along the edges of the graph
to compute the MAP-configuration. LetEva(xv) be the max-product message from graph node
to nodev at timestep as a function ofr,,. Then the max-product message update equation is given

by:
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The message above is a continuous function of the state spawerandom variable, and can be
evaluated at any particular particle locationof x,. Let u,(x,) be the max-marginal af,, defined
as:

po(xy) = max  p(af, @Y, ......zy) (6)

! |x! =z,

Messages computed in equation(5) can then be used to cothpuabove max-marginal using the
equation :
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For a graph that is tree (cycle-free), the above max-malgare exact [7]. For a graph with cycles,
the max-marginals computed are approximate. Given thegenmagginals, a backtracklng proce-
dure can be used to compute the MAP-configurafiauch thati € arg max, p(z, x5, ........ x'y)

of the distribution [8].

3 Max-Product PBP

We describe here the max-product version of particle beliepagation. MP-PBP maintains a set
of particles{zﬁl), P x&M)} at every nodex,, of the graph. Equation (5) can be approximated

using the current discrete set of particle locations of nogas follows :
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Note the both the max-product message from negeo nodex, given by equation (5) and the
max-marginal at node,, given by equation (7) are both continuous functions of tiagesspace of
nodex, and hence can be evaluated for the current discrete set tiélpdocations atr,. The

max-marginal at node,, for a particle Iocatlom(k is given by the equation :
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At the end of every iteration, the current set of particleal:imns{;z:&l), 2. xng)} at every node
x,, are updated based on the sampling distributions used. Wagayabout this in Section 3.1.

Note that the key difference between equation (3) and enjué8) is that the message update in (3)
requires that we reweight the message by the correspondipggal distribution at node,. This
reweighting is necessary since we need to correct for thefuaeiased proposal distribution for
PBP. This reweighting is removed in equation (8) becausheépplication of the max-operator in
the message update equation. This is further illustrat&iguare 2.

3.1 Sampling Distributions

An important thing to consider for MP-PBP is the samplingritisition for each node:,. Koller

et al. [9] suggested that a good choice would be to use thestmreproduct marginal at nods,.
Since we do not have the true sum-product marginal to sammhe, fwe can instead sample from
the current estimated marginal given by equation (4). ForRNEP, we need to sample from the
current estimated max-marginals and we consider 2 choiteSample from the discretized current
estimated max-marginals obtained at each node on a regraedjrid by keeping the particles at its
neighbors fixed. Note that this is only possible when thealdeiz,, is low-dimensional. 2) Run a
short MCMC simulated algorithm at each node at every iteratif MP-PBP similar to the approach
used in particle filters [10]. We describe the MCMC simulatio more detail in Section 3.2.

For illustration purposes, we also consider sampling fromlbcal observation potential and the
discretized true max-marginals obtained from LBP with nearapling. Note that sampling from
the discretized true max-marginals is only possible in thigariate case since LBP can be used to
compute the true max-marginals on a regular dense grid.

3.2 Sampling using Metropolis-Hastings for MP-PBP

We consider the affect of sampling particles for PBP usingrimlis-Hastings algorithm. The
marginal distribution of each node, given by equation (7) is difficult to sample from but easy to
evaluate up to a normalization constant at any given partidation. We maintain a set of particle
Iocatlons{igl), mf), . ,x,(LM)} at each node,, of the graph at every iteration of PBP. At each iter-
ation, we perturb each particle location by running a shaZMC simulation using the Metropolis-

Hastings algorithm. There are two important things to adeshile running Metropolis-Hastings.
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Figure 2: Plot of a sample true max-product message from mgde nodez, as a function of the
state space of node, for a fixed value of node:, along with the Gaussian proposal distribution
from where the particles of node, are sampled. The max-product message from ngd® node

x, is evaluated at each particle location of nagesampled from the Gaussian proposal distribution.
If the max-product were reweighted by the Gaussian proptisai the max-product message would
incorrectly place more mass in particle locations that arthaé tails of the Guassian distribution as
shown in the above figure and vice versa.



Firstis the choice of the proposal distribution to use feridmdom walk. We propose a random walk
for each particle location at each node using a Gaussianibdison that is centered at that particle
location. Second is the choice of the bandwidth parameYdof the Gaussian proposal distribu-

tion. The bandwidth parameter is set so that acceptancéoratéetropolis-Hastings perturbations

is neither too high or too long. We say more about this in $ecti.1.

The issues considered while applying Metropolis-Hastsagapling method to MP-PBP are similar
to those for the sum product version of particle belief pogieon. We note the two main differ-
ences between using Metropolis-Hastings sampling for RRPMP-PBP : the target distribution
for MP-PBP is the current estimated max-marginals givenduagon (7) as opposed to the current
estimated belief given by equation (4) for PBP; and the MCM@usation for MP-PBP needs fewer
proposal distributions in comparison to PBP because ofltserace of re-weighting in the message
update equation (5) and as illustrated in Figure 2.

The details of the implementation for the Metropolis-Hag$i sampling method are given in Figure
3.

Let IV be the total number of nodes in the graph andiebe the number of particles used at
every node. Lef" be the number of PBP iterations to use.

Let P be the number of proposal distributions of Metropolis to imseach iteration of PBP.
Let o be the standard deviation of the proposal distribution ofrbfeolis.

Let meLum) be the message from graph nad& nodev at timestep as a function of:,,.
Let Q® (x,,) be the node belief at node, at timesteg.

1. Foreacht =1 : T, do the following :
(a) Compute max-product message on every edge based orh#tue as follows :

m’ELt)—VU(-r'U) =
. . . )
max{xr(uj):j:LQ....M} Spu(wi(b]))@u,v(xgj)v xv) ( HweF(u)/v mg—)u) (xgtj)))‘|
(b) Forp=1: P, do the following :

i. For each node;, in the graph :
A. Perturb each particle locatiat}!’ ~ N(x\x&j), a).

B. Compute the node beli€f (x,,) x ¢, (z,) ( e mq(lf)_)u(xu)).
C. Evaluate the node belief in Part (b) at particle locatiopandz,, .
QW (@)
5 Q“)(z,(j)) )

D. Compute the acceptance probability for metropolisas (1

Figure 3: Pseudo-code showing the implementation of MP-feBRIetropolis-Hastings sampling
method.



4 Experimental Results

We evaluate the performance of PBP and MP-PBP on the stés@m\problem, i.e the problem
of estimating the most likely depth at each pixel in an imagde. illustrate the performance of
particle belief propagation on different kinds of images,a@nsider one image with largely uniform
disparties and another with a more variation in disparifiégese images are shown in Figures 4 and
5 respectively.

Left Image Right Image Ground Truth Disparities
1 1 1
2 h 1 2 2
3 3 3

2 4 2 4 2 4

Figure 4: The left and right stereo vision images along witnground truth dispartities for a small
3 by 5image. This image has largely uniform disparities.
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Figure 5: The left and right stereo vision images along withground truth dispartities for a larger
10 by 15 image. This image has more variation in disparities.

4.1 PBP with Metropolis-Hastings sampling

We evaluate the performance of PBP on the image shown in é&igwhen sampling using the
Metropolis-Hastings sampling method. We note the follapéibout the Metropolis-Hastings sam-
pling method for PBP 200 proposal distributions were considered for each partamtation at each
node at every iteration of PBP. This is necessary in orddidevéhe MCMC simulation to converge
and compute the correct weightg, (z,,) in equation (3); bandwidth parameteifor the Gaussian
proposal distribution was adjusted so that— 50% of the particle perturbations were accepted.



The L1 error plot is shown in Figure 6 for the image in Figure 4.
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Figure 6: The above figure is a log-log plot of the L1 errorsalestn the marginals computed by
LBP on a dense regular grid and those computed by PBP smontétesame grid for the image
in Figure 4. This plot displays L1 errors averaged aedifferent runs of PBP. Notice that for all
sampling methods, the L1 errors decrease with an increabeinumber of particles. Also note
that the L1 error plot when using the Metropolis-Hastingsgkng method closely shadows the L1
error plot when sampling from the current estimated matgina

4.2 MP-PBP

We evaluate the performance of MP-PBP on the images showigumds 4 and 5 with the following
sampling methods :

Sampling using the local observation potential once withesampling.

Sampling once from the true max-marginals computed by ngWWiP-LBP with no resam-
pling.

Sampling from the current estimated max-marginals smoatealregular dense grid.
Sampling using Metropolis-Hastings method.

In order to illustrate the performance of MP-PBP against MR, we make the following plots:

e A plot showing the L1 error difference between the max-nmraatfs computed by MP-PBP
and MP-LBP.

e Alog probability difference plot of the modes found by MP#Bnd MP-LBP.

e Plot showing the max-marginals computed by PBP versus tixemaaiginals computed by
LBP for 200 particles.



L1 error plot and the log probability plot for the images im#ies 4 and 5 are shown in Figures 7,
8 and 9. The max-marginal plots for the images in Figures 45aaick shown in Figures 10 and 11
respectively.

Figure 7: The figure on the left shows the log-log plot of thediaa L1 error between the max-
marginals computed by MP-PBP and the max-marginals cordputd BP versus the number of
particles used for different sampling methods for the imigEigure 4. LBP uses a regular grid
of size 1000. The figure on the right shows the log-log plot of the log piulity difference of
the modes found by MP-PBP and MP-LBP for the same image. Netethe L1 errors for some
sampling methods increases with an increase in the numbmart€les though the log probability
difference decreases since MP-PBP is able to find a bettee mvbdn compared to MP-LBP.

4.3 Comparison with Simulated Annealing

We compare the performance of MP-PBP with that of Simulateshe®ling with Metropolis-
Hastings for different particle sizes. For a fair companisave use the same Gaussian proposal
distribution as the one used for MP-PBP. The target proitalilstribution for Metropolis-Hastings

is the joint probability distribution of all the variableaised to a temperature and is given by :

=

p(X) X H (@v(xv))% H (‘Pu,v(xuamv)) . (10)
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The details of the implementation are given in Figure 12.
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Figure 8: The figure on the left shows the log-log plot of thediae L1 error between the max-
marginals computed by MP-PBP and the max-marginals cordpatd BP versus the number of
particles used for different sampling methods for the imagEigure 4. LBP uses a regular grid
of size2000. The figure on the right shows the log-log plot of the log phulity difference of the
modes found by MP-PBP and MP-LBP for the same image. Notehbdtl errors for all sampling
methods decreases with an increase in the number of particke the log probabilities decrease
since MP-PBP is able to find a better mode when compared to BI®-L
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Figure 9: The figure on the left shows the log-log plot of thediae L1 error between the max-
marginals computed by MP-PBP and the max-marginals cordgutd BP versus the number of
particles used for different sampling methods for the imismgEigure 5. LBP uses a regular grid
of size 1000. The figure on the right shows the log-log plot of the log piulity difference of
the modes found by MP-PBP and MP-LBP for the same image. Matethe L1 errors for some
sampling methods increases with an increase in the numbmartitles though the log probability
difference decreases since MP-PBP is able to find a bettee mvbdn compared to MP-LBP. Also
note that the log probability difference goes negative atentiban 10 particles when sampling from
the true max-marginals for the same reason.
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Figure 10: Plot comparing max-marginals computed by MP-REBP max-marginals computed by
LBP on the image in Figure 4. MP-LBP max-marginals are comgbain regular grid of siz&€000
and MP-PBP use200 particles and a regular grid of si2z®00 for the smoothing step. We also
show the normalized local observation potential in the sploefor illustration purpose. Note that
the max-marginals computed by MP-PBP are almost the santeames computed by MP-LBP
and both the max-marginals are consistent with the locambson potential at all nodes. The key
thing to note is that MP-PBP finds the max-marginals consistéh MP-LBP with fewer particles.
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Figure 11: Plot comparing max-marginals computed by PB wiax-marginals computed by
LBP on the image in Figure 5. MP-LBP max-marginals are comgbain regular grid of siz€000
and MP-PBP use200 particles and a regular grid of si2®@00 for the smoothing step. We also
show the normalized local observation potential in the splogfor illustration purpose. The key
difference between this figure and Figure 10 is that the margmals computed by MP-LBP is
not necessarily consistent with the local observation mi@kat all nodes. This is because the
edge compatibility function that forces adjacent nodesaielto the same depth overrides the local
evidence at that node. Note that the max-marginals comyt&BP are consistent with the max-
marginals computed by MP-LBP at all nodes. The key thing tte ri® that MP-PBP finds the
max-marginals consistent with MP-LBP with fewer partickag&n for an image with variation in
disparities.
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Let Thax be the number of simulated annealing iterations to run.
Let P be the number of proposal distributions of Metropolis to imseach iteration of PBP.
Let o be the standard deviation of the proposal distributions efrbpolis.

1. Foreach =1 : Thhax do the following :
(a) Set the current temperattifeas follows :
T ="Tmax—i+1
(b) Forp=1: P, do the following :
i. For each node,, in the graph :
A. Perturb the particle location’ ~ /\/(m|x§f), a).
B. Compute the target probability distribution as a functd x.,

1
using equatiom(X) o< [],cy (901,(%,)) ' [ yer (%,U(azu,xu))
keeping the particle locations for all other nodes fixed.
C. Evaluate the target probability distribution in Part éB)particle locations:,,
andz,.

D. Compute the acceptance probability for metropolisias(1, i%i)

1
T

Figure 12: Pesudo-code for Simulated Annealing implent&mta

5 Summary and Conclusions

In this paper we discussed the implementation of particleefopropagation with the Metropolis-
Hastings sampling method. We compared its performanceattittr sampling techniques and show
that it performs just as well as sampling from the discretiestimated marginals in the case when
the variables are univariate. Further, we discussed thepr@duct version of particle belief prop-
agation and its main differences with the sum-product versif belief propagation. We illustrated
the performance of MP-PBP on the stero vision problem witlious sampling methods including
Metropolis-Hastings sampling method. We showed that feruhivariate case, MP-PBP finds a
mode with fewer number of particles compared to MP-LBP. Whier showed that MP-PBP finds
a better mode when compared to Simulated Annealing in seymtficfewer number of iterations

Running a MCMC simulation at every node at every iteratioéié-PBP is computionally inten-
sive and often unsatisfactory for large models. Adaptiverbfmlis-Hastings samplers like those
described in [11] can be used to improve the performance oM@Clescribed in this paper. Fur-
ther work in MP-PBP would include testing the performanc®Bf Metropolis-Hastings sampling
method when the variables in the model are multivariate.
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Log Probability of Simulated Annealing versus Particle BP
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Figure 13: Plot of the log probabilities of the modes foundwy-PBP and Simulated Annealing
versus the iteration number for the same proposal distoibsiand identical number of perturbations
in each iteration for the image in Figure 4. Both MP-PBP antu$ated annealing plots are averaged
over 20 trials and MP-PBP uses a regular grid of siz#0 for smooting. Note that simulated
annealing takes a significantly larger number of iteratimnnd a mode as good as the one found
by MP-PBP.
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Log Probability of Simulated Annealing versus Particle BP
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Figure 14: Plot of the log probabilities of the modes founduWy-PBP and Simulated Annealing
versus the iteration number for the same proposal distoibsiand identical number of perturbations
in each iteration for the image in Figure 4. Both MP-PBP antléated annealing plots are averaged
over 20 trials and MP-PBP uses a regular grid of si#0 for smooting. Note that simulated
annealing takes a significantly larger number of iteratimnind a mode as good as the one found
by MP-PBP.
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Log Probability of Simulated Annealing versus Particle BP
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Figure 15: Plot of the log probabilities of the modes foundMily-PBP and Simulated Annealing
versus the iteration number for the same proposal distoibsiand identical number of perturbations
in each iteration for the image in Figure 5. Both MP-PBP antl$ated annealing plots are averaged
over 20 trials and MP-PBP uses a regular grid of siZ#0 for smooting. Note that simulated
annealing does significantly worse than MP-PBP in terms of irmode and cannot find a better
MAP-configuration with an increase in iterations for the gean Figure 5.
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Figure 16: Images reconstructed using the MAP-configunatimind by various belief propaga-
tion methods in one trial along with the ground truth distiesi for the image in Figure 4. (a)
Ground truth disparities. (b) MAP-configuration found by MBP using1000 states. (c) MAP-
configuration found by MP-PBP usirtj)0 particles at each node and a regular grid of $i2@0 in
the smoothing step. (d) MAP-configuration found by Simudadanealing afte2000 iterations.
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Figure 17: Images reconstructed using the MAP-configunatimind by various belief propaga-
tion methods in one trial along with the ground truth distiesi for the image in Figure 4. (a)
Ground truth disparities. (b) MAP-configuration found by MBP using2000 states. (c) MAP-
configuration found by MP-PBP usirtj)0 particles at each node and a regular grid of 8@ in
the smoothing step. (d) MAP-configuration found by Simudadanealing afte2000 iterations.
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Figure 18: Images reconstructed using the MAP-configunatbaind by various belief propaga-
tion methods in one trial along with the ground truth dispesi for the image in Figure 5. (a)
Ground truth disparities. (b) MAP-configuration found by MBP using1000 states. (c) MAP-
configuration found by MP-PBP usirg§0 particles at each node and a regular grid of $i2@0) in
the smoothing step. (d) MAP-configuration found by Simua@nealing afteB200 iterations.
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