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Abstract

Particle belief propagation has been successfully appliedto efficiently compute
marginal distributions in graphical models defined over random variables with
continuous domains [1]. We show the application of the max-product particle
belief algorithm to compute the MAP-configuration. We applythe max-product
particle belief propagation (MP-PBP) algorithm to the stereo vision problem and
compare its performance with the discretized version of loopy belief propagation.
We show that MP-PBP yields similar performance to the discrete version with
fewer particles.

1 Introduction

Graphical models provide a framework to model the joint probability distribution of many random
variables. Nodes are used to model variables in the joint probability distribution and the edges
express probabilistic relationship between the variables. Message passing algorithms can then be
used to compute quantities of interest like the marginal distributions of all or a subset of all the
variables in the graph and the MAP-configuration, i.e, the setting of the variables in the graphical
model that maximizes the joint probability distribution ofall the variables in the model.

Belief propagation is a message passing algorithm used to draw inference on graphical models. The
sum-product version of belief propagation computes the marginal distribution of each variable in
the model and the max-product version computes the MAP-configuration. When variables are low-
dimensional and the state space of the variables is discrete, loopy belief propagation can be used
to efficiently compute quantities of interest like the marginal distributions all the variables. When
the variables are continuous, it is necessary to either discretize the state space of the variables or
approximate the messages in some form. Sudderth et al. [2] showed that each message can be
represented as a collection of samples and such messages canbe used to run inference algorithms
on graphical models with continuous state spaces. Particlefiltering on the other hand discretizes the
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continuous state space of the variables using a set of particles but has only been applied to Markov
chains [3].

When the variables in the graphical model are univariate, it is possible to compare the results of
sum-product version of particle belief propagation(PBP) with the discretized version of belief prop-
agation. Ihler et al. [1] showed that L1 errors between the marginal distributions computed by PBP
and those of the discretized version decrease as the number of particles are increased. Sampling
methods that were considered include sampling from the local observation potential, sampling from
the computed discretized marginals and sampling from the current estimated belief at each node.

It is natural to consider the max-product version of PBP to determine the MAP-configuration. Max-
Product loopy belief propagation (MP-LBP) has been successfully applied to graphs with loops for
discrete variables [4]. In the case where the variables are low-dimensional and are continous or have
a large state space, it becomes possible to discretize the state space using a finite set of particles.
For such small problems, discretizing the state space enables us to compare the performance of MP-
PBP with MP-LBP, vis-a-vis the MAP-configuration. Ensuringgood peformance of MP-PBP in
comparison to MP-LBP for low-dimensional problems allows us to generalize MP-PBP for graph-
ical models with continuous state spaces but having large dimenions where MP-LBP computations
become intractable.

In this paper we analyze the performance of sampling the particles at each node using Markov chain
Monte Carlo methods like Metropolis-Hastings algorithm. We apply the Metropolis Hastings sam-
pling method to MP-PBP to compute the MAP-configuration. We compare the MAP-configuration
found by PBP with those found by MP-LBP. Finally, we compare the results of MP-PBP with Sim-
ulated Annealing, a probabilistic meta-heuristic used to find a good approximation to a globally
optimum MAP-configuration [5, 6].

2 Background

2.1 Notation

Let G be a graphical model with verticesV and edgesE. Let Γ(v) be the neighbors of vertexv in
the graph. Letxv be the random variable associated with the nodev with continuous state space
χv. For simplicity sake, we assume the joint probability distribution of all variables in the graph
factorizes as a pairwise MRF :

p(X) =
∏

v∈V

ϕv(xv)
∏

{u,v}∈E

ϕu,v(xu, xv). (1)

In equation (1),ϕv(xv) represents the node specific local observation potential and ϕu,v(xu, xv)
represents the pairwise potential function for edge{u, v}. A sample pairwise MRF is shown in
Figure 1.

2.2 Sum-Product Particle Belief Propagation (PBP)

For graphical models with small, discrete state spaces, sum-product algorithm can be used to effi-
ciently compute marginal distributions of the variables inthe model. The sum-product messages in
such graphical models are given by the equation :

m(t)
u→v(xv) =

∑

xu∈χu

[

ϕu(xu)ϕu,v(xu, xv)
(

∏

w∈Γ(u)\v

m(t−1)
w→u (xu)

)

]

(2)

When the variables are continuous, one option is to discretize the continuous state space of each
variable using a finite set of particle locations as in PBP [1]. In PBP, a finite set of particles for
each nodexu are sampled from a proposed distributionWu(xu) for that node . The particles thus
sampled at each node are used to approximate the sum-productmessage in equation (2) as follows :
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Figure 1: A pairwise MRF where any two non-adjacent random variables are conditionally inde-
pendent given all other variables in the model. For example,the random variable A is conditionally
independent of Z given all the other nodes. [https://facwiki.cs.byu.edu/cs677sp10/index.php]

m(t)
u→v(xv) =

1

M

M
∑

i=1

[

ϕu(x
(i)
u )

Wu(x
(i)
u )

ϕu,v(x
(i)
u , xv)

(

∏

w∈Γ(u)\v

m(t−1)
w→u (x

(i)
u )

)

]

(3)

Given the messages in equation (3), we can compute the current estimated belief at nodexv as
follows [1] :

Qv(xv) ∝ ϕu(xv)
(

∏

w∈Γ(v)

m(t)
w→v(xv)

)

(4)

2.3 Max-Product Belief Propagation

Given the potential functions in equation (1), messages canbe passed along the edges of the graph
to compute the MAP-configuration. Letm(t)

u→v(xv) be the max-product message from graph nodeu
to nodev at timestept as a function ofxv. Then the max-product message update equation is given
by:

m(t)
u→v(xv) = max

xu∈χu

[

ϕu(xu)ϕu,v(xu, xv)
(

∏

w∈Γ(u)\v

m(t−1)
w→u (xu)

)

]

(5)

The message above is a continuous function of the state spaceof the random variablexv and can be
evaluated at any particular particle locationxv of χu. Letµv(xv) be the max-marginal ofxv defined
as :

µv(xv) = max
x′|x′

v=xv

p(x′
1, x

′
2, ........x

′
N ) (6)

Messages computed in equation(5) can then be used to computethe above max-marginal using the
equation :

µv(xv) ∝ ϕv(xv)
(

∏

w∈Γ(v)

m(t)
w→v(xv)

)

(7)
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For a graph that is tree (cycle-free), the above max-marginals are exact [7]. For a graph with cycles,
the max-marginals computed are approximate. Given these max-marginals, a backtracking proce-
dure can be used to compute the MAP-configurationx̂ such that̂x ∈ argmaxx′ p(x′

1, x
′
2, ........x

′
N )

of the distribution [8].

3 Max-Product PBP

We describe here the max-product version of particle beliefpropagation. MP-PBP maintains a set
of particles{x(1)

u , x
(2)
u . . . x

(M)
u } at every nodexu of the graph. Equation (5) can be approximated

using the current discrete set of particle locations of nodexu as follows :

m(t)
u→v(xv) = max

{x
(j)
u :j=1,2....M}

[

ϕu(x
(j)
u )ϕu,v(x

(j)
u , xv)

(

∏

w∈Γ(u)\v

m(t−1)
w→u (x

(j)
u )

)

]

(8)

Note the both the max-product message from nodexu to nodexv given by equation (5) and the
max-marginal at nodexv given by equation (7) are both continuous functions of the state space of
nodexv and hence can be evaluated for the current discrete set of particle locations atxv. The
max-marginal at nodexv for a particle locationx(k)

v is given by the equation :

µv(x
(k)
v ) ∝ ϕv(x

(k)
v )

(

∏

w∈Γ(v)

m(t)
w→v(x

(k)
v )

)

(9)

At the end of every iteration, the current set of particle locations{x(1)
u , x

(2)
u . . . x

(M)
u } at every node

xu are updated based on the sampling distributions used. We saymore about this in Section 3.1.

Note that the key difference between equation (3) and equation (8) is that the message update in (3)
requires that we reweight the message by the corresponding proposal distribution at nodexu. This
reweighting is necessary since we need to correct for the useof a biased proposal distribution for
PBP. This reweighting is removed in equation (8) because of the application of the max-operator in
the message update equation. This is further illustrated inFigure 2.

3.1 Sampling Distributions

An important thing to consider for MP-PBP is the sampling distribution for each nodexu. Koller
et al. [9] suggested that a good choice would be to use the truesum-product marginal at nodexu.
Since we do not have the true sum-product marginal to sample from, we can instead sample from
the current estimated marginal given by equation (4). For MP-PBP, we need to sample from the
current estimated max-marginals and we consider 2 choices :1) Sample from the discretized current
estimated max-marginals obtained at each node on a regular dense grid by keeping the particles at its
neighbors fixed. Note that this is only possible when the variablexu is low-dimensional. 2) Run a
short MCMC simulated algorithm at each node at every iteration of MP-PBP similar to the approach
used in particle filters [10]. We describe the MCMC simulation in more detail in Section 3.2.

For illustration purposes, we also consider sampling from the local observation potential and the
discretized true max-marginals obtained from LBP with no resampling. Note that sampling from
the discretized true max-marginals is only possible in the univariate case since LBP can be used to
compute the true max-marginals on a regular dense grid.

3.2 Sampling using Metropolis-Hastings for MP-PBP

We consider the affect of sampling particles for PBP using Metropolis-Hastings algorithm. The
marginal distribution of each nodexv given by equation (7) is difficult to sample from but easy to
evaluate up to a normalization constant at any given particle location. We maintain a set of particle
locations{x(1)

u , x
(2)
u , . . . , x

(M)
u } at each nodexu of the graph at every iteration of PBP. At each iter-

ation, we perturb each particle location by running a short MCMC simulation using the Metropolis-
Hastings algorithm. There are two important things to consider while running Metropolis-Hastings.
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Figure 2: Plot of a sample true max-product message from nodexu to nodexv as a function of the
state space of nodexu for a fixed value of nodexv along with the Gaussian proposal distribution
from where the particles of nodexu are sampled. The max-product message from nodexu to node
xv is evaluated at each particle location of nodexu sampled from the Gaussian proposal distribution.
If the max-product were reweighted by the Gaussian proposal, then the max-product message would
incorrectly place more mass in particle locations that are in the tails of the Guassian distribution as
shown in the above figure and vice versa.
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First is the choice of the proposal distribution to use for the random walk. We propose a random walk
for each particle location at each node using a Gaussian distribution that is centered at that particle
location. Second is the choice of the bandwidth parameter(σ) for the Gaussian proposal distribu-
tion. The bandwidth parameter is set so that acceptance ratefor Metropolis-Hastings perturbations
is neither too high or too long. We say more about this in Section 4.1.

The issues considered while applying Metropolis-Hastingssampling method to MP-PBP are similar
to those for the sum product version of particle belief propagation. We note the two main differ-
ences between using Metropolis-Hastings sampling for PBP and MP-PBP : the target distribution
for MP-PBP is the current estimated max-marginals given by equation (7) as opposed to the current
estimated belief given by equation (4) for PBP; and the MCMC simulation for MP-PBP needs fewer
proposal distributions in comparison to PBP because of the absence of re-weighting in the message
update equation (5) and as illustrated in Figure 2.

The details of the implementation for the Metropolis-Hastings sampling method are given in Figure
3.

LetN be the total number of nodes in the graph and letM be the number of particles used at
every node. LetT be the number of PBP iterations to use.
Let P be the number of proposal distributions of Metropolis to usein each iteration of PBP.
Let σ be the standard deviation of the proposal distribution of Metropolis.
Letm(t)

u→v(xv) be the message from graph nodeu to nodev at timestept as a function ofxv.
LetQ(t)(xu) be the node belief at nodexu at timestept.

1. For eacht = 1 : T , do the following :
(a) Compute max-product message on every edge based on the schedule as follows :

m
(t)
u→v(xv) =

max
{x

(j)
u :j=1,2....M}

[

ϕu(x
(j)
u )ϕu,v(x

(j)
u , xv)

(

∏

w∈Γ(u)/v m
(t−1)
w→u (x

(j)
u )

)

]

(b) Forp = 1 : P , do the following :
i. For each nodexu in the graph :

A. Perturb each particle location̄x(j)
u ∼ N

(

x|x
(j)
u , σ

)

.

B. Compute the node beliefQt(xu) ∝ ϕu(xu)
(

∏

w∈Γ(u) m
(t)
w→u(xu)

)

.

C. Evaluate the node belief in Part (b) at particle locationsxu andx̄u.

D. Compute the acceptance probability for metropolis asmax(1,
Q(t)(x̄(j)

u )

Q(t)(x
(j)
u )

).

Figure 3: Pseudo-code showing the implementation of MP-PBPfor Metropolis-Hastings sampling
method.
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4 Experimental Results

We evaluate the performance of PBP and MP-PBP on the stereo-vision problem, i.e the problem
of estimating the most likely depth at each pixel in an image.To illustrate the performance of
particle belief propagation on different kinds of images, we consider one image with largely uniform
disparties and another with a more variation in disparities. These images are shown in Figures 4 and
5 respectively.

Left Image
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Figure 4: The left and right stereo vision images along with the ground truth dispartities for a small
3 by 5 image. This image has largely uniform disparities.
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Figure 5: The left and right stereo vision images along with the ground truth dispartities for a larger
10 by 15 image. This image has more variation in disparities.

4.1 PBP with Metropolis-Hastings sampling

We evaluate the performance of PBP on the image shown in Figure 4 when sampling using the
Metropolis-Hastings sampling method. We note the following about the Metropolis-Hastings sam-
pling method for PBP :200 proposal distributions were considered for each particle location at each
node at every iteration of PBP. This is necessary in order to allow the MCMC simulation to converge
and compute the correct weightsWu(xu) in equation (3); bandwidth parameterσ for the Gaussian
proposal distribution was adjusted so that25− 50% of the particle perturbations were accepted.
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The L1 error plot is shown in Figure 6 for the image in Figure 4.

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

M
ed

ia
n 

L−
1 

er
ro

r

Plot of L1 Errors vs Number of Particles− Grid Size(600)
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Figure 6: The above figure is a log-log plot of the L1 errors between the marginals computed by
LBP on a dense regular grid and those computed by PBP smooted on the same grid for the image
in Figure 4. This plot displays L1 errors averaged over25 different runs of PBP. Notice that for all
sampling methods, the L1 errors decrease with an increase inthe number of particles. Also note
that the L1 error plot when using the Metropolis-Hastings sampling method closely shadows the L1
error plot when sampling from the current estimated marginals.

4.2 MP-PBP

We evaluate the performance of MP-PBP on the images shown in Figures 4 and 5 with the following
sampling methods :

• Sampling using the local observation potential once with noresampling.

• Sampling once from the true max-marginals computed by running MP-LBP with no resam-
pling.

• Sampling from the current estimated max-marginals smootedon a regular dense grid.

• Sampling using Metropolis-Hastings method.

In order to illustrate the performance of MP-PBP against MP-LBP, we make the following plots:

• A plot showing the L1 error difference between the max-marginals computed by MP-PBP
and MP-LBP.

• A log probability difference plot of the modes found by MP-PBP and MP-LBP.

• Plot showing the max-marginals computed by PBP versus the max-marginals computed by
LBP for 200 particles.
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L1 error plot and the log probability plot for the images in Figures 4 and 5 are shown in Figures 7,
8 and 9. The max-marginal plots for the images in Figures 4 and5 are shown in Figures 10 and 11
respectively.
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Figure 7: The figure on the left shows the log-log plot of the median L1 error between the max-
marginals computed by MP-PBP and the max-marginals computed by LBP versus the number of
particles used for different sampling methods for the imagein Figure 4. LBP uses a regular grid
of size1000. The figure on the right shows the log-log plot of the log probability difference of
the modes found by MP-PBP and MP-LBP for the same image. Note that the L1 errors for some
sampling methods increases with an increase in the number ofparticles though the log probability
difference decreases since MP-PBP is able to find a better mode when compared to MP-LBP.

4.3 Comparison with Simulated Annealing

We compare the performance of MP-PBP with that of Simulated Annealing with Metropolis-
Hastings for different particle sizes. For a fair comparison, we use the same Gaussian proposal
distribution as the one used for MP-PBP. The target probability distribution for Metropolis-Hastings
is the joint probability distribution of all the variables raised to a temperature and is given by :

p(X) ∝
∏

v∈V

(

ϕv(xv)
)

1
T

∏

{u,v}∈E

(

ϕu,v(xu, xv)
)

1
T

. (10)

The details of the implementation are given in Figure 12.
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Figure 8: The figure on the left shows the log-log plot of the median L1 error between the max-
marginals computed by MP-PBP and the max-marginals computed by LBP versus the number of
particles used for different sampling methods for the imagein Figure 4. LBP uses a regular grid
of size2000. The figure on the right shows the log-log plot of the log probability difference of the
modes found by MP-PBP and MP-LBP for the same image. Note thatthe L1 errors for all sampling
methods decreases with an increase in the number of particles and the log probabilities decrease
since MP-PBP is able to find a better mode when compared to MP-LBP.
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Figure 9: The figure on the left shows the log-log plot of the median L1 error between the max-
marginals computed by MP-PBP and the max-marginals computed by LBP versus the number of
particles used for different sampling methods for the imagein Figure 5. LBP uses a regular grid
of size1000. The figure on the right shows the log-log plot of the log probability difference of
the modes found by MP-PBP and MP-LBP for the same image. Note that the L1 errors for some
sampling methods increases with an increase in the number ofparticles though the log probability
difference decreases since MP-PBP is able to find a better mode when compared to MP-LBP. Also
note that the log probability difference goes negative at more than 10 particles when sampling from
the true max-marginals for the same reason.
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Figure 10: Plot comparing max-marginals computed by MP-PBPwith max-marginals computed by
LBP on the image in Figure 4. MP-LBP max-marginals are computed on regular grid of size1000
and MP-PBP uses200 particles and a regular grid of size1000 for the smoothing step. We also
show the normalized local observation potential in the sameplot for illustration purpose. Note that
the max-marginals computed by MP-PBP are almost the same as the ones computed by MP-LBP
and both the max-marginals are consistent with the local observation potential at all nodes. The key
thing to note is that MP-PBP finds the max-marginals consistent with MP-LBP with fewer particles.
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Estimated Max Marginals

True Max Marginals

Discrete BP Max Marginals

Local Observation Potential

Figure 11: Plot comparing max-marginals computed by PBP with max-marginals computed by
LBP on the image in Figure 5. MP-LBP max-marginals are computed on regular grid of size1000
and MP-PBP uses200 particles and a regular grid of size1000 for the smoothing step. We also
show the normalized local observation potential in the sameplot for illustration purpose. The key
difference between this figure and Figure 10 is that the max-marginals computed by MP-LBP is
not necessarily consistent with the local observation potential at all nodes. This is because the
edge compatibility function that forces adjacent nodes to have to the same depth overrides the local
evidence at that node. Note that the max-marginals computedby PBP are consistent with the max-
marginals computed by MP-LBP at all nodes. The key thing to note is that MP-PBP finds the
max-marginals consistent with MP-LBP with fewer particleseven for an image with variation in
disparities.
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Let Tmax be the number of simulated annealing iterations to run.
Let P be the number of proposal distributions of Metropolis to usein each iteration of PBP.
Let σ be the standard deviation of the proposal distributions of Metropolis.

1. For eachi = 1 : Tmax, do the following :
(a) Set the current temperatureT as follows :

T = Tmax− i+ 1

(b) Forp = 1 : P , do the following :
i. For each nodexu in the graph :

A. Perturb the particle location̄x(j)
u ∼ N

(

x|x
(j)
u , σ

)

.

B. Compute the target probability distribution as a function of χu

using equationp(X) ∝
∏

v∈V

(

ϕv(xv)
)

1
T ∏

{u,v}∈E

(

ϕu,v(xu, xv)
)

1
T

keeping the particle locations for all other nodes fixed.
C. Evaluate the target probability distribution in Part (B)at particle locationsxu

andx̄u.

D. Compute the acceptance probability for metropolis asmax(1,
P (x̄(j)

u )

P (x
(j)
u )

).

Figure 12: Pesudo-code for Simulated Annealing implementation.

5 Summary and Conclusions

In this paper we discussed the implementation of particle belief propagation with the Metropolis-
Hastings sampling method. We compared its performance withother sampling techniques and show
that it performs just as well as sampling from the discretized estimated marginals in the case when
the variables are univariate. Further, we discussed the max-product version of particle belief prop-
agation and its main differences with the sum-product version of belief propagation. We illustrated
the performance of MP-PBP on the stero vision problem with various sampling methods including
Metropolis-Hastings sampling method. We showed that for the univariate case, MP-PBP finds a
mode with fewer number of particles compared to MP-LBP. We further showed that MP-PBP finds
a better mode when compared to Simulated Annealing in signficantly fewer number of iterations

Running a MCMC simulation at every node at every iteration ofMP-PBP is computionally inten-
sive and often unsatisfactory for large models. Adaptive Metropolis-Hastings samplers like those
described in [11] can be used to improve the performance of MCMC described in this paper. Fur-
ther work in MP-PBP would include testing the performance ofPBP Metropolis-Hastings sampling
method when the variables in the model are multivariate.
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Simulated Annealing
Estimated Max Marginals − 5 Particles
Estimated Max Marginals − 5 Particles extrapolated
Estimated Max Marginals − 10 Particles
Estimated Max Marginals − 10 Particles extrapolated
Estimated Max Marginals − 200 Particles

Figure 13: Plot of the log probabilities of the modes found byMP-PBP and Simulated Annealing
versus the iteration number for the same proposal distributions and identical number of perturbations
in each iteration for the image in Figure 4. Both MP-PBP and simulated annealing plots are averaged
over 20 trials and MP-PBP uses a regular grid of size1000 for smooting. Note that simulated
annealing takes a significantly larger number of iterationsto find a mode as good as the one found
by MP-PBP.
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Simulated Annealing
Estimated Max Marginals − 5 Particles
Estimated Max Marginals − 5 Particles extrapolated
Estimated Max Marginals − 10 Particles
Estimated Max Marginals − 10 Particles extrapolated
Estimated Max Marginals − 200 Particles

Figure 14: Plot of the log probabilities of the modes found byMP-PBP and Simulated Annealing
versus the iteration number for the same proposal distributions and identical number of perturbations
in each iteration for the image in Figure 4. Both MP-PBP and simulated annealing plots are averaged
over 20 trials and MP-PBP uses a regular grid of size2000 for smooting. Note that simulated
annealing takes a significantly larger number of iterationsto find a mode as good as the one found
by MP-PBP.
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Simulated Annealing
Estimated Max Marginals − 5 Particles
Estimated Max Marginals − 5 Particles extrapolated
Estimated Max Marginals − 10 Particles
Estimated Max Marginals − 10 Particles extrapolated
Estimated Max Marginals − 200 Particles

Figure 15: Plot of the log probabilities of the modes found byMP-PBP and Simulated Annealing
versus the iteration number for the same proposal distributions and identical number of perturbations
in each iteration for the image in Figure 5. Both MP-PBP and simulated annealing plots are averaged
over 20 trials and MP-PBP uses a regular grid of size1000 for smooting. Note that simulated
annealing does significantly worse than MP-PBP in terms of find a mode and cannot find a better
MAP-configuration with an increase in iterations for the image in Figure 5.
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Figure 16: Images reconstructed using the MAP-configuration found by various belief propaga-
tion methods in one trial along with the ground truth disparities for the image in Figure 4. (a)
Ground truth disparities. (b) MAP-configuration found by MP-LBP using1000 states. (c) MAP-
configuration found by MP-PBP using200 particles at each node and a regular grid of size1000 in
the smoothing step. (d) MAP-configuration found by Simulated Annealing after2000 iterations.
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Figure 17: Images reconstructed using the MAP-configuration found by various belief propaga-
tion methods in one trial along with the ground truth disparities for the image in Figure 4. (a)
Ground truth disparities. (b) MAP-configuration found by MP-LBP using2000 states. (c) MAP-
configuration found by MP-PBP using200 particles at each node and a regular grid of size2000 in
the smoothing step. (d) MAP-configuration found by Simulated Annealing after2000 iterations.
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Figure 18: Images reconstructed using the MAP-configuration found by various belief propaga-
tion methods in one trial along with the ground truth disparities for the image in Figure 5. (a)
Ground truth disparities. (b) MAP-configuration found by MP-LBP using1000 states. (c) MAP-
configuration found by MP-PBP using200 particles at each node and a regular grid of size1000 in
the smoothing step. (d) MAP-configuration found by Simulated Annealing after3200 iterations.
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