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In densely packed groups demonstrating collective behaviour, such as bird

flocks, fish schools or packs of bicycle racers (cycling pelotons), information

propagates over a network, with individuals sensing and reacting to stimuli

over relatively short space and time scales. What remains elusive is a robust,

mechanistic understanding of how sensory system properties affect inter-

actions, information propagation and emergent behaviour. Here, we show

through direct observation how the spatio-temporal limits of the human

visual sensory system govern local interactions and set the network structure

in large, dense collections of cyclists. We found that cyclists align in patterns

within a + 308 arc corresponding to the human near-peripheral visual field,

in order to safely accommodate motion perturbations. Furthermore, the

group structure changes near the end of the race, suggesting a narrowing

of the used field of vision. This change is consistent with established

theory in psychology linking increased physical exertion to the decreased

field of perception. Our results show how vision, modulated by arousal-

dependent neurological effects, sets the local arrangement of cyclists, the

mechanisms of interaction and the implicit communication across the

group. We furthermore describe information propagation phenomena with

an analogous elastic solid mechanics model. We anticipate our mechanistic

description will enable a more detailed understanding of the interaction

principles for collective behaviour in a variety of animals.
1. Introduction
Self-organized collective behaviour, employed by a range of species including

birds [1–4], insects [5–8], fish [9–13] and even human crowds [14–17], is

characterized by often remarkable global motion arising from local inter-

individual interactions [18–20]. Collective behaviour in animals confers benefits

related to foraging [21], predator evasion [22,23] and energy conservation

[9,17,24,25]. In cycling pelotons, large groups of bicycle racers move in dense

configurations to conserve energy through aerodynamic drafting (typical spa-

cing � bike length, typical speed �15 m s21). Multi-day professional stage

races such as the Tour de France (TdF) cover �3500 km in 21 days and feature

a variety of emergent formations arising under different racing conditions as

shown in figure 1 (see also electronic supplementary material, figure S1). The

TdF includes individual goals, team objectives, terrain changes and other vari-

ables that result in a range of group dynamics playing out over different

temporal and spatial scales [17]. However, the persistent feature is a densely

packed peloton with classifiable global shapes that contains the bulk of the
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Figure 1. Pelotons take many formations in the professional TdF race. (a) In a line, cyclists follow one another closely to reduce aerodynamic drag. (b – e) More
frequently, cyclists pack tightly in formations spanning the road with shapes such as (b) arrow, (e) flat head and others (see figure 2 and electronic supplementary
material, figure S1). (c,d ) Views from rear of (b) and front of (e), respectively. ( f, g) The basic diamond pattern is evident from internal camera views (image credit:
GoPro World), as well as from overhead views in (b,e). Image credits for (a – e): A.S.O. Eurosport, with permissions. (Online version in colour.)
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cyclists. Despite limited visibility within the peloton, col-

lisions are rare even as motion perturbations routinely

initiate waves that propagate through the group. The local

principles that allow the group to move seamlessly as a

whole, avoiding collisions while maintaining cohesion, also

characterize other collective groups in nature [19,20].

In dense, moving animal groups, it is not clear whether

individuals arrange themselves according to sensory function

[2,26–28], optimal energetic benefit [9] or some combination

thereof [20]. Moreover, our understanding of how sensor attri-

butes affect group dynamics is still nascent [5,27–30].

Recently, it was shown that long-standing models of vision-

based interaction (e.g. [2,31]) produce significantly different

results when realistic assumptions about the visual sensory

system are used as opposed to widely employed assumptions

that oversimplify the visual system of the animal under

consideration [30]. Yet, experimental data linking details of

animal sensory systems to features of collective behaviour

are sparse.

In cycling pelotons, the assumption has been that the

internal structure follows from optimal drafting configuration

[17], given that the drafting benefit in isolated pairs of cyclists

is highly sensitive to relative positioning [32–34]. However,

recent work has shown that the energetic benefit in the

interior of a peloton is not particularly sensitive to local con-

figuration [35]. We instead suggest that cyclist arrangement

and local interaction principles are governed by details of

the visual sensory systems. While factors such as strategy

and terrain may affect cyclist positioning over longer time

scales (e.g. minutes), we propose that sensory function

shapes the moment-by-moment dynamics.

To test our hypothesis, we examine aerial television foo-

tage from stages of the 2016 TdF, and measure cyclist

position, network structure and properties of information

transfer, which is described herein as wave propagation.

We provide evidence that these characteristics of the collec-

tive peloton arise from details of the human visual sensory

system. The internal structure and information transfer be-

haviour are shown to change in conditions of high

individual energetic output, which can be related to a
change in sensor system function. Finally, we define an ana-

logous elastic solid mechanical model that captures the

properties of wave propagation within the peloton.
2. Observations and methods
The TdF is the premiere professional road cycling stage race

and consists of more than 20 teams of eight riders competing

for individual daily victories and overall lowest cumulative

time after three weeks of racing. These opposing objectives

create multiple dynamics within a given daily stage (see elec-

tronic supplementary material for more detail), but the

majority of riders spend the day traversing in a tightly

packed peloton, as shown in figure 1. The peloton can take

on many forms depending on race conditions, terrain and

team or individual objectives. These emergent global patterns

are categorized into common persistent shapes, with the

most prevalent being the echelon formation (see electronic

supplementary material, figure S1). These formations are cap-

tured by helicopter for aerial television footage throughout the

race, which we analyse here.

A series of image processing routines, described in more

detail in the electronic supplementary material, is used to

enable quantitative analysis down to the scale of the individual

cyclists. Several variables are defined in the ensuing sections

and these symbols are summarized in the electronic sup-

plementary material, table S1. In each video clip, originally

captured at 30 frames per second (fps) and lasting typically

tens of seconds, we track the position of each cyclist in the

sequence. Images and cyclist positions are then projected into

a metric reference frame defined using known road marking

lengths (electronic supplementary material, figure S2). From

these transformed data, we can measure the distance Ds and

angle u between neighbouring cyclists. Thus, our dataset con-

tains quantitative individual and global information across a

wide range of racing conditions, terrain and energetic output.

Within the different global formations that emerge, we

observe that cyclists consistently arrange themselves in a dia-

mond-shaped lattice structure as shown in figure 1b,e. This
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Figure 2. Two types of waves are observed to propagate through the peloton. (a) Transverse waves are characterized by cyclist motion perpendicular to the direction
of peloton travel (see also electronic supplementary material, video S1, which shows this sequence); circles show the initial location of cyclists, arrows show the
location of the wavefront. (b) Arrows indicate displacement of each of six riders affected by the transverse wave relative to a point fixed with respect to the moving
peloton for the time instances shown in (a). (c) In longitudinal waves, the primary motion of affected cyclists is backward relative to the direction of peloton travel
(see also electronic supplementary material, video S2); circles show the initial location of cyclists. (d ) Displacement of four cyclists affected by the longitudinal wave
relative to a point fixed with respect to the moving peloton for the time instances shown in (c). (e) For transverse waves, tw � Ntr (best-fit line in grey has a slope
of 1.2). Longitudinal waves propagate faster (grey dashed best-fit line is tw ¼ 0.6 Ntr). The lower two dashed lines are extrapolated from data for dunlin flocks [1]
(yellow dashed line) and crowds of human sports fans performing the wave [14] (red dashed line). Image credits for (a,c): A.S.O. Eurosport, with permissions.
(Online version in colour.)
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alignment is confirmed by camera footage from within the

peloton, figure 1f,g, which also indicates how restricted the

field of vision is for an individual. In these dense arrange-

ments, a perturbation in cyclist motion from the mean

peloton heading has the potential to cause a crash, yet

these catastrophic events are relatively rare. Rather, motion

perturbations are seamlessly accommodated and typically

result in waves that propagate through the group, as shown

in figure 2 and electronic supplementary material, videos

S1 and S2. Two modes of wave propagation are observed,

which we label transverse and longitudinal, referring to the

primary direction of the perturbed cyclist motion relative to

the mean peloton motion. Transverse waves, figure 2a,b, are

typically initiated by motion of a cyclist perpendicular to

the forward direction of peloton travel, with trailing cyclists

also moving laterally in sequence to preserve the network

alignment. In longitudinal waves, the primary motion of

affected cyclists is backward relative to the direction of pelo-

ton travel, as shown in figure 2c,d. This type of wave motion

may be initiated by the sudden slowing of a cyclist, or by a

rider moving backward through the peloton.

Waves are identified visually from processed image

sequences of the helicopter television footage, which have

been projected into a metric reference frame. The position

of each wave-affected cyclist relative to the centroid of all

cyclists is plotted for each frame in the sequence (electronic

supplementary material, figure S7). These data combined

with the visual inspection are used to determine the frame

at which each affected rider first moves in response to the

wave. The displacement of the wavefront relative to the

instantaneous location of the first wave-affected rider is

plotted against time and fit with a line to determine the
wave speed Vf. The total time for the wave to propagate

from the first to last affected cyclist is defined as tw. In

addition to measuring the wave speed, the centre-to-centre

distance Ds between successive wave-affected cyclists is

measured on the frame on which the wave is initiated, and

the mean of this distance Ds is computed on this frame. In

the next section, we use the properties of these waves to

gain insight into the underlying interaction principles and

their relationship to human vision.
3. Analysis and discussion
3.1. Wave propagation behaviour
For a range of peloton formations, we observe instances of

transverse and longitudinal wave types and measure the

total wave propagation time tw as a function of the product

of simple reaction time to visual stimuli (tr ¼ 250 ms [36])

and number of cyclists affected by the wave N, which is

plotted in figure 2e. If each agent were responding to the

visually detected motion of their nearest neighbour, we

would expect tw ¼ Ntr, which is the trend followed by the

transverse waves. The longitudinal waves, however, propa-

gate faster than if cyclists are simply responding to their

nearest neighbour. This type of behaviour has been observed

in other groups including sporting event crowds [14] and

dunlin flocks [1]. However, we are not aware of previous

studies showing two different intrinsic time scales for wave

propagation within a single collective group.

The wave propagation behaviour can be generalized by

considering transverse and longitudinal wave speeds VfT
,

VfL
, respectively, as a function of the mean distance between
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Figure 3. Waves demonstrate spacing-dependent speed. (a). Wave speed normalized by peloton velocity Vf/Vp as a function of the average normalized spacing
between nearest neighbours Ds=Lb; symbol shapes are the same as in figure 2e. The longitudinal wave data point that is far above the line corresponds to an uphill
case, such that Vp is smaller than for a typical flat road case. The lines shown indicate that longitudinal waves propagate two times faster than transverse waves,
which is consistent with the measured wave propagation times shown in figure 2e. (b). Using an alternate characteristic velocity Vc to normalize wave speed (where
Vc ¼ Dv for longitudinal waves and Vc ¼ Vtrans for transverse waves) results in a collapse of the transverse and longitudinal data for Ds=Lb , 1, including the
data point for the uphill case. In general, Vf/Vc is a linear function of Ds=Lb. The exception to this trend is transverse waves occurring in the end of race (EOR)
conditions for which Vf/Vc � constant ( pink symbols). For Ds=Lb . 1, we observe no longitudinal waves as the line formation is more prevalent. (Inset) A
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nearest neighbours normalized by a bike length, Ds=Lb

(where Lb ¼ 1.7 m is a typical bike length). In figure 3a, the

wave speeds are normalized by mean peloton speed Vp,

which retains the difference in transverse and longitudinal

wave speeds arising from the different propagation time

scales (i.e. consistent with figure 2e). We aim to derive charac-

teristic scales of longitudinal and transverse velocity that

rationalize the difference between these wave speeds.

Rather than normalizing by the peloton velocity, which

would be expected to characterize the response of a cyclist

to a stimulus in the world frame, we consider a characteristic

motion in the moving peloton frame. The inset of figure 3b
shows a fundamental motion between two cyclists, defined

by a relative longitudinal speed Dv and relative transverse

speed defined as

Vtrans ¼
wb

kLb
Dv, (3:1)

where wb is the width of a cyclist and k is a parameter to be

determined empirically. A scale for the velocity difference Dv
can be derived from the relative acceleration a of the faster

cyclist giving

Dv ¼
ffiffiffiffiffiffiffi
aLb

p
, (3:2)

(see electronic supplementary material for more details).

Several characteristic accelerations are candidates for a,

including the maximal braking deceleration and maximal

forward acceleration of a cyclist. However, here we find the

longitudinal motions associated with the wave behaviour

are best characterized by a non-braking deceleration due to

aerodynamic drag and gravity given by

a ; ad ¼
Fdrag þ Fgravity

m
¼

(1=2)rairV
2
pCDAþmg sina

m
, (3:3)

where g is gravitational acceleration, a is the road slope, rair is

air density and CD, A and m are a cyclist’s drag coefficient,
area and mass, respectively. Inserting equation (3.3) into

equation (3.2) defines the relative longitudinal velocity Dv,

which is in turn used in equation (3.1) to define the transverse

velocity Vtrans. Normalizing VfL
=Dv and VfT

=Vtrans, with k ¼
0.41 computed empirically, provides good collapse of the

transverse and longitudinal wave speeds for Ds=Lb , 1, as

shown in figure 3b.

Thus, the velocity which best characterizes longitudinal

waves is that associated with a rider’s non-braking decelera-

tion due to drag and local road slope. This velocity is

significantly smaller in magnitude than that associated with

braking, which implies that the riders are acting with the

combined goals of safety and energy conservation. The trans-

verse velocity is indicative of one rider passing another,

rather than a maximum possible transverse speed associated

with a stable turning motion [37] (electronic supplementary

material). This indicates that the basic motion that collapses

the wave speeds in the peloton is that of one rider passing

another with a relative velocity characterized by the

non-braking deceleration.
3.2. The role of vision
We propose that the diamond-shaped lattice structure (seen

in figure 1 and electronic supplementary material, figure

S1) accommodates a mechanism of information transfer that

results in the observed wave behaviour. Independent of

long-term race goals, the persistent objectives of a cyclist

are to stay in a beneficial drafting position (trivially satisfied

inside the peloton [35]) and to avoid crashing. Crashes are

most often caused by the sudden slowing of a rider located

directly in front of another cyclist. The diamond structure

separates the front-most cyclist, as shown in figure 4a, allow-

ing the rider at the back of the diamond to effectively react to

a backward propagating longitudinal wave two neighbours

ahead, which is consistent with measured propagation
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times (figure 2e). Additionally, the nearest side-flanking

neighbour is offset to the front providing more space for

transverse motion as cyclists are not generally arranged

shoulder-to-shoulder (electronic supplementary material,

videos S3 and S4). We also note that if cyclists are responding

to wave motions with a fixed reaction time Dt ¼ tr, then we

would expect Vf=Vc / Ds=Lb, where Vc is the characteristic

velocity scale. That is, the wave speed is expected to increase

linearly with spacing between riders Ds, which is what we see

for non end of race (non-EOR) conditions (as shown by blue,

green and yellow data markers in figure 3). Thus, supported

by measured wave propagation times and wave speeds, our

interpretation of the diamond structure is consistent with

cyclists responding to motion—of the nearest neighbour for

transverse waves and two neighbours ahead for longitudinal

waves—with a simple reaction time.

We suggest that this reaction time is consistent with pre-

attentive visual processing. In preattentive vision, a large

range of the human visual field is inspected in parallel with-

out requiring a change in focal attention [38,39]. Although

information processing capability is limited in preattentive

visual processing, basic information along dimensions of tex-

ture, colour and motion can be handled in parallel and

responded to rapidly [38–40]. Visual processing that requires

focal attention over the limited range of the fovea occurs

more slowly. Furthermore, changing focal attention requires

as long as 200 ms if saccadic eye movements are required

[38] (e.g. to change the gaze of the eye). In the context of

cycling pelotons, transverse motion waves propagate from

cyclist to cyclist in �250 ms, which necessarily encompasses

the time taken to process a motion perturbation and to

respond to it by moving. This time scale is consistent with

simple human reaction time to visual stimuli [36]. Therefore,

we conclude that cyclists are responding to motions of neigh-

bours using preattentive visual processing without performing

saccadic eye movements, which would result in longer wave

propagation times than are observed.

This capability to respond to motions perceived outside

the foveal field of vision (central field extending out to �+ 28
[39]) is enabled by the ability of humans to detect motion in
the near-peripheral field of view, with sensitivity to motion

decreasing with increasing angular range (or eccentricity)

[39,41,42]. Thus, if our interpretation of group structure is

correct, we would expect cyclists to arrange themselves

such that frontal neighbours in the diamond pattern are

within a range of angles defined by horizontal peripheral

vision, in order to perceive and accommodate motion pertur-

bations. To test this, we measure the angle u between each

cyclist and their connected neighbours and do this for all

cyclists on all frames within a given video clip (the analysis

for each clip is summarized in electronic supplementary

material, sections S2,S3 and figures S2–S6). The probability

distributions measured over several peloton realizations

show significantly higher likelihood that the angle takes a

value u [ [0, 308], as shown in figure 4b. The drop in prob-

ability at u � 308 coincides with the limit of the human

near-peripheral visual range (figure 4c) [39,43]. This angle

is much larger than the maximal angle predicted for drafting

benefit in a two-cyclist drafting situation (�+ 58) [33]. Fur-

thermore, the trend between the measured range of u in

pelotons and the range of the near-peripheral visual field

holds even in slow, uphill riding scenarios where aerody-

namic drag would be small due to the low speed, further

suggesting that aerodynamics is not the main driver of

intra-peloton structure (electronic supplementary

material, figure S4). Further evidence for this proposed

description of vision-based interaction is found by com-

puting probability distributions of the angle between

each sequential set of neighbours affected by propagating

waves, which show similar roll-off for uwave . 308 (elec-

tronic supplementary material, figure S5). Lastly, we can

compute a characteristic angle relative to the forward

direction from the ratio of characteristic wave velocities,

c ¼ arctan (Vtrans=Dv) ¼ arctan (wb=kLb), which gives c ¼

30.38 with the empirically found value of k ¼ 0.41. This

value is consistent with the bounds found in network

structure measurements and lends further support for

the role of near-peripheral vision in interaction.

For nearly all variables, the wave speed is consistent with

our description of information propagating with fixed inter-
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individual time scales such that Vf=Vc / Ds=Lb. However,

near the end of the race (EOR; time to finish tf , 300 s), this

trend breaks down and we find VfT
=Vc � constant for trans-

verse waves, as shown by the transverse EOR (pink) data

markers in figure 3a,b. This leads us to question if there is

something fundamentally different in the sensory mechan-

isms affecting interaction principles during these conditions.

We gain some insight by observing that the peak sustained

power output over a duration of effort of 300 s coincides

with cyclists entering into the maximal aerobic power zone

of physical capacity [44], as shown in figure 5a. Following

Easterbrook’s Cue Utilization Theory [45], several studies in

sports psychology have linked increased arousal (through

increased physical exertion) to a narrowing of individual per-

ception of relevant task cues [46], figure 5b (see also electronic

supplementary material). We suggest that the increasing

power output associated with EOR conditions reduces the

range of used sensory perception and predict that the internal

group structure should narrow to reflect a reduction in used

field of view. Measuring u for connected neighbours shows a

roll-off in probability at a narrower angle (�208, figure 5c)

compared to non-EOR conditions (�308, figure 4b), support-

ing this prediction. The narrowing structure is evident in

overhead images of the peloton and generally manifests in

a shallower angle at the boundary of the global formations

(figure 5d,e). The precise reason for the insensitivity of trans-

verse wave speed to rider spacing near the EOR is not clear

but can be interpreted as cyclists responding to a virtual

obstacle moving at a fraction of their speed (see electronic

supplementary material, figure S8 and section 3.3 for more

description). Whether and how this relates to changes in sen-

sory system function under increased arousal warrants

further study. We also note that the trend in the speed of

longitudinal waves is not affected in EOR conditions, imply-

ing that the imperative to not crash into the cyclist
immediately in front is the prevailing concern in longitudinal

wave motion regardless of race conditions.

3.3. Continuum modelling of cycling pelotons
Although we have focused on how sensory mechanisms

govern local interactions in pelotons, global models of collec-

tive groups are broadly useful in describing emergent

behaviour. Indeed, collective behaviour often evokes analo-

gous physical phenomena with researchers applying

models motivated by thermodynamics [5], statistical mech-

anics [47] and vehicle traffic patterns [48] to describe

various aspects of group dynamics. Here, we are motivated

by other examples found in the natural world, wherein longi-

tudinal and transverse waves propagate through a medium

with different speeds, such as in seismology [49] and the be-

haviour of elastic materials [50]. In cycling pelotons, the fact

that longitudinal and transverse waves have different

speeds in the same group for Ds=Lb , 1 (figure 3) here motiv-

ates the application of a linear elastic solid model. For a

linear elastic solid, transverse and longitudinal wave speeds

are defined as VfT
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(E=2r(1þ s))

p
and VfL

¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(E(1þ s)=r(1þ s)(1� 2s))

p
, respectively, where E is the

elastic modulus, r is the material density and s is

the Poisson’s ratio. To generate an analogous model for the

cycling pelotons, we define an effective, dimensionless den-

sity r* as the ratio of the area occupied by riders to the

open area in a two-dimensional plane projected onto

the road, as shown in figure 6b. For a peloton with riders

configured in the diamond pattern with nominal angular

orientation defined by u, the equivalent density can be

derived as

r� ¼ Lbwb

Ds
2

sin 2u� Lbwb

, (3:4)
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Figure 6. Wave behaviour can be described by analogous continuum models.
(a) For Ds=Lb � 1, a linear elastic solid model with E* ¼ 75.8 and s ¼

0.24 captures measured wave speeds as a function of r*. For Ds=Lb . 1
(data points left of the vertical line), a taut string model with T* ¼ 7.9 cap-
tures the transverse wave speed. All symbol shapes are the same as in
figure 3a. (b,c) Schematics showing how equivalent density r* is computed
for application of the equivalent solid mechanics models for (b) a peloton
spanning the road and (c) a line of cyclists. (b) Cyclists are shown in the
diamond configuration with nominal angle u defined as shown. The mean
spacing between cyclists is Ds. The density r* is defined for a unit diamond
as the ratio of occupied area to an empty area. (c) For a line of cyclists, the
same definition of the occupied area to open area is used for r*, where the
centre to centre spacing between riders defines the unit cell. (Online version
in colour.)
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where Ds is the average centre-to-centre distance between

successive wave-affected cyclists, and a nominal value of

u ¼ 308 is used to compute r* for all cases. Normalized

transverse and longitudinal wave speeds are defined as

V�fT
;

VfT

Dv
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�

2r�(1þ s)

s
(3:5)

and

V�fL
;

VfL

Dv
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�(1� s)

r�(1þ s)(1� 2s)

s
, (3:6)

respectively, with analogous elastic modulus E*, density r*

and Poisson’s ratio s. Dividing equation (3.6) by equation

(3.5) gives

s ¼ ((VfL
=VfT

))2 � 2

2((VfL
=VfT

))2 � 2
: (3:7)

The ratio of characteristic longitudinal to transverse wave

speed Dv/Vtrans ¼ kLb/wb (with k ¼ 0.41) can be substituted

into equation (3.7) for VfL
=VfT

to estimate s, which gives
0.24. A nonlinear least-squares fit to equations (3.5) and

(3.6) using measured longitudinal and transverse wave

speeds at different observed values of r* can then be used

to estimate the analogous elastic modulus, which

gives E* ¼ 75.8. The resulting model fits to V�fT
and V�fL

are

shown in figure 6a, which capture the measured wave

speed data.

For Ds=Lb . 1, cyclists tend to ride in a line and no

longitudinal waves exist. In this case, a taut string model is

more appropriate, for which the normalized wave speed is

defined as

V�fT
¼ VfT

Dv
¼

ffiffiffiffiffiffi
T�

r�

s
, (3:8)

where T* is a normalized tension. Here, the dimensionless

density is again defined as the ratio of occupied area to

open area projected into the road plane, but now with

riders in a line (figure 6c). The density is thus defined as

r� ¼ Lbwb

Dswb � Lbwb

¼ Lb

Ds� Lb

: (3:9)

Performing a nonlinear least-squares fit to equation (3.8) gives

T* ¼ 7.9 and results in the fit shown in figure 6a. Thus, linear

elastic solid mechanics models can be reasonably applied to

describe the wave propagation behaviour in cycling pelotons.

One caveat to point out is that while an elastic solid model

allows for backward and forward wave propagation, we do

not observe forward propagating waves in cycling pelotons.

This is presumably due to the fact that interactions between

anterior and posterior cyclists are non-reciprocal, as is also

the case in other collective groups (e.g. [4,48]). Nonetheless,

the elastic solid model applied here relates discernible

properties of intra-peloton structure and agent spacing to

observations of wave-like motions within the peloton.
4. Conclusion
Our findings show how interaction principles in dense

cycling pelotons are governed by the human visual sensory

system. The angular range of near-peripheral vision, which

is sensitive to motion, sets the internal diamond lattice

structure that pervades pelotons. This structure safely accom-

modates motion perturbations that result in transverse and

longitudinal waves whose speed can be described by a

linear elastic solid model. The diamond pattern supports

longitudinal waves that propagate at twice the speed of trans-

verse waves as cyclists respond to longitudinal motions of the

cyclist at the forward point of the diamond (two neighbours

away), while responding to transverse motions of their nearest

side-flanking neighbour. Near the end of the race (EOR), the

wave propagation behaviour changes and the internal structure

narrows. This effect appears to be the result of a narrowing of

sensory focus associated with higher energetic output.

Scientific interest in natural collective behaviour has been

high for some time, but a robust understanding of the inter-

action principles between agents has been lacking. As

autonomous engineered capabilities continue their rapid

ascent, questions of how best to define interactions between

autonomous agents rise to the forefront. The interaction prin-

ciples revealed in cycling pelotons connect sensory systems to

emergent collective behaviour, suggesting that the internal

group structure is an emergent effect of sensory properties.
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This promises to be a useful framework for describing how,

for example, a swimming fish school rapidly transitions to

evasive behaviour, or how a collection of self-driving

cars or autonomous robots can be programmed to adapt to

evolving environments.
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