Visualizing Graphs as Maps with Contiguous Regions

Stephen G. Kobourov
Sergey Pupyrev
Paolo Simonetto
The Problem

BubbleSets
[Collins et al., 2009]

LineSets
[Alper et al., 2011]

GMap
[Hu et al., 2010]

Unnecessary overlap
Unnecessary overlap
Disconnected regions

Visualizing Graphs as Maps with Contiguous Regions
Graph And Map Algorithms (GAMA) Group – University of Arizona
Visualizing Graphs as Maps with Contiguous Regions

Graph And Map Algorithms (GAMA) Group – University of Arizona
The Two Approaches

Embedding-based
- Preserves embedding
- Recomputes clusters

Original graph

Cluster-based
- Preserves clusters
- Adjusts embedding
Embedding Based Approach

- **Preserve node positions**
- **Recompute clusters**
 - Compute \(k \)-means [Lloyd, 1982]
 - Refine clusters by pulling-in connected nodes
- **How to choose \(k \)**
 - Use same \(k \) of existing clustering
 - Provide it as a parameter
 - Compute a suitable value [Sugar et al., 2003]
Clustering Based Approach

- **Preserve clusters**

- **Adjust node positions**
 - Compute barycenter graph
 - Remove overlaps [Dwyer et al., 2007]
 - Bound countries and scale nodes in
 - Run FDA that keeps nodes in countries

- **ImPrEd [Simonetto et al., 2011]**
 - Boundaries are uncrossable and flexible
 - Additional force: attraction to original node positions
Analysis

EBA effect on clustering

- **Metrics**
 - Modularity [Brandes et al., 2003]
 - Coverage [Schaeffer, 2007]
 - Conductance [Brandes et al., 2003]

- **Results**
 - On average, 20% reduction in cluster quality
 - Better results for small graphs

- **Timing:** Very fast

CBA effect on embedding

- **Metrics**
 - Stress [Gansner et al., 2004]
 - Distortion
 - Neighborhood preservation [Venna et al., 2010]

- **Results**
 - On average, 10% reduction in embedding quality

- **Timing:** Relatively slow
Visualizing Graphs as Maps with Contiguous Regions

Graph And Map Algorithms (GAMA) Group – University of Arizona
Visualizing Graphs as Maps with Contiguous Regions

Graph And Map Algorithms (GAMA) Group – University of Arizona

Original vs CBA
Conclusions and System

- **Conclusions**
 - Two approaches for contiguous, non-overlapping drawings with existing techniques
 - Different application scenarios
 - Characteristics to preserve
 - Time

- **System**
 - On-line implementation
 - Source code available
 - Gmap, EBA, CBA, and more

- **Future work**
 - Fragmentation can be meaningful
 - Effect of cluster and embedding quality on understanding

GMap

gmap.cs.arizona.edu