
ANSI X3H2-96-501r2

ISO/IEC JTC1/SC21/WG3 DBL MAD-146r2

I S O

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

November 21, 1996

Subject: SQL/Temporal

Status: Change Proposal

Title: Adding Valid Time to SQL/Temporal

Source: ANSI Expert's Contribution

Authors: Richard T. Snodgrass, Michael H. B�ohlen, Christian S. Jensen and Andreas Steiner

2 DBL:MAD-146r2 and X3H2-96-501r2

Abstract: This change proposal speci�es the addition of tables with valid-time support into

SQL/Temporal, and explains how to use these facilities to migrate smoothly from

a conventional relational system to a temporal system. Initially, important require-

ments to a temporal system that may facilitate such a transition are motivated and

discussed. The proposal then describes the language additions necessary to add

valid-time support to SQL3 while ful�lling these requirements. The constructs of

the language are divided into four levels, with each level adding increased temporal

functionality to its predecessor. The proposal formally de�nes the semantics of the

query language by providing a denotational semantics mapping to well-de�ned alge-

braic expressions. Several alternatives for implementing the language constructs are

listed. A prototype system implementing these constructs on top of a conventional

DBMS is publicly available.

References

[1] B�ohlen, M. H. and Marti R.On the Completeness of Temporal Database Query Languages, in Proceedings

of the First International Conference on Temporal Logic. D. M. Gabbay and H. J. Ohlbach, eds. Lecture

Notes in Arti�cial Intelligence 827. Springer-Verlag, July 1994, pp. 283-300.

[2] B�ohlen, M. H. Valid-Time Integrity Constraints, Aalborg University, October, 1995, 21 pages.

[3] B�ohlen, M. H., C. S. Jensen and R. T. Snodgrass. Evaluating the Completeness of TSQL2, in Proceedings

of the VLDB International Workshop on Temporal Databases. Ed. J. Cli�ord and A. Tuzhilin. VLDB.

Springer Verlag, Sep. 1995.

[4] Cli�ord, J., A. Croker and A. Tuzhilin. On Completeness of Historical Relational Query Languages.

ACM Transactions on Database Systems, 19, No. 1, Mar. 1994, pp. 64{116.

[5] Jackson, M. A. System Development. Prentice-Hall International Series in Computer Science. Prentice-

Hall International, Inc., 1983.

[6] Jensen, C. S. and R. Snodgrass. Temporal Specialization and Generalization. IEEE Transactions on

Knowledge and Data Engineering, 6, No. 6 (1994), pp. 954{974.

[7] Melton, J. (ed.) SQL/Foundation. July, 1996. (ISO/IEC JTC 1/SC 21/WG 3 DBL-MCI-007.)

[8] Melton, J. (ed.) SQL/Temporal. July, 1996. (ISO/IEC JTC 1/SC 21/WG 3 DBL-MCI-0012.)

[9] Schueler, B. Update Reconsidered, in Architecture and Models in Data Base Management Systems. Ed.

G. M. Nijssen. North Holland Publishing Co., 1977.

[10] Snodgrass, R. T., S. Gomez and E. McKenzie. Aggregates in the Temporal Query Language TQuel. IEEE

Transactions on Knowledge and Data Engineering, 5, Oct. 1993, pp. 826{842.

[11] Snodgrass, R. T. and H. Kucera. Rationale for Temporal Support in SQL3. 1994. (ISO/IEC

JTC1/SC21/WG3 DBL SOU-177, SQL/MM SOU-02.)

[12] Snodgrass, R. T., K. Kulkarni, H. Kucera and N. Mattos. Proposal for a new SQL Part|Temporal.

1994. (ISO/IEC JTC1/SC21/WG3 DBL RIO-75, X3H2-94-481.)

[13] Snodgrass, R. T. (editor) The Temporal Query Language TSQL2. Kluwer Academic Pub., 1995.

[14] Steiner, A. and M. H. B�ohlen. The TimeDB Temporal Database Prototype, Version 1.07,

November, 1996. Available at http://www.iesd.auc.dk/general/DBS/tdb/TimeCenter or at

ftp://ftp.cs.arizona.edu/tsql/timecenter/TimeDB.tar.gz.

[15] Tsichritzis, D.C. and F.H. Lochovsky. Data Models. Software Series. Prentice-Hall, 1982.

[16] Yourdon, E. Managing the System Life Cycle. Yourdon Press, 1982.

DBL:MAD-146 and X3H2-96-501r2 3

\Be liberal with ideas, but conservative about their execution." (Presper Eckert, 1919{1995)

1 Introduction

This change proposal introduces additions to SQL/Temporal to add valid-time support to SQL3. We outline
a four-level approach for the integration of time. We motivate and discuss each level in turn, and we de�ne
the syntactic extensions that correspond to each level. We will see that the extensions are fairly minimal.
Each level is described via a quick tour consisting of a set of examples. These examples have been tested in
a prototype which is publicly available [14].

The proposed language constructs ensure temporal upward compatibility, sequenced valid semantics, and
non-sequenced semantics, important properties that will be discussed in detail in Section 5.

2 The Problem

Most databases store time-varying information. For such databases, SQL is often the language of choice
for developing applications that utilize the information in these databases. However, users also realize
that SQL does not provide adequate support for temporal applications. To illustrate this, the reader is
invited to attempt to formulate the following straightforward, realistic statements in SQL3. An intermediate
SQL programmer can express all of them in SQL for a non-time-varying database in perhaps �ve minutes.
However, even SQL experts �nd these same queries challenging to do in several hours when time-varying
data is taken into account.

� An Employee table has three columns: Name, Manager and Dept. We then store historical information
by adding a fourth column, When, of data type PERIOD. Manager is a foreign key for Employee.Name.
This means that at each point in time, the character string value in the Manager column also occurs in
the Name column (probably in a di�erent row) at the same time. This cannot be expressed via SQL's
foreign key constraint, which doesn't take time into account. Formulate this constraint instead as an
assertion.

� Consider the query \List those employees who are not managers." This can easily be expressed in
SQL, using EXCEPT or NOT EXISTS, on the original, three-column table. Things are just a little harder
with the When column; a where predicate is required to extract the current employees. Now formulate
the query \List those employees who were not managers, and indicate when." EXCEPT and NOT EXISTS

won't work, because they don't consider time. This simple temporal query is challenging even to SQL
experts.

� Consider the query \Give the number of employees in each department." Again, this is a simple query
in SQL. Formulate the query \Give the history of the number of employees in each department." This
query is extremely di�cult without temporal support in the language.

� Now formulate the modi�cation \Change the manager of the tools department for 1994 to Bob." This
modi�cation is di�cult in SQL because only a portion of many validity periods needs be changed, with
the information outside of 1994 retained.

Most users know only too well that while SQL is an extremely powerful language for writing queries on
the current state, the language provides much less help when writing temporal queries, modi�cations, and
constraints.

3 Outline of the Solution

The problem with formulating these SQL statements is due to the extreme di�culty of specifying in SQL
the correct values of the timestamp column(s) of the result. The solution is to allow the DBMS to compute
these values, moving the complexity from the application code into the DBMS. With the language extensions

4 DBL:MAD-146r2 and X3H2-96-501r2

proposed in this change proposal, the above queries can all be easily written by an intermediate SQL
programmer in about �ve minutes.

Referential integrity can be speci�ed using sequenced valid semantics (which will be de�ned, exempli�ed,
and provided a formal de�nition later in this document):

CREATE TABLE Employee(

Name VARCHAR(30),

Manager VARCHAR(30) VALIDTIME REFERENCES Employee (Name),

Dept VARCHAR(20)) AS VALIDTIME PERIOD(DATE)

Here we indicate that the table has valid-time support through \AS VALIDTIME PERIOD(DATE)" and that
the referential integrity is to hold for each point in time through \VALIDTIME REFERENCES".

For the query \List those employees who are not managers," we are interested only in the current
employees. We use temporal upward compatibility to extract this information from the historical information
stored in the Employee table.

SELECT Name FROM Employee EXCEPT SELECT Manager FROM Employee

This results in a conventional table, with one column.
We use sequenced valid semantics in the query \List those employees who were not managers, and when."

VALIDTIME SELECT Name FROM Employee EXCEPT SELECT Manager FROM Employee

The added \VALIDTIME" reserved word speci�es that the query is to be evaluated at each point in time. At
some times, an employee may not be a manager, whereas at other times, the employee is a manager. A
one-column table results, but this time with valid-time support (i.e., the periods of time when each was not
a manager is included).

The query \Give the number of employees in each department" is easy given temporal upward compati-
bility.

SELECT Dept, COUNT(*)

FROM Employee

GROUP BY Dept

Again, we just get the current count for each department. To extract \the history of the number of employees
in each department", only a simple change is required.

VALIDTIME SELECT Dept, COUNT(*)

FROM Employee

GROUP BY Dept

For each department, a time-varying count will be returned.
Modi�cations work in similar ways. The modi�cation \Change the manager of the tools department for

1994 to Bob" can be expressed by following VALIDTIME with a period expression.

VALIDTIME PERIOD '[1994-01-01 - 1994-12-31]' UPDATE Employee

SET Manager = 'Bob'

WHERE Dept = 'Tools'

Here again, we exploit our knowledge of SQL to �rst write the update ignoring time, then change it in minor
ways to take account of time.

These statements are reminiscent of the kinds of SQL statements that application programmers are called
to write all the time. The potential for increased productivity is dramatic. Statements that previously took
hours to write, or were simply too di�cult to express, can take only minutes to write with the extensions
discussed here.

DBL:MAD-146 and X3H2-96-501r2 5

4 Scope

Research on temporal databases has identi�ed several properties crucial to temporal database systems,
including support for valid-time, transaction time, temporal aggregates, indeterminacy, time granularity,
user-de�ned calendars, vacuuming, and schema versioning. This document is the second in a series that will
propose constructs for SQL/Temporal drawn from the consensus temporal query language TSQL2 [13]. The
�rst [12], which was accepted in July, 1995, concerned the PERIOD data type.

The present change proposal addresses support for valid-time, speci�cally temporal upward compatibility,
sequenced valid, and nonsequenced valid support. The next proposal will add support for transaction time.
Future proposals will concern time granularities, temporal indeterminacy, and other features relevant to
SQL3 that are fully supported in TSQL2. However, it is important that each proposal be comprehensive in
its motivation of the additions, its presentation of the syntactic changes, and its speci�cation of the semantics
of the new constructs. For this reason, each change proposal should be separately considered and evaluated
by the SQL3 standards committees.

While the language additions proposed here are modest, the productivity gains made available to the
application programmer are signi�cant. In particular, we will show how adding a single reserved word
will convert any conventional (termed snapshot) query into a temporal query that extracts the history of
the aspect being queried. This permits users to express rather complex temporal queries easily, by �rst
formulating them as snapshot queries, then adding the reserved word. This parallel will be exploited in the
semantics, permitting any SQL3 query to be rendered temporal. Moreover the syntactic modi�cation not only
holds for queries but also for view de�nitions, insert statements, delete statements, update statements, cursor
declarations, table constraint de�nitions, column constraint de�nitions, and the de�nition of assertions.

We now return to the important question of migrating legacy databases. In the next section, we formulate
several requirements of SQL/Temporal to allow graceful migration of applications from conventional to
temporal databases.

5 Migration

The potential users of temporal database technology are enterprises with applications1 that need to manage
potentially large amounts of time-varying information. These include �nancial applications such as portfolio
management, accounting, and banking; record-keeping applications, including personnel, medical records,
and inventory; and travel applications such as airline, train, and hotel reservations and schedule management.
It is most realistic to assume that these enterprises are already managing time-varying data and that the
temporal applications are already in place and working. Indeed, the uninterrupted functioning of applications
is likely to be of vital importance.

For example, companies usually have applications that manage the personnel records of their employees.
These applications manage large quantities of time-varying data, and they may bene�t substantially from
built-in temporal support in the DBMS [11]. Temporal queries that are shorter and more easily formulated
are among the potential bene�ts. This leads to improved productivity, correctness, and maintainability.

This section explores the problems that may occur when migrating database applications from an existing
to a new DBMS, and it formulates a number of requirements to the new DBMS that must be satis�ed in
order to avoid di�erent potential problems when migrating. Formal de�nitions of these requirements may
be found in Appendix A.

5.1 Upward Compatibility

Perhaps the most important aspect of ensuring a smooth transition is to guarantee that all application code
without modi�cation will work with the new system exactly with the same functionality as with the existing
system.

To explore the relationship between nontemporal and temporal data and queries, we employ a series
of �gures that demonstrate increasing query and update functionality. In Figure 1, a conventional table is

1
We use \database application" non-restrictively, for denoting any software system that uses a DBMS as a standard

component.

6 DBL:MAD-146r2 and X3H2-96-501r2

denoted with a rectangle. The current state of this table is the rectangle in the upper-right corner. Whenever
a modi�cation is made to this table, the previous state is discarded; hence, at any time only the current
state is available. The discarded prior states are denoted with dashed rectangles; the right-pointing arrows
denote the modi�cation that took the table from one state to the next state.

q

...

Time

Figure 1: Level 1 evaluates an SQL3 query over a table without temporal support and returns a table also
without temporal support

When a query q is applied to the current state of a table, a resulting table is computed, shown as the
rectangle in the bottom right corner. While this �gure only concerns queries over single tables, the extension
to queries over multiple tables is clear.

Upward compatibility states that (1) all instances of tables in SQL3 are instances of tables in SQL/Temporal,
(2) all SQL3 modi�cations to tables in SQL3 result in the same tables when the modi�cations are evaluated
according to SQL/Temporal semantics, and (3) all SQL3 queries result in the same tables when the queries
are evaluated according to SQL/Temporal.

By requiring that SQL/Temporal is a strict superset (i.e., only adding constructs and semantics), it is
relatively easy to ensure that SQL/Temporal is upward compatible with SQL3.

Throughout, we provide examples of the various levels. In Section 6, we show these examples expressed
in SQL/Temporal.

Example 1: A company wishes to computerize its personnel records, so it creates two tables, an employee
table and a monthly salary table. Every employee must have a salary. These tables are populated. A view
identi�es those employees with a monthly salary greater than $3500. Then employee Therese is given a
10% raise. Since the salary table has no temporal support, Therese's previous salary is lost. These schema
changes and queries can be easily expressed in SQL3. ut

5.2 Temporal Upward Compatibility

If an existing or new application needs support for the temporal dimension of the data in one or more
tables, the table can be de�ned with or altered to add valid-time support (e.g., by using the CREATE TABLE

: : : AS VALID or ALTER : : : ADD VALID statements). The distinction of a table having valid-time support
is orthogonal to the many other distinctions already present in SQL/Foundation, including \base table"
versus \derived table", \created table" versus \declared table", \global table" versus \local table", \grouped
table" versus ungrouped table, ordered table versus table with implementation-dependent order, \subtable"
versus \supertable", and \temporary table" versus \permanent table". These distinctions can be combined,
subject to stated rules. For example, a table can be simultaneously a temporary table, a table of degree 1,
an inherently updatable table, a viewed table, and a table with valid-time support. In most of the SQL3

DBL:MAD-146 and X3H2-96-501r2 7

speci�cation, it doesn't matter what distinctions apply to the table in question. In those few places where
it does matter, the syntax and general rules specify the distinction.

It is undesirable to be forced to change the application code that accesses the table without temporal
support that is replaced by a table with valid-time support. We formulate a requirement that states that
the existing applications on tables without temporal support will continue to work with no changes in
functionality when the tables they access are altered to add valid-time support. Speci�cally, temporal upward

compatibility requires that each query will return the same result on an associated snapshot database as on
the temporal counterpart of the database. Further, this property is not a�ected by modi�cations to those
tables with valid-time support.

Temporal upward compatibility is illustrated in Figure 2. When valid-time support is added to a table,
the history is preserved, and modi�cations over time are retained. In this �gure, the state to the far left was
the current state when the table was made temporal. All subsequent modi�cations, denoted by the arrows,
result in states that are retained, and thus are solid rectangles. Temporal upward compatibility ensures
that the states will have identical contents to those states resulting from modi�cations of the table without
valid-time support.

q

...

Time

Figure 2: Level 2 evaluates an SQL3 query over a table with valid-time support and returns a table with
similar support

The query q is an SQL3 query. Due to temporal upward compatibility the semantics of this query must
not change if it is applied to a table with valid-time support. Hence, the query only applies to the current
state, and a table without temporal support results.

Example 2: We make both the employee and salary tables temporal. This means that all information
currently in the tables is valid from today on. We add an employee. This modi�cation to the two tables, con-
sisting of two SQL3 INSERT statements, respects temporal upward compatibility. That means it is valid from
now on. Queries and views on these tables with newly-added valid-time support work exactly as before. The
SQL3 query to list where high-salaried employees live returns the current information. Constraints and as-
sertions also work exactly as before, applying to the current state and checked on database modi�cation. ut

It is instructive to consider temporal upward compatibility in more detail. When designing information
systems, two general approaches have been advocated. In the �rst approach, the system design is based
on the function of the enterprise that the system is intended for (the \Yourdon" approach [16]); in the
second, the design is based on the structure of the reality that the system is about (the \Jackson" approach
[5]). It has been argued that the latter approach is superior because structure may remain stable when the
function changes while the opposite is generally not possible. Thus, a more stable system design, needing
less maintenance, is achieved when adopting the second design principle. This suggests that the data needs
of an enterprise are relatively stable and only change when the actual business of the enterprise changes.

Enterprises currently use non-temporal database systems for database management, but that does not

8 DBL:MAD-146r2 and X3H2-96-501r2

mean that enterprises manage only non-temporal data. Indeed, temporal databases are currently being man-
aged in a wide range of applications, including, e.g., academic, accounting, budgeting, �nancial, insurance,
inventory, legal, medical, payroll, planning, reservation, and scienti�c applications. Temporal data may be
accommodated by non-temporal database systems in several ways. For example, a pair of explicit time
attributes may encode a valid-time interval associated with a row.

Temporal database systems o�er increased user-friendliness and productivity, as well as better perfor-
mance, when managing data with temporal. The typical situation, when replacing a non-temporal system
with a temporal system, is one where the enterprise is not changing its business, but wants the extra sup-
port o�ered by the temporal system for managing its temporal data. Thus, it is atypical for an enterprise
to suddenly desire to record temporal information where it previously recorded only snapshot information.
Such a change would be motivated by a change in the business.

The typical situation is rather more complicated. The non-temporal database system is likely to already
manage temporal data, which is encoded using tables without temporal support, in an ad hoc manner. When
adopting the new system, upward compatibility guarantees that it is not necessary to change the database
schema or application programs. However, without changes, the bene�ts of the added valid-time support
are also limited. Only when de�ning new tables or modifying existing applications, can the new temporal
support be exploited. The enterprise then gradually bene�ts from the temporal support available in the
system.

Nevertheless, the concept of temporal upward compatibility is still relevant, for several reasons. First,
it provides an appealing intuitive notion of a table with valid-time support: the semantics of queries and
modi�cation are retained from tables without temporal support; the only di�erence is that intermediate
states are also retained. Second, in those cases where the original table contained no historical information,
temporal upward compatibility a�ords a natural means of migrating to temporal support. In such cases, not
a single line of the application need be changed when the table is altered to be temporal. Third, conventional
tables that do contain temporal information and for which temporal support has been added can still be
queried and modi�ed by conventional SQL3 statements in a consistent manner.

5.3 Sequenced Valid Extensions

The requirements covered so far have been aimed at protecting investments in legacy code and at ensuring
uninterrupted operation of existing applications when achieving substantially increased temporal support.
Upward compatibility guarantees that (non-historical) legacy application code will continue to work without
change when migrating, and temporal upward compatibility in addition allows legacy code to coexist with
new temporal applications following the migration.

The requirement in this section aims at protecting the investments in programmer training and at ensuring
continued e�cient, cost-e�ective application development upon migration. This is achieved by exploiting
the fact that programmers are likely to be comfortable with SQL.

Sequenced valid semantics states that SQL/Temporal must o�er, for each query in SQL3, a temporal
query that \naturally" generalizes this query, in a speci�c technical sense. In addition, we require that the
SQL/Temporal query be syntactically similar to the SQL3 query that it generalizes.

With this requirement satis�ed, SQL3-like SQL/Temporal queries on tables with temporal support have
semantics that are easily (\naturally") understood in terms of the semantics of the SQL3 queries on tables
without temporal support. The familiarity of the similar syntax and the corresponding, naturally extended
semantics makes it possible for programmers to immediately and easily write a wide range of temporal
queries, with little need for expensive training.

Figure 3 illustrates this property. We have already seen that an SQL3 query q on a table with valid-time
support applies the standard SQL3 semantics on the current state of that table, resulting in a table without
temporal support. This �gure illustrates a new query, q

0, which is an SQL/Temporal query. Query q
0 is

applied to the table with valid-time support (the sequence of states across the top of the �gure), and results
in a table also with valid-time support, which is the sequence of states across the bottom.

We would like the semantics of q0 to be easily understood by the SQL3 programmer. Satisfying sequenced
semantics along with the syntactical similarity requirement makes this possible. Speci�cally, the meaning of
q

0 is precisely that of applying SQL3 query q on each state of the input table (which must have temporal
support), producing a state of the output table for each such application. And when q

0 also closely resembles

DBL:MAD-146 and X3H2-96-501r2 9

q

...

=

...

q’ q q q q

Figure 3: Level 3 evaluates an SQL/Temporal query over a table with valid-time support and returns a table
with similar support

q syntactically, temporal queries are easily formulated and understood. To generate query q
0, one needs only

prepend the reserved word VALIDTIME to query q.

Example 3: We ask for the history of the monthly salaries paid to employees. Asking that question for
the current state (i.e., what is the salary for each employee) is easy in SQL3; let us call this query q. To
ask for the history, we simply prepend the keyword VALIDTIME to q to generate the SQL/Temporal query.
Sequenced semantics allows us to do this for all SQL3 queries. So let us try a harder one: list the history

of those employees for which no one makes a higher salary and lives in a di�erent city. Again the problem
reduces to expressing the SQL3 query for the current state. We then prepend VALIDTIME to get the history.
Sequenced semantics also works for views, integrity constraints and assertions. ut

These concepts also apply to sequenced modi�cations, illustrated in Figure 4. A valid-time modi�cation
destructively modi�es states as illustrated by the curved arrows. As with queries, the modi�cation is applied
on a state-by-state basis. Hence, the semantics of the SQL/Temporal modi�cation is a natural extension of
the SQL modi�cation statement that it generalizes.

u

...

=u’ u u u u

Figure 4: Level 3 also evaluates an SQL/Temporal modi�cation on a table with valid-time support

Example 4: It turns out that a particular employee never worked for the company. That employee is
deleted from the database. Note that if we use an SQL3 DELETE statement, temporal upward compatibility
requires deleting the information only from the current (and future) states. By prepending the reserved word
VALIDTIME to the DELETE statement, we can remove that employee from every state of the table.

Many people misspell the town Tucson as \Tuscon", perhaps because the name derives from an American
Indian word in a language no longer spoken. To modify the current state to correct this spelling requires
a simple SQL UPDATE statement; let's call this statement u. To correct the spelling in all states, both past
and possibly future, we simply prepend the reserved word VALIDTIME to u. ut

10 DBL:MAD-146r2 and X3H2-96-501r2

5.4 Non-Sequenced Queries and Modi�cations

In a sequenced query, the information in a particular state of the resulting table with valid-time support is
derived solely from information in the state at that same time of the source table(s). However, there are
many reasonable queries that require other states to be examined. Such queries are illustrated in Figure 5,
in which each state of the resulting table requires information from possibly all states of the source table.

q

...

......

Figure 5: Level 4 evaluates a non-sequenced SQL/Temporal query over a table with valid-time support and
returns a table with similar support

In this �gure, two tables with valid-time support are shown, one consisting of the states across the top
of the �gure, and the other, the result of the query, consisting of the states across the bottom of the �gure.
A single query q performs the possibly complex computation, with the information usage illustrated by
the downward pointing arrows. Whenever the computation of a single state of the result table may utilize
information from a state at a di�erent time, that query is non-sequenced. Such queries are more complex
than sequenced queries, and they require new constructs in the query language.

Example 5: The query \Who was given salary raises?" requires locating two consecutive times, in which
the salary of the latter time was greater than the salary of the former time, for the same employee. Hence,
it is a non-sequenced query. ut

The concept of non-sequenced queries naturally generalizes to modi�cations. Non-sequenced modi�cations

destructively change states, with information retrieved from possibly all states of the original table. In
Figure 6, each state of the table with valid-time support is possibly modi�ed, using information from possibly
all states of the table before the modi�cation. Non-sequenced modi�cations include future modi�cations.

...

Figure 6: Level 4 also evaluates a non-sequenced SQL/Temporal modi�cation on a table with valid-time
support

Example 6: We wish to give employees a 5% raise if they have never had a raise before. This is not a
temporally upward compatible modi�cation, because the modi�cation of the current state uses information
in the past. For the same reason, it is not a sequenced update. So we must use a slightly more involved
SQL/Temporal UPDATE statement. In fact, only the predicate \if they never had a raise" need be nonse-
quenced; the rest of the update can be temporally upward compatible. ut

DBL:MAD-146 and X3H2-96-501r2 11

Views and cursors can also be nonsequenced.

Example 7: We wish to de�ne a snapshot view of the salary table in which the row's timestamp period
appears as an explicit column. We can also de�ne a valid-time view on this snapshot view that uses the
explicit period column as an implicit timestamp. ut

5.5 Summary

In this section, we have formulated three important requirements that SQL/Temporal should satisfy to
ensure a smooth transition of legacy application code. We review each in turn.

Upward compatibility and temporal upward compatibility guarantee that legacy application code needs
no modi�cation when migrating and that new temporal applications may coexist with existing applications.
They are thus aimed at protecting investments in legacy application code.

The requirement that temporal statements be a sequenced extension of the existing statements guarantees
that the query language is easy to use for programmers familiar with the existing query language. The
requirement thus helps protect investment in programmer training. It also turns out that this property
makes the semantics of tables with valid-time support straight-forward to specify, as shown in Section 7, and
enables a wide range of implementation alternatives, some of which are listed in Section 8.2.

These requirements induce four levels of temporal functionality, to be de�ned in SQL/Temporal.

Level 1 This lowest level captures the minimum functionality necessary for the query language to satisfy
upward compatibility with SQL3. Thus, there is support for legacy SQL3 statements, but there are no
tables with valid-time support and no temporal queries. Put di�erently, the functionality at this level
is identical to that of SQL3.

Level 2 This level adds to the previous level solely by allowing for the presence of tables with valid-time
support. The temporal upward compatibility requirement is applicable to this subset of SQL/Temporal.
This level adds no new syntax for queries or modi�cations|only queries and modi�cations with SQL3
syntax are possible.

Level 3 The functionality of Level 2 is enhanced with the possibility of giving sequenced temporal func-
tionality to queries, views, constraints, assertions, and modi�cations on tables with valid-time support.
This level of functionality is expected to provide adequate support for many applications. Starting at
this level, temporal queries exist, so SQL/Temporal must be a sequenced-consistent extension of SQL3.

Level 4 Finally, the full temporal functionality normally associated with a temporal language is added,
speci�cally, non-sequenced temporal queries, assertions, constraints, views, and modi�cations. These
additions include temporal queries and modi�cations that have no syntactic counterpart in SQL3.

6 Tables with Valid-Time Support in SQL3

This section informally introduces the new constructs of SQL/Temporal. These constructs are an improved
and extended version of those in the consensus temporal query language TSQL2 [13]. The improvements
concern guaranteeing the properties listed in Section 5, to support easy migration of legacy SQL3 application
code [3]. The extensions concern views, assertions, and constraints (speci�cally temporal upward compatible
and sequenced and non-sequenced extensions) that were not considered in the original TSQL2 design.

The presentation is divided into four levels, where each successive level adds temporal functionality. The
levels correspond to those discussed informally in the previous section. Throughout, the functionality is
exempli�ed with input to and corresponding output from a prototype system [14]. The reader may �nd it
instructive to execute the sample statements on the prototype. In the examples, executable statements are
displayed in typewriter style on a line of their own starting with the prompt \> ".

12 DBL:MAD-146r2 and X3H2-96-501r2

6.1 Level 1: Upward Compatibility

Level 1 ensures upward compatibility (see Figure 1), i.e., it guarantees that legacy SQL3 statements evaluated
over databases without temporal support return the result dictated by SQL3.

6.1.1 SQL3 Extensions

Obviously there are no syntactic extensions to SQL3 at this level.

6.1.2 A Quick Tour

The following statements are executed on January 1, 1995. A company creates two tables, an employee
table and a monthly salary table. Every employee must have a salary. These schema changes can be easily
expressed in SQL3.

> CREATE TABLE employee(ename VARCHAR(12), eno INTEGER PRIMARY KEY,

street VARCHAR(22), city VARCHAR(10), birthday DATE);

> CREATE TABLE salary(eno INTEGER REFERENCES employee(eno), amount INTEGER);

> CREATE ASSERTION emp_has_sal CHECK

(NOT EXISTS (SELECT *

FROM employee AS e

WHERE NOT EXISTS (SELECT *

FROM salary AS s

WHERE e.eno = s.eno)));

These tables are populated.

> INSERT INTO employee

VALUES ('Therese', 5873, 'Bahnhofstrasse 121', 'Zurich', DATE '1961-03-21');

> INSERT INTO employee

VALUES ('Franziska', 6542, 'Rennweg 683', 'Zurich', DATE '1963-07-04');

> INSERT INTO salary VALUES (6542, 3200);

> INSERT INTO salary VALUES (5873, 3300);

A view identi�es those employees with a monthly salary greater than $3500.

> CREATE VIEW high_salary AS SELECT * FROM salary WHERE amount > 3500;

Employee Therese is given a 10% raise. Since the salary table has no temporal support, Therese's previous
salary is lost.

> UPDATE salary s

SET amount = 1.1 * amount

WHERE s.eno = (SELECT e.eno FROM employee e WHERE e.ename = 'Therese');

> COMMIT;

6.2 Level 2: Temporal Upward Compatibility

Level 2 ensures temporal upward compatibility as depicted in Figure 2. Temporal upward compatibility is
straightforward for queries. They are evaluated over the current state of a database with valid-time support.

DBL:MAD-146 and X3H2-96-501r2 13

6.2.1 SQL3 Extensions

The create table statement is extended to de�ne tables with valid-time support. Speci�cally, this statement
can be followed by the clause \AS VALIDTIME <datetime �eld>", e.g., \AS VALIDTIME PERIOD(DATE)".
This speci�es that the table has valid-time support, with states indexed by particular days. The alter table
statement is extended to permit valid-time support to be added to a table without such support or dropped
from a table with valid-time support.

A table with valid-time support is conceptually a sequence of states indexed with valid-time granules at
the speci�ed granularity. This is the view of a table with valid-time support adopted in temporal upward
compatibility and sequenced semantics. At a more speci�c logical level, a table with valid-time support is
also a collection of rows associated with valid-time periods.

Indeed, our de�nition of the semantics of the addition to SQL/Temporal being proposed satis�es temporal
upward compatibility and sequenced semantics.

6.2.2 A Quick Tour

The following statements are executed on February 1, 1995.

> ALTER TABLE salary ADD VALIDTIME PERIOD(DATE);

> ALTER TABLE employee ADD VALIDTIME PERIOD(DATE);

The following statements are typed in the next day (February 2, 1995).

> INSERT INTO employee

VALUES('Lilian', 3463, '46 Speedway', 'Tuscon', DATE '1970-03-09');

> INSERT INTO salary VALUES(3463, 3400);

> COMMIT;

The employee table contains the following rows. (In these examples, we used open-closed ("[: : :)") for
periods.)

ename eno street city birthday Valid
Therese 5873 Bahnhofstrasse 121 Zurich 1961-03-21 [1995-02-01 - 9999-12-31)
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1995-02-01 - 9999-12-31)
Lilian 3463 46 Speedway Tuscon 1970-03-09 [1995-02-02 - 9999-12-31)

Note that the valid time extends to the end of time, which in SQL3 is the largest date.
The salary table contains the following rows.

eno amount Valid
6542 3200 [1995-02-01 - 9999-12-31)
5873 3630 [1995-02-01 - 9999-12-31)
3463 3400 [1995-02-02 - 9999-12-31)

We continue, still on February 2. Tables, views, and queries act like before, because temporal upward
compatibility is satis�ed. To �nd out where the high-salaried employees live, use the following.

> SELECT ename, city

FROM high_salary AS s, employee AS e

WHERE s.eno = e.eno;

Evaluated over the current state, this returns the employee Therese, in Z�urich.
Assertions and referential integrity act like before, applying to the current state. The following transaction

will abort due to (1) a violation of the PRIMARY KEY constraint, (2) a violation of the emp has sal assertion
and (3) a referential integrity violation, respectively.

14 DBL:MAD-146r2 and X3H2-96-501r2

> INSERT INTO employee

VALUES ('Eric', 3463, '701 Broadway', 'Tucson', DATE '1988-01-06');

> INSERT INTO employee

VALUES ('Melanie', 1234, '701 Broadway', 'Tucson', DATE '1991-03-08');

> INSERT INTO salary VALUES(9999, 4900);

> COMMIT;

6.3 Level 3: Sequenced Language Constructs

Level 3 adds syntactically similar, sequenced counterparts of existing queries, modi�cations, views, con-
straints, and assertions (see Figure 3). Sequenced SQL/Temporal queries produce tables with valid-time
support. The state of a result table at each time is computed from the state of the underlying table(s) at the
same time, via the semantics of the contained SQL3 query. In this way, users are able to express temporal
queries in a natural fashion, exploiting their knowledge of SQL3. Temporal views, assertions and constrains
can likewise be naturally expressed.

6.3.1 SQL3 Extensions

Temporal queries, modi�cations, views, assertions, and constraints are signaled by the reserved word VALIDTIME.
This reserved word can appear in a number of locations; Section 10 supplies the details.

Derived table in a from clause In the from clause, one can prepend VALIDTIME to a<query expression>.

View de�nition Temporal views can be speci�ed, with sequenced semantics.

Assertion de�nition A sequenced assertion applies to each of the states of the underlying table(s). This
is in contrast to a snapshot assertion, which is only evaluated on the current state. In both cases, the
assertion is checked before a transaction is committed.

Table and column constraints When speci�ed with VALIDTIME, such constraints must apply to all
states of the table with valid-time support.

Cursor expression Cursors can range over tables with valid-time support.

Single-row select Such a select can return a row with an associated valid time.

Fetch statement The period associated with a row with valid-time support can be placed in a local
variable in embedded SQL.

Modi�cation statements When speci�ed with VALIDTIME, the modi�cation applies to each state com-
prising the table with valid-time support.

In all cases, the VALIDTIME reserved word indicates that sequenced semantics is to be employed.

6.3.2 A Quick Tour

We evaluate the following statements on March 1, 1995.
Prepending VALIDTIME to any SELECT statement evaluates that query on all states, in a sequenced fashion.

The �rst query provides the history of the monthly salaries paid to employees. This query is constructed by
�rst writing the snapshot query, then prepending VALIDTIME.

> VALIDTIME

SELECT ename, amount

FROM salary AS s, employee AS e

WHERE s.eno = e.eno;

This evaluates to the following.

DBL:MAD-146 and X3H2-96-501r2 15

ename amount Valid
Franziska 3200 [1995-02-01 - 9999-12-31)
Therese 3630 [1995-02-01 - 9999-12-31)
Lilian 3400 [1995-02-02 - 9999-12-31)

List those for which no one makes a higher salary in a di�erent city, over all time.

> VALIDTIME

SELECT ename

FROM employee AS e1, salary AS s1

WHERE e1.eno = s1.eno

AND NOT EXISTS (SELECT ename

FROM employee AS e2, salary AS s2

WHERE e2.eno = s2.eno

AND s2.amount > s1.amount

AND e1.city <> e2.city);

This gives the following result.

ename Valid
Therese [1995-02-01 - 9999-12-31)
Franziska [1995-02-01 - 1995-02-02)

Therese is listed because the only person in a di�erent city, Lilian, makes a lower salary. Franziska is listed
because for that one day, there was no one in a di�erent city (Lilian didn't join the company until February 2).

We then create a temporal view, similar to the non-temporal view de�ned earlier. In fact, the only
di�erence is the use of the reserved word VALIDTIME.

> CREATE VIEW high_salary_history AS

VALIDTIME SELECT * FROM salary WHERE s.salary > 3500;

Finally, we de�ne a temporal column constraint.

> ALTER TABLE salary ADD VALIDTIME CHECK (amount > 1000 AND amount < 12000);

> COMMIT;

Rather than being checked on the current state only, this constraint is checked on each state of the salary
table. This is useful to restrict retroactive changes [6], i.e., changes to past states and proactive changes, i.e.,
changes to future states. This constraint is satis�ed for all states in the table.

Sequenced modi�cations are similarly handled. To remove employee #5873 for all states of the database,
we use the following statement.

> VALIDTIME DELETE FROM employee

WHERE eno = 5873;

> VALIDTIME DELETE FROM salary

WHERE eno = 5873;

> COMMIT;

To correct the common misspelling of Tucson, we use the following statement.

> VALIDTIME UPDATE employee

SET city = 'Tucson'

WHERE city = 'Tuscon';

> COMMIT;

This updates all incorrect values, at all times, including the past and future. Lillian's city is thus corrected.

16 DBL:MAD-146r2 and X3H2-96-501r2

6.4 Level 4: Non-Sequenced Language Constructs

Level 4 accounts for non-sequenced queries (see Figure 5) and non-sequenced modi�cations (see Figure 6).
Many useful queries and modi�cations are in this category. However, their semantics is necessarily more com-
plicated than that of sequenced queries, because non-sequenced queries cannot exploit that useful property.
Instead, they must support the formulation of special-purpose user-de�ned temporal relationships between
implicit timestamps, datetime values expressed in the query, and stored datetime columns in the database.

Nonsequenced SQL/Temporal queries can produce tables with or without valid-time support, depending
on whether the valid-time period of the resulting rows is provided in the query. The state of a result table,
if a table is without valid-time support, or the state of a result table at each time, if a table has valid-
time support, is computed from potentially all of the states of the underlying table(s), at any time. The
semantics are quite simple. A nonsequenced evaluation treats a table with valid-time support as a table
without temporal support, but with an additional column containing the timestamp.

6.4.1 SQL3 Extensions

Nonsequenced valid queries are signaled by the new reserved word NONSEQUENCED preceding the reserved word
VALIDTIME. This applies analogously to nonsequenced modi�cations, views, assertions, and constraints. This
reserved word can appear in a number of locations; Section 10 supplies the details.

Derived table in a from clause In the from clause, one can prepend NONSEQUENCED VALIDTIME to a
<query expression>. This results in a table without temporal support, and is the means of removing
the valid-time support of a table.

View de�nition Nonsequenced views can be speci�ed.

Assertion de�nition A nonsequenced assertion applies simultaneously to all of the states of the under-
lying table(s). This is in contrast to a snapshot assertion, which is only evaluated on the current state.
In both cases, the assertion is checked before a transaction is committed.

Table and column constraints When speci�ed with NONSEQUENCED VALIDTIME, such constraints must
apply to the table with valid-time support as a whole.

Cursor expression Cursors can range over the result of a nonsequenced select.

Single-row select A nonsequenced single-row select will return a row without temporal support, even
when evaluated over tables with valid-time support.

Modi�cation statements When speci�ed with NONSEQUENCED VALIDTIME, the modi�cation applies si-
multaneously to all states comprising the table with valid-time support.

In all cases, the NONSEQUENCED reserved word indicates that nonsequenced semantics is to be employed.
This portion includes other useful, related constructs.

� An optional period expression after VALIDTIME speci�es that the valid-time period of each row of the
result is intersected with the value of the expression. This allows one to restrict the result of a select
statement, cursor expression, or view de�nition to a speci�ed period, and to restrict the time for which
assertion de�nitions, table constraints and column constraints are checked.

� An optional period expression after NONSEQUENCED VALIDTIME speci�es the valid-time period of each
row of the result, and thus renders the resulting table to have valid-time support. This enables a table
without temporal support to be converted into a table with valid-time support within a query or other
statement.

� For modi�cation statements, the period expression after VALIDTIME and VALIDTIME NONSEQUENCED

speci�es the temporal scope of the modi�cation: the times at which the modi�cation is to be applied.

� The value expression \VALIDTIME(<correlation name>)" evaluates to the valid-time period of the row
associated with the correlation or table name. This is required because valid-time periods of tables with
valid-time support are not explicit columns (the alternative violates temporal upward compatibility).

The following quick tour provides examples of these constructs.

DBL:MAD-146 and X3H2-96-501r2 17

6.4.2 A Quick Tour

This quick tour starts with the database as it was when we last left it, in the previous quick tour. The
employee table has the following contents.

ename eno street city birthday Valid
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1995-02-01 - 9999-12-31)
Lilian 3463 46 Speedway Tucson 1970-03-09 [1995-02-02 - 9999-12-31)

The salary table has the following contents.

eno amount Valid
6542 3200 [1995-02-01 - 9999-12-31)
3463 3400 [1995-02-02 - 9999-12-31)

A period expression after VALIDTIME speci�es the temporal scope of the result. List those who were
employed sometime during the �rst six months.

> VALIDTIME PERIOD '[1995-01-01 - 1995-07-01)' SELECT ename FROM employee;

This returns the following table.

ename Valid
Franziska [1995-02-01 - 1995-07-01)
Lilian [1995-02-02 - 1995-07-01)

On April 1, 1995, we give Lilian a 5% raise, starting immediately. This is a temporally upward compatible
modi�cation, and so is already expressible in SQL.

> UPDATE salary

SET amount = 1.05 * amount

WHERE eno = (SELECT S.eno

FROM salary AS S, employee as E

WHERE ename = 'Lilian' AND E.eno = S.eno);

> COMMIT;

This results in the following salary table.

eno amount Valid
6542 3200 [1995-02-01 - 9999-12-31)
3463 3400 [1995-02-02 - 1995-04-01)
3463 3570 [1995-04-01 - 9999-12-31)

To determine who was given salary raises, we must simultaneously consider two consecutive states of the
salary table, before and after the raise. This requires a nonsequenced query.

> NONSEQUENCED VALIDTIME SELECT ename

FROM employee AS E, salary AS S1, salary AS S2

WHERE E.eno = S1.eno AND E.eno = S2.eno

AND S1.amount < S2.amount AND VALIDTIME(S1) MEETS VALIDTIME(S2);

MEETS ensures that the valid-time period associated with S1 is immediately followed by the valid-time period
associated with S2. Since the valid-time period of a row is not in an explicit column (as this would violate
temporal upward compatibility), VALIDTIME() is used to extract the associated valid-time period. The result
is a table without temporal support, because NONSEQUENCED is not followed by a period expression.

18 DBL:MAD-146r2 and X3H2-96-501r2

ename
Lilian

If we instead wish to get back a table with valid-time support, i.e., \Who was given salary raises, and when
did they receive the higher salary?", we place a <value expression> after VALIDTIME to specify when each
resulting row is valid. Our �rst try is the following.

> NONSEQUENCED VALIDTIME VALIDTIME(S2) SELECT ename

FROM employee AS E, salary AS S1, salary AS S2

WHERE E.eno = S1.eno AND E.eno = S2.eno

AND S1.amount < S2.amount AND VALIDTIME(S1) MEETS VALIDTIME(S2);

This isn't quite correct, because the period expression following VALIDTIME can only mention the columns
of the following select statement. So we put the value in the select list, and use an enclosing (sequenced)
select statement to get rid of this extra column.

> VALIDTIME SELECT ename

FROM (NONSEQUENCED VALIDTIME S2valid SELECT ename, VALIDTIME(S2) AS S2valid

FROM employee AS E, salary AS S1, salary AS S2

WHERE E.eno = S1.eno AND E.eno = S2.eno

AND S1.amount < S2.amount AND VALIDTIME(S1) MEETS VALIDTIME(S2)) AS S;

This query has the following result.

ename Valid
Lilian [1995-04-01 - 9999-12-31)

If we had desired the time when the person had received the lower salary, we would simply specify VALIDTIME(S1)
instead.

Following VALIDTIME with a period expression in a modi�cation (whether sequenced or not) speci�es the
temporal scope of the modi�cation. Two applications of this are retroactive and future changes. Assume it
is now May 1, 1995. Franziska, employee 6542, will be taking a leave of absence the last half of the year.

> VALIDTIME PERIOD '[1995-07-01 - 1996-01-01)'

DELETE FROM salary

WHERE eno = 6542;

> VALIDTIME PERIOD '[1995-07-01 - 1996-01-01)'

DELETE FROM employee

WHERE eno = 6542;

> COMMIT;

The salary table now has the following contents.

eno amount Valid
6542 3200 [1995-02-01 - 1995-07-01)
6542 3200 [1996-01-01 - 9999-12-31)
3463 3400 [1995-02-02 - 1995-04-01)
3463 3570 [1995-04-01 - 9999-12-31)

The employee table has the following contents.

ename eno street city birthday Valid
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1995-02-01 - 1995-07-01)
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1996-01-01 - 9999-12-31)
Lilian 3463 46 Speedway Tucson 1970-03-09 [1995-02-02 - 9999-12-31)

DBL:MAD-146 and X3H2-96-501r2 19

Note that these deletions split single periods into two, with a lapse between them. Many modi�cations are
greatly simpli�ed in this way. Also note that previously speci�ed sequenced valid referential integrity and
other constraints and assertions must apply to each state. Hence, if the �rst DELETE was performed, but not
the second, the COMMIT will abort because the emp has sal constraint is violated for certain states, such as
the one on August 1, 1995.

The period expression following VALIDTIME is also allowed for assertions and constraints. Assume that
no employee may make less than 3000 during 1996.

> CREATE ASSERTION salary_check

VALIDTIME PERIOD '[1996-01-01 - 1997-01-01)' CHECK

(NOT EXISTS (SELECT * FROM salary WHERE amount < 3000));

This is a sequenced assertion, and thus applies separately to each state (at least, those in 1996). Nonsequenced
assertions and constraints apply to all states at once. To assert that there is only one employee with a
particular name, we use the following constraint within the employee table de�nition.

> CONSTRAINT unique_name UNIQUE (ename)

This is interpreted with temporal upward compatible semantics, and so applies only to the current state. If
all we do is temporal upward compatible modi�cations, this will be su�cient. However, if we perform future
updates, violations may be missed. To always check all states, a sequenced constraint is used.

> CONSTRAINT unique_name_per_time VALIDTIME UNIQUE (ename)

This will ensure that at any time, each ename value is unique.
To ensure that each ename is unique, across all states simultaneously, a nonsequenced constraint is

required.

> CONSTRAINT unique_name_over_all_time NONSEQUENCED VALIDTIME UNIQUE (ename)

The above employee table satis�es the �rst two constraints, but not the third (the nonsequenced one),
because there are two rows with an ename of Franziska.

As with VALIDTIME, NONSEQUENCED VALIDTIME can appear in a from clause. To give employees a 5%
raise if they never had a raise before, we �rst write a temporal upward compatible modi�cation (i.e., without
VALIDTIME) to give the raise.

> UPDATE salary AS S

SET amount = 1.05 * amount;

We can augment this statement to use a non-sequenced query in the from clause to look for raises in the
past.

> UPDATE salary AS S

SET amount = 1.05 * amount

WHERE NOT EXISTS (SELECT *

FROM (NONSEQUENCED VALIDTIME SELECT *

FROM salary AS S1, salary AS S2

WHERE S1.amount < S2.amount

AND VALIDTIME(S1) MEETS VALIDTIME(S2)

AND S1.eno = S.eno and S2.eno = S.eno) AS S3

);

> COMMIT;

The NOT EXISTS was added. Assume that the update was entered on June 1, 1995. The following salary

table results.

20 DBL:MAD-146r2 and X3H2-96-501r2

eno amount Valid

6542 3200 [1995-02-01 - 1995-06-01)
6542 3360 [1995-06-01 - 1995-07-01)
6542 3360 [1996-01-01 - 9999-12-31)
3463 3400 [1995-02-02 - 1995-04-01)
3463 3570 [1995-04-01 - 9999-12-31)

Since the update is evaluated with temporal upward compatible semantics, if changes the salary for valid
times after June 1.

Finally, we wish to de�ne a snapshot view of the salary table in which the row's timestamp appears as
an explicit column.

> CREATE VIEW snapshot_salary (eno, amount, when) AS

NONSEQUENCED VALIDTIME SELECT S.*, VALIDTIME(S) FROM salary AS S;

Coming around full circle, we can de�ne a valid-time view on snapshot salary that uses the explicit column
validtime as an implicit timestamp.

> CREATE VIEW temporal_salary (eno, amount) AS

VALIDTIME SELECT eno, amount

FROM (NONSEQUENCED VALIDTIME when SELECT * FROM snapshot_salary AS S) AS S2;

This conversion can also be applied within queries and cursors.

7 Formal Semantics of SQL/Temporal

In this section, we provide a formal semantics for the constructs introduced into SQL/Temporal, expressed
in terms of the relational algebraic semantics for SQL3.

We use htjjVTi to denote a row in a table with valid-time support. The vertical double-bar \jj" is used to
separate valid-time from explicit attributes. If V T is a period, then V T� is its beginning bound and V T+

is its ending bound.

7.1 Translating SQL/Temporal Queries to Relational Algebra Expressions

We �rst provide the semantics of an SQL3 query over tables without temporal support. In the de�nition
given next, let r1; : : : ; rn denote tables without temporal support. We base the de�nition of the semantics
on the semantics of SQL3, expressed in terms of the relational algebra.

[[<query expression>]]
SQL=T

(r1; : : : ; rn)
4

= [[<query expression>]]
standard

(r1; : : : ; rn)

Here, [[<query expression>]]
standard

, which evaluates to the relational algebra expression that corresponds to
<query expression>, is assumed to be given. This de�nition satis�es upward compatibility.

Example 8: We start with a non-temporal query, i.e., a query evaluated with standard semantics. Assume
p and q are both tables without temporal support. The query Q1

SELECT p.X

FROM p, q

WHERE p.X = q.X

is equivalent to the relational algebra expression

[[Q1]]SQL=T(p; q) = [[Q1]]standard(p; q) = �p:X (p 1p:X=q:X q) :

ut

DBL:MAD-146 and X3H2-96-501r2 21

The semantics of an SQL3 query over a combination of snapshot and tables with valid-time support is
very similar. For every table with valid-time support ri appearing as an argument, replace it with �vt

now
(ri)

on the right hand side. The valid-timeslice operator �vt
c

extracts the current snapshot state from a table
with valid-time support.

�vt
c
(r)

4

= ft j 9V T (htjjV T i 2 r ^ V T� � c ^ c < V T+)g

Example 9: We now examine a non-temporal query over a combination of tables with and without
temporal support, with standard semantics. Assume p is a table without temporal support and t is a table
with valid-time support. The query Q1

SELECT p.X

FROM p, t

WHERE p.X = t.X

is equivalent to the relational algebra expression

[[Q1]]SQL=T(p; t) = [[Q1]]standard(p; �
vt

now(t)) = �p:X(p 1p:X=t:X (�vtnow(t))) :

ut

This de�nition satis�es temporal upward compatibility.
Next, we de�ne the semantics of sequenced SQL/Temporal additions in terms of the snapshot semantics.

This allows these extensions to be consistent with all snapshot constructs de�ned in SQL3.

[[VALIDTIME <query expression>]]
SQL=T

(r1; : : : ; rn)
4

= [[<query expression>]]
temporal

(r1; : : : ; rn)

In this de�nition, [[<query expression>]]
temporal

is equivalent to [[<query expression>]]
standard

, except that
every non-temporal relational algebra operator (e.g., 1; �; �) is replaced by a corresponding temporal rela-
tional algebra operator (e.g., 1vt; �vt; �vt). We provide de�nitions of the temporal algebra in Section 7.3.

Example 10: An SQL/Temporal query Q2 = VALIDTIME Q1 is evaluated with temporal semantics, due
to its leading valid clause. Both p and q must be tables with valid-time support. Thus,

VALIDTIME

SELECT p.X

FROM p, q

WHERE p.X = q.X

is equivalent to the temporal relational algebra expression

[[Q2]]SQL=T(p; q) = [[VALIDTIME Q1]]SQL=T(p; q) = [[Q1]]temporal(p; q) = �vtp:X(p 1vt

p:X=q:X q) :

Note that apart from the vt-superscripts, which are added to relational algebra operators, the translation
between SQL queries and relational algebra expressions has not changed at all. ut

The de�nitions above satisfy sequenced semantics if the temporal relational operators are sequenced with
respect to their conventional relational counterparts. The next step is to de�ne a temporal relational algebra
with this property.

22 DBL:MAD-146r2 and X3H2-96-501r2

7.2 The Conventional Relational Algebra

As a precursor to de�ning the temporal relational algebra, we review Codd's relational algebra.

�c(r)
4

= ft j t 2 r ^ c(t)g

�f (r)
4

= ft1 j t2 2 r ^ t1 = f(t2)g

r1 [r2
4

= ft j t 2 r1 _ t 2 r2g

r1 1c r2
4

= ft1 � t2 j t1 2 r1 ^ t2 2 r2 ^ c(ht1 � t2i)g

r1 n r2
4

= ft j t 2 r1 ^ t 62 r2g

AGagg;f (r)
4

= ft � a j t 2 r ^ a = agg(ft1jt1 2 r ^ f(t1) = f(t)g)g

In this formalism, c is a predicate, f is a list of attributes (for the aggregate operator, a list of the GROUP BY

attributes), and agg is a function (e.g., sum3) that when applied to a set of rows returns the single value of
the aggregate (e.g., SUM) evaluated over the indicated attribute (e.g., the third attribute).

Observe that the algebra de�ned above is based on sets and thus does not permit duplicates. We have
chosen to assume a set-based framework in the semantics given here because this yields a short de�nition
where the general approach stands out more clearly. The complications that follow from giving up the set-
based basis have been explored in the past and are omitted. We emphasize that the proposed additions to
SQL/Temporal do not impact the data model of SQL3 and are not strictly set based.

7.3 The Temporal Relational Algebra

The next step is to de�ne the temporal relational algebra operators. Informally, each de�nition respects
sequenced semantics. In addition to that, the algebra features two properties which we would like to point
out. First, the algebra preserves the periods entered into the database, i.e., it matters for the query results
whether we store, e.g., one row with a valid-time period of [10�20] or two (value-equivalent) rows with
valid-time periods [10�15] and [16�20], respectively. Second, care was taken to only consider end points of
valid-time periods of rows when implementing the operators|intermediate time points are never used. This
allows for an e�cient (essentially, granularity independent) implementation.

In Figure 7, the constructor intersect (over two periods) returns a period containing those chronons
in both underlying periods, and the predicate overlaps (over two periods) returns true if the two periods
overlap and false, otherwise. Both operations are easily expressed as operations on the beginning and ending
bounds of periods. The symbol \�" denotes concatenation. The de�nition of AGvt is especially complex.
It determines constant periods, during which no row starts or ends [10]. A constant period can go from the
start of one row to the start of another, from the start of one row to the end of another, or from the end of
one row to the end of another.

7.4 Nonsequenced Semantics

When NONSEQUENCED VALIDTIME is used, each table with valid-time support is converted to a table without
temporal support via the SN function.

SN(r)
4

= fht; V T i j ht jj V T i 2 rg

Then, the query is evaluated with the conventional semantics. Assume in the following that all the tables
are tables with valid-time support.
[[NONSEQUENCED VALIDTIME <query expression>]]

SQL=T
(r1; : : : ; rn)
4

= [[<query expression>]]
standard

(SN(r1); : : : ; SN(rn))

Example 11: Let Q be the following non-temporal query.

SELECT p.X

FROM p, q

WHERE p.X = q.X

DBL:MAD-146 and X3H2-96-501r2 23

�vt
c
(r)

4

= fhtjjV T i j htjjV T i 2 r ^ c(htjjV T i)g

�vt
f
(r)

4

= fht1jjV T i j ht2jjV T i 2 r ^ t1 = hf(t2)jjV T ig

r1 [
vt r2

4

= fhtjjV T i j htjjV T i 2 r1 _ htjjV T i 2 r2g

r1 1
vt

c
r2

4

= fhht1; V T1i � ht2; V T2ijjV T i j ht1jjV T1i 2 r1 ^ ht2jjV T2i 2 r2 ^
c(ht1; V T1i � ht2; V T2i) ^
V T = intersect(V T1; V T2) ^ V T1 overlaps V T2g

r1 n
vt r2

4

= fhtjjV T i j htjjV T1i 2 r1 ^
(9V T2(htjjV T2i 2 r2 ^ V T�

1
� V T+

2
^ V T� = V T+

2
) _ V T� = V T�

1
) ^

(9V T3(htjjV T3i 2 r2 ^ V T+

1
� V T�

3
^ V T+ = V T�

3
) _ V T+ = V T+

1
) ^

V T� < V T+ ^
:9V T4(htjjV T4i 2 r2 ^ V T+

4
> V T� ^ V T�

4
< V T+)g

AGvt

agg;f
(r)

4

= fht � ajjV T i j htjjV T1i 2 r ^ ht2jjV T2i 2 r ^ f(t) = f(t2) ^

((V T� = V T�
1

^ V T+ = V T�
2
)_

(V T� = V T�
1

^ V T+ = V T+

2
)_

(V T� = V T+

1
^ V T+ = V T+

2
)) ^ V T� < V T+ ^

:9ht4jjV T4i 2 r(f(t) = f(t4)^
((V T� < V T�

4
< V T+) _ (V T� < V T+

4
< V T+))) ^

a = agg(ft3jht3jjV T3i 2 r ^ V T3 overlaps V T ^ f(t) = f(t3)g)g

Figure 7: Semantics of the temporal algebra

Assume that p is a table without temporal support and q is a valid-time table. To evaluate this query
according to temporal upward compatibility, we timeslice q as of now.

[[Q]]
SQL=T

(p; q) = [[Q]]
standard

(p; �vt
now

(q)) = �p:X(p 1p:X=q:X �vt
now

(q)) :

Now consider the SQL/Temporal query Q2 = NONSEQUENCED VALIDTIME Q. q is converted to a table
without temporal support with an additional column, containing the valid-time period of the row, then the
query is evaluated according to the standard SQL semantics.

[[Q2]]SQL=T(p; q) = [[NONSEQUENCED VALIDTIME Q]]
SQL=T

(p; q)

= [[Q]]
standard

(p; SN(q))
= �p:X(p 1p:X=q:X SN(q)) :

Completing this example, let's examine sequenced valid semantics. Assume that p is also a table with
valid-time support (sequenced semantics requires all underlying tables to be tables with valid-time support).
Consider Q3 = VALIDTIME Q.

[[Q3]]SQL=T(p; q) = [[VALIDTIME Q]]
SQL=T

(p; q)

= [[Q]]
temporal

(p; q)

= �vt
p:X

(p 1vt

p:X=q:X
q) :

Note that apart from the vt-superscripts, which are added to relational algebra operators, the translation be-
tween SQL queries and relational algebra expressions for all three types of queries has not changed at all. ut

The semantics of VALIDTIME(c) are quite simple. If c is associated with a row ht jj V T i of a table with
valid-time support, then

[[VALIDTIME(c)]] = V T :

24 DBL:MAD-146r2 and X3H2-96-501r2

If a period expression follows VALIDTIME, the result of the select statement is restricted to the period

speci�ed. This can be accomplished by an extension of the timeslice operator � to take a period expression

as its subscript.

[[VALIDTIME p <query expression>]]
SQL=T

(r1; : : : ; rn)
4
= fht jj V T i j ht jj V T 0i 2 [[VALIDTIME <query expression>]]

SQL=T
(r1; : : : ; rn) ^ V T = V T 0 \ [[p]] ^ V T 6= ;g

If a period expression follows NONSEQUENCED VALIDTIME, a valid-time table results, with the valid-time

period as speci�ed. Assume in the following that all the tables are tables with valid-time support.

[[NONSEQUENCED VALIDTIME p <query expression>]]
SQL=T

(r1; : : : ; rn)

= fht jj [[p]]i j t 2 ([[NONSEQUENCEDVALIDTIME <query expression>]]
SQL=T

(r1; : : : ; rn)g

8 A Foundation for Implementing the Extensions

We �rst provide a mapping of temporal relational operations to conventional relational algebra expressions.

We then list a range of alternatives for implementing the temporal relational operators.

8.1 Implementing the Temporal Algebra

Here, we give the conventional algebraic equivalents for the temporal algebraic operators. We emphasize that

conventional operators range over a di�erent domain (tables without temporal support) than do temporal

operators (tables with valid-time support). In Figure 8, the set Ari contains the explicit attributes of table

ri, and a is the attribute appended by AG.

A \vt" superscript on a table indicates that it is a table with valid-time support; those tables without such

a superscript are tables without temporal support, each with an explicit V T column. The auxiliary function

SN(r) = fht;VTi j htjjVTi 2 rg maps a table with valid-time support into a table without temporal support

with valid-time being an explicit attribute. It is assumed that tables with valid-time support are mapped

into tables without temporal support using SN before conventional algebraic operators are applied. Note

that function SN is not needed at the implementation level. However, it is required here because Codd's

relational algebra operators are only well-de�ned over tables without temporal support. Finally, there is a

rename operator, �i(r) that gives table r the name i. Again, the aggregate operator is the most complex.

The relational di�erence and the outer Cartesian product are the analogs of \:9" in the calculus; the inner

Cartesian product and unions (to compute t2) are the analogs of the two row variables in the calculus.

Example 12: We continue by mapping the temporal algebraic equivalent of the SQL/Temporal query

Q2 = VALIDTIME Q1 into the snapshot algebra. Here, we assume that the table p has a single column, X,

and that the table q has two columns, X and Y.

[[Q2]]SQL=T(p; q) = [[VALIDTIME Q1]]SQL=T(p; q) = [[Q1]]temporal
(p; q) = �vtp:X(p 1vt

p:X=q:X q)

= �Xp;V T (�Xp;V Tp;Xq ;Yq;V Tq;V T=intersect(V Tp;V Tq)(SN(p) 1p:X=q:X^V Tp overlaps V Tq SN(q)))

= �Xp;V T=intersect(V Tp;V Tq)(SN(p) 1p:X=q:X^V Tp overlaps V Tq SN(q))

ut

8.2 Alternatives for Implementing SQL/Temporal

The transformations from the temporal algebra to the conventional algebra gives us several options for

implementing SQL/Temporal.

1. Map temporal queries into temporal algebra, then into regular algebra, according to Figure 8, then

back into SQL.

DBL:MAD-146 and X3H2-96-501r2 25

�vtc (rvt) ; �c(r)

�vtf (rvt) ; �f;V T (r)

rvt
1
[vt rvt

2
; r1 [r2

rvt
1
1
vt
c rvt

2
; �Ar1

;V Tr1 ;Ar2
;V Tr2 ;V T=intersect(V Tr1 ;V Tr2)

(r1 1c^V Tr1 overlaps V Tr2
r2)

rvt
1
nvt rvt

2
; t2 n �At2

;V Tt2
(t2 1At2

=Ar2
^V Tt2 overlaps V Tr2

r2)

t2 = t1 [�
Ar1

;period(V T
+
r2
;V T

�

t1
)
(t1 1At1

=Ar2
^V T

�

t1
�V T

+
r2
^V T

+
r2
<V T

+

t1

r2)

t1 = r1 [�
Ar1

;period(V T
�

r1
;V T

�

r2
)
(r1 1Ar1

=Ar2
^V T

�

r1
<V T

�

r2
^V T

�

r2
�V T

+
r1

r2)

AGvt
agg;f (r

vt) ; AGagg;f (t2 � �
A1;A2;a;V T

�

1
;V T

+

1

(

�
f(A1)=f(A2) ^((V T

�

1
<V T

�

2
<V T

+

1
)_(V T

�

1
<V T

+

2
<V T

+

1
))
(�1(t2)� �2(r))))

t2 = �
A1;a;period(V T

�

1
;V T

�

2
)
(t1) [�

A1;a;period(V T
�

1
;V T

+

2
)
(t1) [�

A1;a;period(V T
+

1
;V T

+

2
)
(t1)

t1 = �A1;a;V T1;V T2(�f(A1)=f(A2)
(�1(r)) � �2(r))

Figure 8: Snapshot equivalents of the the temporal algebra operators

2. Map temporal queries into temporal algebra, then, according to Figure 7, directly into SQL.

3. Map temporal queries directly into SQL, utilizing the temporal algebra implicitly in the query rewrite

phase (this is what the prototype does).

Example 13: Continuing with the previous example, the SQL/Temporal query Q2 on tables with valid-

time support can be mapped to an SQL3 query on tables without temporal support where the implicit

timestamps are now placed in explicit attributes.

SELECT p.X, p.VT INTERSECT_P q.VT AS VT

FROM p, q

WHERE p.X = q.X AND p.VT OVERLAPS q.VT

Here, we use the OVERLAPS predicate and the INTERSECT P operator already present in SQL/Temporal. ut

Finally, we point out some possibilities for query optimization.

1. Map temporal queries into temporal algebra, optimize as with SQL algebra (with existing transforma-

tions and/or new cost formulas), then map back in SQL.

2. Map temporal queries into temporal algebra, then into SQL algebra, then optimize, then evaluate.

3. Map temporal queries into temporal algebra, then optimize (again, using new cost formulas), then

evaluate the temporal algebra directly, with the concomitant increase in performance.

8.3 Implementing Temporal Assertions and Constraints

The general approach to checking an assertion is to negate it and then execute it as a query [2]. If the query

result is empty, i.e., if no rows are returned, the assertion is respected, otherwise it is violated.

Example 14: To check the assertion emp has sal from Section 6.1.2 we execute the query

SELECT *

FROM employee AS e

WHERE NOT EXISTS (SELECT *

FROM salary AS s

WHERE e.eno = s.eno)

26 DBL:MAD-146r2 and X3H2-96-501r2

A non-empty result indicates a violation of the assertion. ut

Temporal assertions and constraints, speci�ed with VALIDTIME, can be checked in a similar way, with a
VALIDTIME SELECT statement.

First, note that database systems have to improve the sketched mechanism to achieve acceptable per-
formance. Well-known techniques include incremental consistency checking, simpli�cation of assertions, and
special-purpose checking algorithms for, e.g., column constraints. Second, it becomes obvious how impor-
tant it is to address all aspects of a query language when transitioning from a nontemporal to a temporal
database system. Negation, which might be used rarely in queries asked by users, is crucial for answering
assertions because these usually involve some form of implication, i.e., involve negation. In our approach, it
is no harder to state a temporal negation than it is to state a temporal join. This makes speci�cation (and
implementation) of assertions particularly elegant.

8.4 Implementing Nonsequenced Semantics

Interestingly, supporting nonsequenced semantics is much easier than supporting sequenced semantics.
Assume as before that a table with valid-time support is represented at the physical level as a conventional

table with an additional column (of name VALIDTIME) containing the valid time. Then a nonsequenced
query can be evaluated as before, with no special treatment. VALIDTIME() simply returns the value of
the new column. The optional period expression is treated as an additional column in the evaluation of a
nonsequenced query.

A major advantage of nonsequenced semantics is its ease of implementation. The disadvantage of non-
sequenced semantics is that the user is responsible for handling the time dimension explicitly, which is why
sequenced semantics is so important.

9 Summary

In this change proposal, we �rst outlined several desirable features of SQL/Temporal relative to SQL3:
upward compatibility, temporal upward compatibility, and sequenced semantics. A series of four levels of
increasing functionality was elaborated. The speci�c syntactic additions were outlined and examples given
to illustrate these constructs. The extensions involve (a) the use of the VALIDTIME reserved words, to in-
dicate valid-time support (in the case of schema speci�cation statements) and sequenced semantics (in the
case of queries, modi�cations, views, assertions and constraints), (b) the use of the NONSEQUENCED reserved
word for nonsequenced semantics, and (c) the use of a period expression to temporally scope sequenced
and nonsequenced queries, modi�cations, views, cursors, constraints, and assertions. We provided a formal
semantics, in terms of the formal semantics of SQL3, that satis�ed the sequenced semantics correspondence
between temporal queries and snapshot queries, and also provided the semantics for nonsequenced queries.
Finally, we listed alternative implementation approaches which vary in the degree of implementation di�-
culty and the achievable performance e�ciency, and showed that implementing nonsequenced semantics is
straightforward.

Appendix A provides formal de�nitions of the properties discussed in Section 5.
We end by listing some of the advantages of the approach espoused here.

� Upward compatibility is assured, permitting existing constructs to operate exactly as before.

� Only two new reserved words, NONSEQUENCED and VALIDTIME, are required.

� Satisfaction of temporal upward compatibility ensures that existing applications do not break when
tables without temporal support have such support added.

� Satisfaction of sequenced semantics ensures that temporal queries, modi�cations, views, assertions,
and constraints are easy to specify, formalize, and implement.

� Nonsequenced semantics permits tables with valid-time support to be converted to tables without such
support, with an explicit timestamp column, and such for valid-time support to be added to tables,
even within a query.

DBL:MAD-146 and X3H2-96-501r2 27

� Since the semantics is de�ned in terms of the non-temporal semantics, the extensions are compatible
with all the facilities of SQL3.

� A simple period expression permits the temporal scope to be speci�ed.

� A prototype implementation exists [14]; this prototype was invaluable in re�ning the language additions.

� Transaction time support will require few syntactic or semantic extensions, and will be fully compatible
and consistent with these valid-time features.

28 DBL:MAD-146r2 and X3H2-96-501r2

10 Proposed Language Extensions

The syntax is given as extensions to \Database Language SQL | Part 7: Temporal" [8].

11 Clause 3 De�nitions, notations, and conventions

11.1 Subclause 3.1 De�nitions

1) Add the following terms.

g) row with valid-time support: A row with valid-time support is a row with an associated valid time,
which is a value of a period data type.

h) valid time of a row with valid-time support: The valid time of a row with valid-time support is
a period during which the values in the �elds of the row are known to be valid.

Note to proposal reader: The valid-time period is not required to be maximal.

i) table with valid-time support: A table with valid-time support is one in which each row is a row
with valid-time support.

Note to proposal reader: The SRs and GRs ensure that the valid-time periods of all rows of a table are
of a period data type of the same element type and precision.

j) valid-time state of a table with valid-time support at a valid time: The valid-time state of a
table with valid-time support TV at a speci�ed valid time T is the table without valid-time support
comprising rows with identical values for the �elds of the rows of TV associated with valid times that
overlap T.

k) current valid-time state of a table with valid-time support: The current valid-time state of a ta-
ble with valid-time support is the valid-time state of that table at valid time CURRENT TIMESTAMP.

l) precision of a table with valid-time support: The precision of a table with valid-time support is
the precision of the element type of the period type of the associated valid time of its rows.

m) the end of time: The end of time is the maximum datetime value, 9999-12-31 23:59:59.999999....

DBL:MAD-146 and X3H2-96-501r2 29

12 Clause 4 Concepts

1) Insert the following Subclause, \Tables", to SQL/Temporal immediately following Subclause 4.2.3, \Period
predicates".

12.1 Subclause 4.3 Tables

Every table descriptor also includes:

{ An indication of whether the table has valid-time support or does not have valid-time support.

{ The valid-time precision of the table, if the table has valid-time support.

2) Insert the following Subclause, \Integrity constraints", to SQL/Temporal immediately following Subclause
4.3, \Tables".

12.2 Subclause 4.4 Integrity constraints

Every constraint descriptor also includes:

{ An indication of whether the constraint is speci�ed without VALIDTIME, with VALIDTIME but
without NONSEQUENCED, or with NONSEQUENCED VALIDTIME.

{ The valid-time period, if any, associated with the constraint.

1) Insert the following Subclause, \Meaning of statements on tables with valid-time support", to SQL/Temporal
immediately following Subclause 4.4, \Integrity constraints".

12.3 Subclause 4.5 Meaning of statements on tables with temporal support

Temporal upward compatible queries (i.e., SELECT without VALIDTIME) treat each underlying table that
has valid-time support as a table without valid-time support, by using instead the current valid-time state of
the table. Hence, a query evaluated with temporal upward compatibility on a table with valid-time support
will use only the current valid-time state in the evaluation.

Sequenced valid queries (i.e., VALIDTIME SELECT) apply only on tables with valid-time support, and
result in tables with valid-time support. The meaning of sequenced valid queries is de�ned in terms of
the meaning of queries on tables without valid-time support. Let Q be a sequenced valid query, with Q =
VALIDTIME Q1, where Q1 is a query without VALIDTIME. The meaning of Q1 on tables without temporal
support is already de�ned by this International Standard. Let R be the valid-time table that is the result of
Q on one or more tables with valid-time support. For all times T, the state of R at time T is the result of
Q1 according to the General Rules in Subclause 7.4, \<query expression>" on the states of the underlying
tables at time T. Any R that satis�es this property is a valid result of Q.

Nonsequenced valid queries (i.e., NONSEQUENCED VALIDTIME SELECT) treat each underlying table
that has valid-time support as a table without valid-time support, but with an additional unnamed column
whose value for a row in the table is the valid-time period associated with the corresponding row in the
original table. With this substitution, the General Rules in Subclause 7.4, \<query expression>" apply.

The <value expression> following VALIDTIME is used in two ways. Within a nonsequenced valid query,
it supplies the valid-time period of the computed rows. In a sequenced valid query, it speci�es the \temporal
scope" of the query: the result is computed with sequenced valid semantics, then the valid-time periods of
the result are intersected with the value of the <value expression> to determine the �nal valid-time period.

These same concepts (temporal upward compatibility, sequenced valid, and nonsequenced valid) also
apply to integrity constraints, assertions, views, cursors and modi�cation statements.

Note to proposal reader: Very informally, what is going on is that the SQL3 semantics of a query Q is treated
as a black box. Put a query and a database (conventional, without valid-time support) in one side, and out
comes a (carefully speci�ed) table (without valid-time support) on the other side.

30 DBL:MAD-146r2 and X3H2-96-501r2

The semantics of the nonsequenced, sequenced, and temporally upward compatible queries, modi�cations,
etc., are speci�ed by using this black box.

The advantages are numerous. (1) We don't have to modify each page of the speci�cation; instead, the
additions to the speci�cation are small and isolated. (2) As SQL3 grows, with new constructs, the temporal
query variants still work �ne. (3) The intuition of the user is aided by the fact that a temporal version of a
query is de�ned in terms of the original, nontemporal version of the query.

This section provides some intuition behind the general rules of Subclause 7.4, \<query expression>"
as well as the subclauses for integrity constraints, assertions, and modi�cation statements. Suggestions for
improvements would be welcomed.
End of note.

DBL:MAD-146 and X3H2-96-501r2 31

13 Clause 5 Lexical elements

13.1 Subclause 5.1 <token> and <separator>

1) In the Format, add the following two new alternatives to <reserved word>:

�
� NONSEQUENCED
�
� VALIDTIME

32 DBL:MAD-146r2 and X3H2-96-501r2

14 Clause 6 Scalar expressions

1) Insert the following two Subclauses, \<item reference>" and \<table reference>", to SQL/Temporal
immediately preceding Subclause 6.2, \<set function speci�cation>".

14.1 Subclause 6.1 <item reference>

Function

Reference a column, parameter, or variable.

Format

No additional Format items.

Syntax Rules

1. (Replace SR4) If IR does not contain an <item quali�er>, then

Case:

a) If IR is contained within the scope of one or more exposed <table or query name>s, <correlation
name>s, or <routine>s whose associated tables or <parameter list>s include a column or pa-
rameter whose <identi�er> is IN, then

i) Let the phrase possible quali�ers denote those exposed <table or query name>s, <correlation
name>s, and <routine name>s.

ii) Case:

1) If the most local scope contains exactly one possible quali�er, then the quali�er IQ equiv-
alent to that unique exposed <table or query name>, <correlation name>, or <routine
name> is implicit.

2) If there is more than one possible quali�er with the most local scope, then:

a) Each possible quali�er shall be a <table or query name> or a <correlation name> of
a <table reference> that is directly contained in a <joined table> JT.

b) CN shall be a common column name in JT.

c) The implicit quali�er IQ is implementation-dependent. The scope of IQ is that which
IQ would have had if JT had been replaced by the <table reference>:
(JT) AS IQ

iii) Let V be the table or parameter list associated with IQ.

b) If IR is contained in a <value expression> of a <time option> that is simply contained in a
<query expression> QE, then

i) The implicit quali�er IQ is implementation-dependent. The scope of IQ is that which IQ
would have had if the <query expression body> QEB of QE had been replaced by the <table
reference>:
(QEB) AS IQ

ii) Let V be the table associated with IQ.

Note to proposal reader: The original SR4 appears as Case a. This adds Case b.

Access Rules

No additional Access Rules.

DBL:MAD-146 and X3H2-96-501r2 33

General Rules

No additional General Rules.

34 DBL:MAD-146r2 and X3H2-96-501r2

14.2 Subclause 6.2 <table reference>

Function

Reference a table.

Format

No additional Format items.

Syntax Rules

1. (Replace SR2a) If a <table reference> TR is contained in a <from clause> FC with no intervening
<derived table>, then the scope clause SC of TR is the <select statement: single row> SS or innermost
<query speci�cation> that contains FC. The scope of the exposed <correlation name> or exposed
<table or query name> of TR is the <select list>, <from clause>, <where clause>, <group by
clause>, and <having clause> of SC, together with the <join condition> of all <joined table>s
contained in SC that contain TR and the <time option> of SS.

Note to proposal reader: This adds \and the <time option> of SS" to the scope.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

DBL:MAD-146 and X3H2-96-501r2 35

14.3 Subclause 6.5 <period value expression>

1) In the Format, add the following new alternative to <period primary>:

�
� <validtime function>

2) In the Format, add the following two BNF productions:

<validtime function> ::=
VALIDTIME <left paren> <validtime argument> <right paren>

<validtime argument> ::=
<item quali�er>

�
� <value expression>

Note to proposal reader: An <item quali�er> is either a <table name> or a <correlation name>.

3) Insert the following Syntax Rules:

1. (Insert this SR) Case:

a) If T has valid-time support, then let P be the valid-time precision of T.

b) If T does not have valid-time support, then it shall have a �eld named VALIDTIME of a period
data type. Let P be the precision of the element type of this �eld.

2. (Insert this SR) The <value expression> of a <validtime function> shall be of row type RT.

Case:

a) If RT has valid-time support, then let P be the valid-time precision of RT.

b) If RT does not have valid-time support, then it shall have a �eld named VALIDTIME of a period
data type. Let P be the precision of the element type of this �eld.

Note to proposal reader: The VALIDTIME �eld comes from a nonsequenced select.

3. (Insert this SR) The data type of <validtime function> shall be <period type>, with a precision of P.

4) Insert the following two General Rules:

1. (Insert this GR) Case:

a) If <validtime argument> is <item quali�er>, then let R be the row of T for which <validtime
function> VF is evaluated.

b) If <validtime argument> is <value expression>, then let R be the resulting row.

2. (Insert this GR) Case:

a) If R has valid-time support, then the value of the <validtime function> is the valid-time period
of R.

b) If R does not have valid-time support, then the value of the <validtime function> is the value of
the �eld of R named VALIDTIME.

Language opportunity: It would be helpful if this function were also available in PSM to apply to values
of type ROW.

36 DBL:MAD-146r2 and X3H2-96-501r2

15 Clause 7 Query expressions

1) Insert the following two new Subclauses, \<query expression>" and \<query speci�cation>", to SQL/Temporal

immediately following Subclause 7.3, \<period value constructor>".

15.1 Subclause 7.4 <query expression>

Function

Specify a table.

Format

<query expression> ::=

[<with clause>] <temporal query expression body>

<temporal query expression body> ::=

[<time option>] <query expression body>

Note to proposal reader: This adds an optional <time option> to <query expression>.

<time option> ::=

<validtime option>

<validtime option> ::=

[NONSEQUENCED] VALIDTIME [<value expression>]

Note to proposal reader: The <time option> is expanded in the transaction-time change proposal, in a

similar fashion to <validtime option> proposed here. There are �ve cases:

1. SELECT

� works on anything

� evaluates to a table with no temporal support

2. VALIDTIME SELECT

� works only on tables with valid-time support

� evaluates to a table with valid-time support

3. VALIDTIME <period exp> SELECT

� like VALIDTIME SELECT, but only returns timestamps within <period exp> (a simple example is

VALIDTIME PERIOD '[1995-01-01 - 1995-12-31]' SELECT)

4. NONSEQUENCED VALIDTIME SELECT

� works on anything

� acts like tables with valid-time support have an explicit timestamp column

� evaluates to a table with no temporal support

5. NONSEQUENCED VALIDTIME <period exp> SELECT

� like NONSEQUENCED VALIDTIME SELECT, but uses the <period exp> as a timestamp, and thus

returns a table with valid-time support

DBL:MAD-146 and X3H2-96-501r2 37

To convert a table with valid-time support to a table with no temporal support, use SELECT (if only the

current state is of interest) or NONSEQUENCED VALIDTIME SELECT.

To convert a table without valid-time support to a table with valid-time support, use NONSEQUENCED

VALIDTIME <period exp> SELECT.

End of note.

Syntax Rules

1. (Replace SR1b) For all i between 1 and n, the scope of the <query name> WQN that is immedi-

ately contained in WLEi is the <query expression> that is immediately contained in every <with list

element> WLEk, where k ranges from i+1 to n, and the <temporal query expression body> that is

immediately contained in <query expression>. A <table or query name> that is contained in this

scope that immediately contains WQN is a query name in scope.

Note to proposal reader: This simply replaces <query expression body> with <temporal query expres-

sion body>.

2. (Add to SR5) d) <time option> is not speci�ed in the <temporal query expression body> that is

contained in <query expression>.

Note to proposal reader: This speci�es that if <time option> is speci�ed, the result of <query

expression> is not inherently updatable. See the language opportunity, below.

3. (Insert this SR) If VALIDTIME is speci�ed and NONSEQUENCED is not speci�ed in the <validtime

option> that is contained in the <time option> that is simply contained in <query expression>, then

each exposed table, query, or correlation name that is contained in the <query expression body>

without an intervening <from clause> shall identify a table with valid-time support and with identical

precision P.

Note to proposal reader: This ensures that sequenced valid queries are only evaluated \over" tables

with valid-time support.

4. (Insert this SR) If VALIDTIME is speci�ed in the <validtime option> of a <query expression> Q,

then either Q shall be simply contained in a <from clause> or Q shall be the outermost <query

expression>.

Note to proposal reader: VALIDTIME is allowed in only two places: prepended to the outermost

<query expression>, or immediately within a <from clause>. The reason is that the <time option>

applies to the entire <query expression>, evaluated on the exposed tables, queries, and correlation

names, which are speci�ed in the <from clause>s of the query.

5. (Insert this SR) The data type of the <value expression> that is contained in the <validtime option>

that is contained in <time option> shall be <period type>.

NOTE 6 - Subclause 6.3, \<item reference>" restricts the scope of column names in<value expression>.

6. (Insert this SR) Let T be the result of the <query expression>.

Case:

a) If VALIDTIME is speci�ed and NONSEQUENCED is not speci�ed in <validtime option>, then

T shall be a table with valid-time support and with precision P. The precision of the <value

expression> that is contained in the <valid option> of <time option> shall be P.

b) If NONSEQUENCED VALIDTIME is speci�ed in <time option>, then

Case:

38 DBL:MAD-146r2 and X3H2-96-501r2

i) If <value expression> is speci�ed in the <validtime option> of <time option>, then T shall

be a table with valid-time support and with a precision of that of <value expression>.

ii) Otherwise, T shall be a table without valid-time support.

c) Otherwise, T shall be a table without valid-time support.

Note to proposal reader: If NONSEQUENCED VALIDTIME is speci�ed, the precision of the

<value expression> of <validtime option> is arbitrary.

Access Rules

No additional Access Rules.

General Rules

1. (Replace GR1a) For every <with list element> WLE, let WQN be the <query name> immediately

contained in WLE. Let WQE be the <temporal query body> immediately contained in WLE. Let WLT

be the table resulting from evaluation of WQE, with each column name replaced by the corresponding

element of the <with column list>, if any, immediately contained in WLE.

Note to proposal reader: This simply replaces <query expression> with <temporal query expression

body>.

2. (Insert this GR) Case:

a) If VALIDTIME is speci�ed and NONSEQUENCED is not speci�ed in <validtime option>, then

the result of <temporal query expression body> TQEB during each valid time granule T of

precision P is the result of the <query expression body> of TQEB with each leaf generally

underlying table with valid-time support with no intervening <from clause> replaced with its

state at valid time T. If <value expression> VE is speci�ed in the <validtime option> that is

contained in <time option>, then for each row R resulting from the initial evaluation of TQEB,

Case:

i) If the value of VE and the valid-time period VP of R overlap, then the resulting valid-time

period of R is the result of

(VE P INTERSECT VP).

ii) Otherwise, R is not included in the �nal result of TQEB.

Note to proposal reader: P INTERSECT is intersection on periods, as de�ned in Subclause 6.5,

\<period value expression>", in SQL/Temporal.

b) If NONSEQUENCED VALIDTIME is speci�ed in <time option>, then the result of <temporal

query expression body> TQEB is the result of the <query expression body> of TQEB with

each leaf generally underlying table with valid-time support with no intervening <from clause>

replaced with a table with no valid-time support with rows with identical values for the columns.

The descriptor of that table is the same as the description of the table DT from which it is derived,

with the inclusion of a column descriptor whose column name is VALIDTIME, whose data type

is a <period type> with a precision of that of the valid-time period of DT, and whose ordinal

position is one greater than the degree of DT. The value of this additional column for each row is

the original valid-time period of the corresponding row in DT. If <value expression> is speci�ed

in the <validtime option> of <time option>, then the valid-time period of the row of the result

of TQEB is the value of <value expression>.

c) Otherwise, the result of <temporal query expression body> TQEB is the result of the <query

expression body> of TQEB with each of its leaf generally underlying tables with valid-time

support with no intervening <from clause> replaced with its current valid-time state.

DBL:MAD-146 and X3H2-96-501r2 39

Language opportunity: It may be possible to allow temporal query expressions to be updatable.

Language opportunity: It would be nice if <value expression> that is contained in the<validtime option>

that is contained in <time option> also be allowed to be of a datetime data type, interpreted as a period

containing one granule. This would allow statements of the form VALIDTIME DATE '1996-01-01' SELECT.

40 DBL:MAD-146r2 and X3H2-96-501r2

15.2 Subclause 7.5 <query speci�cation>

Function

Specify a table derived from the result of a <table expression>.

Format

No additional Format items.

Syntax Rules

1. (Replace SR4b) Otherwise, the <select list> "*" is equivalent to a <value expression> sequence in

which each <value expression> is a column reference that references a column of T and each column

of T, other than any column named VALIDTIME, is referenced exactly once. The columns other than

those named VALIDTIME are referenced in the ascending sequence of their ordinal position within T.

Note to proposal reader: The VALIDTIME column comes from a nonsequenced select, and should not

be included in *". This ensures that a table with valid-time support not also include an explicit

column named VALIDTIME, thereby rendering the value of the VALIDTIME function (see Subclause

6.5 <period value expression>) ambiguous.

2. (Replace SR 5) If the <select sublist>

<item quali�er>.*

is speci�ed, then let Q be the <item quali�er> of that <select sublist>. Q shall be a <table name> or

<correlation name> exposed by a <table reference> immediately contained in the <from clause> of

T. Let TQ be the table associated with Q. That <select sublist> is equivalent to a <value expression>

sequence in which each <value expression> is a column reference CR that references a column of TQ

that is not a common column of a <joined table> and does not have the name VALIDTIME. Each

column of TQ that is not a referenced common column shall be referenced exactly once. The columns

shall be referenced in the ascending sequence of their ordinal positions within TQ.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

DBL:MAD-146 and X3H2-96-501r2 41

16 Clause 10 Schema de�nition and manipulation

1) Insert this new Subclause, \<table de�nition>", to SQL/Temporal immediately following Subclause 10.1,

\<default clause>".

16.1 Subclause 10.2 <table de�nition>

Function

De�ne a persistent base table, a created local temporary table, or a global temporary table.

Format

<table de�nition> ::=

CREATE [<table scope>] TABLE <table name>

f <table element list>
�
�<subtable clause> [<table element list>] g

[<temporal de�nition>]

[ON COMMIT <table commit action> ROWS]

Note to proposal reader: This augments the production for the non-terminal <table de�nition> with an

additional, optional clause to specify that the new table is to be a table with valid-time support.

<temporal de�nition> ::=

AS VALIDTIME [<period type>]

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1. (Add to GR3)

f) Whether the table has valid-time support or does not have valid-time support.

g) If the table has valid-time support, then the valid-time precision of the table.

Note to proposal reader: These two items are added to the table descriptor.

2. (Insert this GR) If <temporal de�nition> is speci�ed, then the descriptor for the table indicates that

the table has valid-time support with a precision of the element type of <period type>.

Note to proposal reader: Otherwise, the table does not have valid-time support.

42 DBL:MAD-146r2 and X3H2-96-501r2

16.2 Subclause 10.3 <column de�nition>

2) Insert this new Subclause to SQL/Temporal immediately following Subclause 10.2, \<table de�nition>".

Function

De�ne a column of a table.

Format

<column constraint de�nition> ::=

[<constraint name de�nition>] <temporal column constraint>

<temporal column constraint> ::=

[<time option>] <column constraint> [<constraint attributes>]

Note to proposal reader: This adds an optional <time option> to column constraints.

Syntax Rules

1. (Insert this SR) If VALIDTIME is speci�ed in <validtime option> contained in <time option>, then

T shall be a table with valid-time support.

2. (Insert this SR) If VALIDTIME is speci�ed and NONSEQUENCED is not speci�ed in <validtime

option> that is contained in <time option>,

Case:

a) If <column constraint> is <references speci�cation>, then the table identi�ed by <table name>

that is simply contained in the <referenced table and columns> of <references speci�cation>

shall be a table with valid-time support.

b) If <column constraint> is <check constraint de�nition>, then each table associated with an

exposed <table name>, <query expression>, or <correlation name> that is contained in the

<column constraint> without an intervening <from clause> shall be a table with valid-time

support and with identical precision.

3. (Insert this SR) The precision of <value expression> VE that is contained in the <validtime option>

of <time option> shall be the precision of T. VE shall be a <literal>.

4. (Insert this SR) If NONSEQUENCED VALIDTIME is speci�ed in the <time option> that is contained

in <column constraint de�nition> , then VO shall not contain <value expression>.

5. (Insert this SR) If <time option> is speci�ed, then the <column constraint> shall not be NOT NULL.

Note to proposal reader: This restriction might be lifted in the future, along with various other schema

manipulation restrictions. See the language opportunity, below.

6. (Insert this SR) The<temporal column constraint>TCC is equivalent to a<temporal table constraint>

with a <time option> of the <time option> of TCC and a <table constraint> that is equivalent to

the <column constraint> that is contained in TCC.

Access Rules

No additional Access Rules.

DBL:MAD-146 and X3H2-96-501r2 43

General Rules

No additional General Rules.

Language opportunity: It may be possible to allow <time option> with NOT NULL, but the implications

on nullability and functional dependencies should be carefully considered.

44 DBL:MAD-146r2 and X3H2-96-501r2

16.3 Subclause 10.4 <table constraint de�nition>

3) Insert this new Subclause to SQL/Temporal immediately following Subclause 10.3, \<column de�nition>".

Function

Specify an integrity constraint.

Format

<table constraint de�nition> ::=

[<constraint name de�nition>] [<time option>] <temporal table constraint>

<temporal table constraint> ::=

<table constraint> [<constraint attributes>]

Note to proposal reader: This adds an optional <time option>. For constraints and assertions, there are

four cases:

1. CHECK

� works on anything

� only considers current state

2. VALIDTIME CHECK

� works only on tables with valid-time support

� the constraint/assertion must be true for the state at every valid time

3. VALIDTIME <period exp> CHECK

� like VALIDTIME CHECK, but only considers the times in <period exp> (a simple example is

VALIDTIME PERIOD '[1995-01-01 - 1995-12-31]' CHECK)

4. NONSEQUENCED VALIDTIME CHECK

� works on anything

� acts like tables with valid-time support have an explicit timestamp column; all rows are considered

at once

NONSEQUENCED VALIDTIME <period exp> CHECK is not allowed.

End of note.

Syntax Rules

1. (Insert this SR) Let T be the table de�ned by the <table de�nition> containing this <table constraint

de�nition>.

2. (Insert this SR) If VALIDTIME is speci�ed in the <validtime option> that is contained in <time

option>, then T shall be a table with valid-time support with precision P. The precision of <value

expression> VE that is contained in the <valid option> that is contained in <time option> shall be

P. VE shall be a <literal>.

3. (Insert this SR) If VALIDTIME is speci�ed and NONSEQUENCED is not speci�ed in <table con-

straint de�nition>, then each exposed table, query, or correlation name that is contained in the <table

constraint> without an intervening <from clause> shall identify a table with valid-time support and

with identical valid-time period precision.

DBL:MAD-146 and X3H2-96-501r2 45

4. (Insert this SR) If <validtime option> VO that is contained in <column constraint de�nition> contains

NONSEQUENCED, then VO shall not contain <value expression>.

Access Rules

No additional Access Rules.

General Rules

1. (Append to GR2) The table constraint descriptor includes an indication of whether the constraint has

valid-time support or does not have valid-time support, as well as the valid-time period, if any, of the

table constraint, if the table constraint has valid-time support.

2. (Insert this GR) Case:

a) If VALIDTIME is speci�ed and NONSEQUENCED is not speci�ed in <validtime option>, then

Case:

i) If <value expression> V is contained in the <validtime option> of <time option>, then

<temporal table constraint> is satis�ed if the contained <table constraint> is satis�ed for

each time granule TG of the value of V, with each leaf generally underlying table with valid-

time support with no intervening <from clause> replaced with its state at valid time TG.

ii) Otherwise, <temporal table constraint> is satis�ed if the contained <table constraint> is

satis�ed for each time granule TG of precision P, with each leaf generally underlying table

with valid-time support with no intervening <from clause> replaced with its state at valid

time TG.

b) If NONSEQUENCEDVALIDTIME is speci�ed in<time option>, then<temporal table constraint>

is satis�ed if the contained <table constraint> is satis�ed when each leaf generally underlying

table with valid-time support with no intervening <from clause> is replaced with a table with no

valid-time support with rows with identical values for the columns. The descriptor of that table

is the same as the description of the table DT from which it is derived, with the inclusion of a

column descriptor whose column name is VALIDTIME, whose data type is a <period type> with

an element precision of that of the valid-time period of DT, and whose ordinal position is one

greater than the degree of DT. The value of this additional column for each row is the original

valid-time period of the corresponding row in DT.

c) Otherwise, <temporal table constraint> is satis�ed if the contained <table constraint> is satis�ed

when each of its leaf generally underlying tables with valid-time support with no intervening<from

clause> is replaced with its current valid-time state.

46 DBL:MAD-146r2 and X3H2-96-501r2

16.4 Subclause 10.5 <alter table statement>

4) Insert this new Subclause to SQL/Temporal immediately following Subclause 10.4, \<table constraint

de�nition>".

Function

Change the de�nition of a table.

Format

<alter table action> ::=

!! All alternatives from ISO/EIC 9075
�
� <add valid de�nition>
�
� <drop valid de�nition>
�
� <convert valid de�nition>

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

DBL:MAD-146 and X3H2-96-501r2 47

16.5 Subclause 10.6 <add valid de�nition>

5) Insert this new Subclause to SQL/Temporal immediately following Subclause 10.5, \<alter table statement>".

Function

Add valid-time support to a table.

Format

<add valid de�nition> ::=

ADD VALIDTIME [<period type>]

Syntax Rules

1. (Insert this SR) Let T be the table identi�ed by the <table name> that is immediately contained in

the <alter table statement> that immediately contains <add valid de�nition>.

2. (Insert this SR) T shall be a table without valid-time support.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) Valid-time support is added to each row of T, by associating with that row a valid-time

period from the current timestamp to the end of time with a precision of the element type of <period

type>. The descriptor of T is altered to indicate that T has valid-time support, of the precision of the

element type of <period type>.

48 DBL:MAD-146r2 and X3H2-96-501r2

16.6 Subclause 10.7 <drop valid de�nition>

6) Insert this new Subclause to SQL/Temporal immediately following Subclause 10.6, \<add valid de�nition>".

Function

Drop valid-time support from a table.

Format

<drop valid de�nition> ::=

DROP VALIDTIME

Syntax Rules

1. (Insert this SR) Let T be the table identi�ed by the <table name> that is immediately contained in

the <alter table statement> that immediately contains <drop valid de�nition>.

2. (Insert this SR) T shall be a table with valid-time support.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) Valid-time support is removed from T, by replacing T with the result of

SELECT * FROM T

Note to proposal reader: That is, only the current valid-time state is retained.

The descriptor of T is altered to indicate that T does not have valid-time support.

DBL:MAD-146 and X3H2-96-501r2 49

16.7 Subclause 10.8 <convert valid de�nition>

7) Insert this new Subclause to SQL/Temporal immediately following Subclause 10.7, \<drop valid de�nition>".

Function

Change the valid-time precision of a table.

Format

<convert valid de�nition> ::=

ALTER VALIDTIME TO <period type>

Syntax Rules

1. (Insert this SR) Let T be the table identi�ed by the <table name> that is immediately contained in

the <alter table statement> that immediately contains <convert valid de�nition>.

2. (Insert this SR) T shall be a table with valid-time support.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) T is converted to the new precision speci�ed e�ectively by the execution of the

following statements. Let TC be the columns of T, and let P be the <period type>. The descriptor

of T is altered to indicate that T has a valid-time precision of that of the element type of P.

CREATE TABLE Temp (TC) AS VALIDTIME P

INSERT INTO Temp

VALIDTIME SELECT (TC)

FROM (NONSEQUENCED VALIDTIME CAST(when AS P)

SELECT *, VALIDTIME(T) AS when

FROM T) AS T2

DROP TABLE T

CREATE TABLE T (TC) AS VALIDTIME P

INSERT INTO T

VALIDTIME SELECT * FROM Temp

DROP TABLE Temp

50 DBL:MAD-146r2 and X3H2-96-501r2

16.8 Subclause 10.9 <assertion de�nition>

8) Insert this new Subclause to SQL/Temporal immediately following Subclause 10.8, \<convert valid

de�nition>".

Function

Specify an integrity constraint by means of an assertion and specify when the assertion is to be checked.

Format

<triggered assertion> ::=

[<time option>]

CHECK <left paren> <search condition> <right paren>

Note to proposal reader: This adds an optional <time option>.

Syntax Rules

1. (Insert this SR) If VALIDTIME is speci�ed and NONSEQUENCED is not speci�ed in the <validtime

option> that is contained in <time option>, then each exposed table, query, or correlation name that

is contained in the <search condition> without an intervening <from clause> shall identify a table

with valid-time support of precision P. The precision of the <value expression> that is contained in

the <validtime option> that is contained in <time option> shall be P. VE shall be a <literal>.

2. (Insert this SR) If NONSEQUENCED VALIDTIME is speci�ed in the <valid option> VO contained

in the <time option> TO of <triggered assertion>, then VO shall not contain <value expression>.

Access Rules

No additional Access Rules.

General Rules

1. (Append to GR4) The assertion descriptor includes an indication of whether the assertion has valid-

time support or does not have valid-time support, as well as the valid-time period, if any, of the

assertion, if the assertion has valid-time support.

2. (Insert this GR) Case:

a) If VALIDTIME is speci�ed and NONSEQUENCED is not speci�ed in the <validtime option>

that is contained in <time option>, then

Case:

i) If <value expression> V is contained in the <validtime option> that is contained in <time

option>, then <triggered assertion> is satis�ed if the contained <search condition> is sat-

is�ed for each time granule TG of the value of V, with each leaf generally underlying table

with valid-time support with no intervening <from clause> replaced with its state at valid

time TG.

ii) Otherwise, <triggered assertion> is satis�ed if the contained <search condition> is satis�ed

for each time granule TG of precision P, with each leaf generally underlying table with valid-

time support with no intervening <from clause> replaced with its state at valid time TG.

b) If NONSEQUENCED VALIDTIME is speci�ed in <time option>, then <triggered assertion>

is satis�ed if the contained <search condition> is satis�ed when each leaf generally underlying

table with valid-time support with no intervening <from clause> is replaced with a table with

no valid-time support with rows with identical values for the columns. The descriptor of that

DBL:MAD-146 and X3H2-96-501r2 51

table is the same as the description of the table DT from which it is derived, with the inclusion

of a column descriptor whose column name is VALIDTIME, whose data type is a <period type>

with a precision of that of the valid-time period of DT, and whose ordinal position is one greater

than the degree of DT. The value of this additional column for each row is the original valid-time

period of the corresponding row in DT.

c) Otherwise, <triggered assertion> is satis�ed if the contained <search condition> is satis�ed when

each of its leaf generally underlying tables with valid-time support with no intervening <from

clause> is replaced with its current valid-time state.

52 DBL:MAD-146r2 and X3H2-96-501r2

17 Clause 11 Period manipulation rules

1) Insert this new Clause to SQL/Temporal immediately before Clause 11, \Dynamic SQL".

2) Insert the following new Subclause, \Rules for period manipulation in modi�cation statements", to

SQL/Temporal at the beginning of Clause 11, \Data manipulation".

17.1 Section 11.1 Rules for period manipulation in modi�cation statements

Function

Specify rules for period manipulation in modi�cation statements.

General Rules

1. To remove a period RP from the valid-time period P of a row R of a table T,

Case:

a) If BEGIN(RP) � BEGIN(P) � LAST(RP) < LAST(P), then replace the beginning bound of P

for row R with END(RP).

b) If BEGIN(RP) � BEGIN(P) and LAST(RP) � LAST(P), then mark row R for deletion.

c) If BEGIN(P) < BEGIN(RP) and LAST(RP) < LAST(P), then replace the ending bound of P

for row R with BEGIN(RP). Let NP be a period of precision of that of P, such that BEGIN(NP)

is END(RP) and END(NP) is END(P). A new row, with column values identical to R, and with

an associated valid-time period of NP, is inserted into T.

d) If BEGIN(P) < BEGIN(RP) � LAST(P) and LAST(RP) � LAST(P), then replace the ending

bound of P for row R with BEGIN(RP).

Note to proposal reader: If RP and P do not overlap, then do nothing.

2. To update the valid-time period P of a row R of a table T for a period UP, where PP is the precision

of P,

Case:

a) If BEGIN(UP) � BEGIN(P) � LAST(UP) < LAST(P), then replace the beginning bound of P

for row R with END(UP). Let NP be the period of precision of PP, such that BEGIN(NP) is

BEGIN(P) and END(NP) is END(UP). A new row NR, with column values identical to R, and

with an associated valid-time period of NP, is inserted into T. Perform the update only on NR.

b) If BEGIN(UP) � BEGIN(P) and LAST(UP) � LAST(P), then perform the update on R.

c) If BEGIN(P) < BEGIN(UP) and LAST(UP) < LAST(P), then replace the ending bound of P for

row R with BEGIN(UP). Let NP be a period of precision PP, such that BEGIN(NP) is END(UP)

and END(NP) is END(P). Two new rows, NR1 and NR2, with column values identical to R, and

with an associated valid-time periods of UP and NP, respectively, are inserted into T. The update

is performed only on NR1.

d) If BEGIN(P) < BEGIN(UP) � LAST(P) and LAST(UP) � LAST(P), then replace the ending

bound of P for row R with BEGIN(UP). Let NP be a period of precision PP, such that BEGIN(NP)

is BEGIN(UP) and END(NP) is END(P). A new row NR, with column values identical to R, and

with an associated valid-time period of NP, is inserted into T. The update is performed only on

NR.

Note to proposal reader: If P and UP do not overlap, then do nothing.

DBL:MAD-146 and X3H2-96-501r2 53

18 Clause 12 Data manipulation

1) Insert this new Clause to SQL/Temporal immediately following Clause 11, \`Period manipulation rules".

2) Insert the following new Subclause, \<select statement: single row>", to SQL/Temporal at the beginning

of Clause 12, \Date manipulation".

18.1 Subclause 12.2 <select statement: single row>

Function

Retrieve values from a speci�ed row of a table.

Format

<select statement: single row> ::=

[<time option>]

SELECT [<set quanti�er>] <select list>

INTO <select target list>

<table expression>

Note to proposal reader: This adds an optional <time option>.

Syntax Rules

1. (Insert this SR) If VALIDTIME is speci�ed and NONSEQUENCED is not speci�ed in the <validtime

option> that is contained in <time option>, then each exposed <table name>, <query expression>,

or <correlation name> that is contained in the <table expression> without an intervening <from

clause> shall identify a table with valid-time support and with identical precisions P.

2. (Insert this SR) If VALIDTIME is speci�ed in the <validtime option> that is contained in the <time

option> of a <query expression> Q that is contained in the <table expression> of <select statement:

single row>, then Q shall be simply contained in a <from clause>.

3. (Insert this SR) Let T be the result of <select statement: single row>.

Case:

a) If VALIDTIME is speci�ed and NONSEQUENCED is not speci�ed in the <validtime option>

that is contained in <time option>, then T shall be a table with valid-time support and with

precision P. The precision of <value expression> of the <validtime option> that is contained in

<time option> shall be P.

b) If NONSEQUENCED VALIDTIME is speci�ed in <time option>, then

Case:

i) If <value expression> is speci�ed in the <validtime option> of <time option>, then T shall

be a table with valid-time support and with a precision of that of <value expression>.

ii) Otherwise, T shall be a table without valid-time support.

c) Otherwise, T shall be a table without valid-time support.

Note to proposal reader: Subclause 6.2 \<table reference>" restricts the scope of column names in

the <value expression> that is contained in the <validtime option> that is contained in the <time

option>.

Note to proposal reader: If NONSEQUENCED is speci�ed, then the precision of the<value expression>

that is contained in the <valid option> that is contained in <time option> is arbitrary.

54 DBL:MAD-146r2 and X3H2-96-501r2

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) Case:

a) If VALIDTIME is speci�ed and NONSEQUENCED is not speci�ed in the <validtime option>

that is contained in <time option>, then the result of <table expression> TE during each valid

time granule TG of precision P is the result of TE, in accordance with the General Rules of

Subclause 7.7, \<table expression>", with each leaf generally underlying table with valid-time

support with no intervening <from clause> replaced with its state at valid time TG. If <value

expression> VE is speci�ed in the <validtime option> that is contained in <time option>, then

for each row R resulting from the initial evaluation of TE,

Case:

i) If the value of VE and the valid-time period VP of R overlap, then the resulting valid-time

period of R is the result of

(VE P INTERSECT VP).

ii) Otherwise, R is not included in the �nal result of TE.

b) If NONSEQUENCED VALIDTIME is speci�ed in <time option>, then the the result of <table

expression> TE is the result of TE, in accordance with the General Rules of Subclause 7.7,

\<table expression>", with each leaf generally underlying table with valid-time support with

no intervening <from clause> replaced with a table with no valid-time support with rows with

identical values for the columns. The descriptor of that table is the same as the description of the

table DT from which it is derived, with the inclusion of a column descriptor whose column name

is VALIDTIME, whose data type is a <period type> with a precision of that of the valid-time

period of DT, and whose ordinal position is one greater than the degree of DT. The value of this

additional column for each row is the original valid-time period of the corresponding row in DT. If

<value expression> is speci�ed in the <validtime option> of <time option>, then the valid-time

period of the row of the result has the value of <value expression>.

c) Otherwise, the result of <table expression> TE is the result of TE, in accordance with the General

Rules of Subclause 7.7, \<table expression>, with each of its leaf generally underlying tables with

valid-time support with no intervening <from clause> replaced with its current valid-time state.

DBL:MAD-146 and X3H2-96-501r2 55

18.2 Subclause 12.3 <delete statement: positioned>

3) Insert this new Subclause to SQL/Temporal immediately following Subclause 12.2, \<select statement:

single row>".

Function

Delete a row of a table.

Format

<delete statement: positioned> ::=

[<time option>]

DELETE [FROM <table reference>]

WHERE CURRENT OF <cursor name>

Note to proposal reader: This augments the production for <delete statement: positioned> with an addi-

tional, optional <time option> clause. For deletions and updates, there are four cases:

1. DELETE

� works on anything

� when applied to a table with valid-time support, deletes for times from now to the end of time

2. VALIDTIME DELETE

� works only on tables with valid-time support

� applies to the state at each time

3. VALIDTIME <period exp> DELETE

� like VALIDTIME DELETE, but only considers the times in <period exp> (a simple example is

VALIDTIME PERIOD '[1995-01-01 - 1995-12-31]' DELETE)

4. NONSEQUENCED VALIDTIME DELETE

� works only on tables with valid-time support

� acts like the table has an explicit timestamp column (in the <search condition>, if present)

5. NONSEQUENCED VALIDTIME <period exp> DELETE

� like NONSEQUENCED VALIDTIME DELETE, but only considers the times in <period exp>

End of note.

Syntax Rules

1. (Insert this SR) Let T be the subject table of the <delete statement: positioned>.

2. (Insert this SR) If VALIDTIME is speci�ed in <time option>, then T shall be a table with valid-time

support.

3. (Insert this SR) The precision of <value expression> that is contained in the <validtime option> that

is contained in <time option> shall be the precision of T.

4. (Insert this SR) The scope of the <table reference> is the entire <delete statement: positioned>.

Note to proposal reader: This SR is required because <time option> may refer to columns from <table

reference>.

56 DBL:MAD-146r2 and X3H2-96-501r2

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) Case:

a) If VALIDTIME is speci�ed in <time option>, then

Case:

i) If a <value expression> is speci�ed in the <validtime option> of <time option>, then the

value of <value expression> is removed from the valid-time period of the row, in accor-

dance with General Rule 1 of Subclause 11.1, \Rules for period manipulation in modi�cation

statements".

ii) Otherwise, the row is marked for deletion.

b) Otherwise,

Case:

i) If T is a table with valid-time support, then the period from the current timestamp to end of

time in the precision of T is removed from the valid-time period of the row, in accordance with

General Rule 1 of Subclause 11.1, \Rules for period manipulation in modi�cation statements".

ii) Otherwise, the row is marked for deletion.

DBL:MAD-146 and X3H2-96-501r2 57

18.3 Subclause 12.4 <delete statement: searched>

4) Insert this new Subclause to SQL/Temporal immediately following Subclause 12.3, \<delete statement:

positioned>".

Function

Delete rows of a table.

Format

<delete statement: searched> ::=

[<time option>]

DELETE FROM <table reference>

[WHERE <search condition>]

Note to proposal reader: This augments the production for <delete statement: searched> with an additional,

optional clause.

Syntax Rules

1. (Insert this SR) Let T be the subject table of the <delete statement: searched>.

2. (Insert this SR) If VALIDTIME is speci�ed in <time option>, then T shall be a table with valid-time

support with precision P.

3. (Insert this SR) If VALIDTIME is speci�ed in a <time option> of a <query expression> Q that is

contained in the<search condition> of<delete statement: searched>, then Q shall be simply contained

in a <from clause>.

4. (Insert this SR) The precision of <value expression> that is contained in the <validtime option> that

is contained in <time option> shall be P.

5. (Insert this SR) If VALIDTIME is speci�ed and NONSEQUENCED is not speci�ed in <correlation

name> that is contained in the <search condition> without an intervening<from clause> shall identify

a table with valid-time support and with precision P.

6. (Insert this SR) The scope of the <table reference> is the entire <delete statement: positioned>.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) Case:

a) If VALIDTIME is speci�ed and NONSEQUENCED is not speci�ed in the<validtime option> that

is contained in <time option>, then let PS be the set of those time granules TG of precision P for

which the <search condition> is satis�ed, in accordance with General Rule 5 of this Subclause,

with each leaf generally underlying table with valid-time support with no intervening <from

clause> replaced with its state at valid time TG.

Case:

i) If <value expression> VE is speci�ed in the <valid option> of <time option>, then for each

maximally contiguous period MCP in PS, if MCP and the value of VE overlap, then the

result of

(MCP P INTERSECT VE)

58 DBL:MAD-146r2 and X3H2-96-501r2

is removed from the valid-time period of the row, as well as from the valid-time period of

new rows that were inserted in the processing of previous periods from PS for this row, as

speci�ed in General Rule 1 of Subclause 11.1, \Rules for period manipulation in modi�cation

statements".

ii) Otherwise, for each maximally contiguous period MCP in PS, MCP is removed from the

valid-time period of the row, as well as from the valid-time period of new rows that were

inserted in the processing of previous periods from PS for this row, as speci�ed in General

Rule 1 of Subclause 11.1, \Rules for period manipulation in modi�cation statements".

b) If NONSEQUENCED VALIDTIME is speci�ed in <time option>, then the <search condition>

SC is satis�ed if SC is satis�ed, in accordance with General Rule 5 of this Subclause, when each

leaf generally underlying table with valid-time support with no intervening <from clause> is

replaced with a table with no valid-time support with rows with identical values for the columns.

The descriptor of that table is the same as the description of the table DT from which it is derived,

with the inclusion of a column descriptor whose column name is VALIDTIME, whose data type

is a <period type> with a precision of that of the valid-time period of DT, and whose ordinal

position is one greater than the degree of DT. The value of this additional column for each row is

the original valid-time period of the corresponding row in DT.

Case:

i) If a <value expression> is speci�ed in the <validtime option> that is contained in <time

option> and the <search condition> is satis�ed, then the value of <value expression> is

removed from the valid-time period of the row, as speci�ed in General Rule 1 of Subclause

11.1, \Rules for period manipulation in modi�cation statements".

ii) Otherwise, if the <search condition> is satis�ed, then the row is marked for deletion.

c) Otherwise, the <search condition> SC is satis�ed if SC is satis�ed, in accordance with General

Rule 5 of this Subclause, when each of its leaf generally underlying tables with valid-time support

with no intervening <from clause> is replaced with its current valid-time state. If the <search

condition> is satis�ed for the relevant row and T is a table with valid-time support, the period

from the current timestamp to the end of time in the precision of T is removed from the valid-time

period of the row, as speci�ed in General Rule 1 of Subclause 11.1, \Rules for period manipulation

in modi�cation statements".

DBL:MAD-146 and X3H2-96-501r2 59

18.4 Subclause 12.5 <insert statement>

5) Insert this new Subclause to SQL/Temporal immediately following Subclause 12.4, \<delete statement:

searched>".

Function

Create new rows in a table.

Format

No additional Format items.

Syntax Rules

1. (Insert this SR) Let T be the subject table of the <insert statement>.

2. (Insert this SR) Let R be the result of <insert columns and source>.

3. (Insert this SR) If T is a table with valid-time support with precision P and if R is a table with

valid-time support, then R shall have a valid-time precision of P.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) If R is a table without valid-time support, then valid-time support is added to each

row of T, by associating with that row a valid-time period from the current timestamp to the end of

time with a precision of P.

60 DBL:MAD-146r2 and X3H2-96-501r2

18.5 Subclause 12.6 <update statement: positioned>

6) Insert this new Subclause to SQL/Temporal immediately following Subclause 12.7, \<insert statement>".

Function

Update a row of a table.

Format

<update statement: positioned> ::=

[<time option>]

UPDATE [<table reference>]

SET <set clause list>

WHERE CURRENT OF <cursor name>

Note to proposal reader: This adds an optional <time option>.

Syntax Rules

1. (Insert this SR) Let T be the subject table of the <update statement: positioned>.

2. (Insert this SR) If VALIDTIME is speci�ed in <time option>, then T shall be a table with valid-time

support with precision P.

3. (Insert this SR) The precision of <value expression> that is contained in the <validtime option> that

is contained in <time option> shall be P.

4. (Insert this SR) The scope of the <table reference> is the entire <update statement: positioned>.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) Case:

a) If VALIDTIME is speci�ed in <time option>,

Case:

i) If <value expression> is speci�ed, then the valid-time period of the row is updated for the

value of the <value expression>, in accordance with General Rule 2 of Subclause 11.1, \Rules

for period manipulation in modi�cation statements".

ii) Otherwise, the update is performed on the row.

b) Otherwise,

Case:

i) If T is a table with valid-time support, then the valid-time period of the row is updated for the

period from the current timestamp to the end of time in the precision of T, in accordance with

General Rule 2 of Subclause 11.1, \Rules for period manipulation in modi�cation statements".

ii) Otherwise, the update is performed on the row.

DBL:MAD-146 and X3H2-96-501r2 61

18.6 Subclause 12.7 <update statement: searched>

7) Insert this new Subclause to SQL/Temporal immediately following Subclause 12.6, \<update statement:

positioned>".

Function

Update rows of a table.

Format

<update statement: searched> ::=

[<time option>]

UPDATE <table reference>

SET <set clause list>

[WHERE <search condition>]

Note to proposal reader: This adds an optional <time option>.

Syntax Rules

1. (Insert this SR) Let T be the subject table of the <update statement: searched>.

2. (Insert this SR) If VALIDTIME is speci�ed in <time option>, then T shall be a table with valid-time

support with precision P.

3. (Insert this SR) If VALIDTIME is speci�ed in a <time option> of a <query expression> Q that

is contained in the <search condition> of <update statement: searched>, then Q shall be simply

contained in a <from clause>.

4. (Insert this SR) The precision of <value expression> that is contained in the <validtime option> that

is contained in <time option> shall be P.

5. (Insert this SR) If VALIDTIME is speci�ed and NONSEQUENCED is not speci�ed in the <validtime

option> that is contained in <time option>, then each exposed <table name>, <query expression>,

or <correlation name> that is contained in the <search condition> without an intervening <from

clause> shall identify a table with valid-time support and with precision P.

6. (Insert this SR) The scope of the <table reference> is the entire <delete statement: positioned>.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) Case:

a) If VALIDTIME is speci�ed and NONSEQUENCED is not speci�ed in the <validtime option>

that is contained in <time option>, then let PS be the set of those valid time granules TG of

precision P for which the <search condition> is satis�ed, in accordance with General Rule 5 of this

Subclause, with each leaf generally underlying table with valid-time support with no intervening

<from clause> replaced with its state at valid time TG.

Case:

62 DBL:MAD-146r2 and X3H2-96-501r2

i) If <value expression> VE is speci�ed in the <valid option> of <time option>, then for each

maximally contiguous period MCP in PS, if MCP and the value of VE overlap, then the

valid-time period of the row, as well as of new rows that were inserted in the processing of

previous periods from PS for this row, are updated for the result of

(MCP P INTERSECT VE),

in accordance with General Rule 2 of Subclause 11.1, \Rules for period manipulation in

modi�cation statements".

ii) Otherwise, for each maximally contiguous period MCP in PS, the valid-time period of the

row, as well as of new rows that were inserted in the processing of previous periods from

PS for this row, are updated for MCP in accordance with General Rule 2 of Subclause 11.1,

\Rules for period manipulation in modi�cation statements".

b) If NONSEQUENCED VALIDTIME is speci�ed in <time option>, then the <search condition>

SC is satis�ed if SC is satis�ed, in accordance with General Rule 5 of this Subclause, when each

leaf generally underlying table with valid-time support with no intervening <from clause> is

replaced with a table with no valid-time support with rows with identical values for the columns.

The descriptor of that table is the same as the description of the table DT from which it is derived,

with the inclusion of a column descriptor whose column name is VALIDTIME, whose data type

is a <period type> with a precision of that of the valid-time period of DT, and whose ordinal

position is one greater than the degree of DT. The value of this additional column for each row is

the original valid-time period of the corresponding row in DT.

Case:

i) If <value expression> is speci�ed and the <search condition> is satis�ed, then the valid-time

period of the row is updated for the value of the <value expression>, in accordance with in

General Rule 2 of Subclause 11.1, \Rules for period manipulation in modi�cation statements".

ii) Otherwise, if the <search condition> is satis�ed, then the update is performed on the row.

c) Otherwise, the <search condition> SC is satis�ed if SC is satis�ed, in accordance with General

Rule 5 of this Subclause, when each of its leaf generally underlying tables with valid-time support

with no intervening <from clause> is replaced with its current valid-time state.

Case:

i) If T is a table with valid-time support and the <search condition> is satis�ed, then the valid-

time period of the row is updated for the period from the current timestamp to the end of

time, in the precision of T, according to General Rule 2 of Subclause 11.1, \Rules for period

manipulation in modi�cation statements".

ii) Otherwise, if the <search condition> is satis�ed, then the update is performed on the row.

DBL:MAD-146 and X3H2-96-501r2 63

19 Clause 12 Information Schema and De�nition Schema

19.1 Subclause 12 Information Schema

1) Insert the following new Table, \TABLES view", to SQL/Temporal immediately preceding Subclause
12.2, \De�nition Schema".

19.1.1 Subclause 12.1.1 TABLES view

Function

Identify the tables de�ned in this catalog that are accessible to a given user.

De�nition

CREATE VIEW TABLES

AS SELECT

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, TABLE_TYPE,

VALIDTIME_SUPPORT, VALIDTIME_PRECISION

FROM DEFINITION_SCHEMA.TABLES

WHERE (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME)

IN (

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM DEFINITION_SCHEMA.TABLE_PRIVILEGES

WHERE GRANTEE IN ('PUBLIC', CURRENT_USER)

UNION

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM DEFINITION_SCHEMA.COLUMN_PRIVILEGES

WHERE GRANTEE IN ('PUBLIC', CURRENT_USER))

AND TABLE_CATALOG

= (SELECT CATALOG_NAME FROM INFORMATION_SCHEMA_CATALOG_NAME)

Note to proposal reader: This adds two columns: VALIDTIME SUPPORT and VALIDTIME PRECISION.

Leveling Rules

No additional Leveling Rules.

64 DBL:MAD-146r2 and X3H2-96-501r2

19.1.2 Subclause 12.1.2 VIEWS view

1) Insert this new Table to SQL/Temporal immediately following Subclause 12.1.1, \TABLES view".

Function

Identify the viewed tables de�ned in this catalog that are accessible to a given user.

De�nition

CREATE VIEW VIEWS

AS SELECT

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,

CASE WHEN (TABLE_CATALOG, TABLE_SCHEMA, CURRENT_USER)

IN (SELECT CATALOG_NAME, SCHEMA_NAME, SCHEMA_OWNER

FROM DEFINITION_SCHEMA.SCHEMATA)

THEN VIEW_DEFINITION

ELSE NULL

END AS VIEW_DEFINITION,

CHECK_OPTION, IS_UPDATABLE,

VALIDTIME_SUPPORT, VALIDTIME_PRECISION

FROM DEFINITION_SCHEMA.VIEWS

WHERE (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME)

IN (SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM TABLES)

AND TABLE_CATALOG

= (SELECT CATALOG_NAME FROM INFORMATION_SCHEMA_CATALOG_NAME)

Note to proposal reader: This adds two columns: VALIDTIME SUPPORT and VALIDTIME PRECISION.

Leveling Rules

No additional Leveling Rules.

DBL:MAD-146 and X3H2-96-501r2 65

19.1.3 Subclause 12.1.3 TABLE CONSTRAINTS view

1) Insert this new Table to SQL/Temporal immediately following Subclause 12.1.2, \VIEWS view".

Function

Identify the table constraints de�ned in this catalog that are owned by a given user.

De�nition

CREATE VIEW TABLE_CONSTRAINTS

AS SELECT

CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,

CONSTRAINT_TYPE, IS_DEFERRABLE, INITIALLY_DEFERRED,

VALIDTIME_SUPPORT, VALIDTIME_PERIOD

FROM DEFINITION_SCHEMA.TABLE_CONSTRAINTS

JOIN

DEFINITION_SCHEMA.SCHEMATA S

ON

((CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE SCHEMA_OWNER = CURRENT_USER

AND CONSTRAINT_CATALOG

= (SELECT CATALOG_NAME FROM INFORMATION_SCHEMA_CATALOG_NAME)

Note to proposal reader: This adds two columns: VALIDTIME SUPPORT and VALIDTIME PERIOD.

Leveling Rules

No additional Leveling Rules.

66 DBL:MAD-146r2 and X3H2-96-501r2

19.1.4 Subclause 12.1.4 ASSERTIONS view

1) Insert this new Table to SQL/Temporal immediately following Subclause 12.1.3, \TABLE CONSTRAINTS
view".

Function

Identify the assertions de�ned in this catalog that are owned by a given user.

De�nition

CREATE VIEW ASSERTIONS

AS SELECT

CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,

IS_DEFERRABLE, INITIALLY_DEFERRED,

VALIDTIME_SUPPORT, VALIDTIME_PERIOD

FROM DEFINITION_SCHEMA.ASSERTIONS

JOIN

DEFINITION_SCHEMA.SCHEMATA S

ON

((CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))

WHERE SCHEMA_OWNER = CURRENT_USER

AND CONSTRAINT_CATALOG

= (SELECT CATALOG_NAME FROM INFORMATION_SCHEMA_CATALOG_NAME)

Note to proposal reader: This adds two columns: VALIDTIME SUPPORT and VALIDTIME PERIOD.

Leveling Rules

No additional Leveling Rules.

DBL:MAD-146 and X3H2-96-501r2 67

19.2 Subclause 12.2 De�nition Schema

1) Insert the following new Table, \TABLES base table", to SQL/Temporal immediately following Subclause
12.2.1, \DATA TYPE DESCRIPTOR base table".

19.2.1 Subclause 12.2.2 TABLES base table

Function

The TABLES table contains one row for each table including views. It e�ectively contains a representation
of the table descriptors.

De�nition

CREATE TABLE TABLES

(

TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,

TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,

TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

TABLE_TYPE INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT TABLE_TYPE_NOT_NULL NOT NULL,

CONSTRAINT TABLE_TYPE_CHECK CHECK (TABLE_TYPE IN

('BASE TABLE', 'VIEW', 'GLOBAL TEMPORARY',

'LOCAL TEMPORARY')),

CONSTRAINT CHECK_TABLE_IN_COLUMNS

CHECK ((TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME) IN

(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM COLUMNS)),

VALIDTIME_SUPPORT INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT VALIDTIME_SUPPORT_CHECK

CHECK (VALIDTIME_SUPPORT IN ('STATE','NONE')),

VALIDTIME_PRECISION INFORMATION_SCHEMA.CARDINAL_NUMBER,

CONSTRAINT TABLES_PRIMARY_KEY

PRIMARY KEY (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME),

CONSTRAINT TABLES_FOREIGN_KEY_SCHEMATA

FOREIGN KEY (TABLE_CATALOG, TABLE_SCHEMA) REFERENCES SCHEMATA,

CONSTRAINT TABLES_CHECK_NOT_VIEW CHECK (NOT EXISTS

(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM TABLES

WHERE TABLE_TYPE = 'VIEW'

EXCEPT

SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM VIEWS))

)

Note to proposal reader: This adds two columns: VALIDTIME SUPPORT and VALIDTIME PRECISION.

Description

1. The values of VALIDTIME SUPPORT have the following meanings:

68 DBL:MAD-146r2 and X3H2-96-501r2

STATE The table being described has valid-time support.

NONE The table being described does not have valid-time support.

2. The value of VALIDTIME PRECISION is the valid-time precision of the table being described.

DBL:MAD-146 and X3H2-96-501r2 69

19.2.2 Subclause 12.2.3 VIEWS base table

1) Insert this new Table to SQL/Temporal immediately following Subclause 12.2.2, \TABLES base table".

Function

The VIEWS table contains one row for each row in the TABLES table with a TABLE TYPE of 'VIEW'.
Each row describes the query expression that de�nes a view. The table e�ectively contains a representation
of the view descriptors.

De�nition

CREATE TABLE VIEWS

(

TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,

TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,

TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

VIEW_DEFINITION INFORMATION_SCHEMA.CHARACTER_DATA,

CHECK_OPTION INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT CHECK_OPTION_NOT_NULL NOT NULL

CONSTRAINT CHECK_OPTION_CHECK

CHECK (CHECK_OPTION IN ('CASCADED', 'LOCAL', 'NONE')),

IS_UPDATABLE INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT IS_UPDATABLE_NOT_NULL NOT NULL

CONSTRAINT IS_UPDATABLE_CHECK CHECK (IS_UPDATABLE IN ('YES', 'NO')),

VALIDTIME_SUPPORT INFORMATION_SCHEMA. CHARACTER_DATA

CONSTRAINT VALIDTIME_SUPPORT_CHECK

CHECK (VALIDTIME_SUPPORT IN ('STATE','NONE')),

VALIDTIME_PRECISION INFORMATION_SCHEMA.CARDINAL_NUMBER,

CONSTRAINT VIEWS_PRIMARY_KEY

PRIMARY KEY (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME),

CONSTRAINT VIEWS_IN_TABLES_CHECK

CHECK ((TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME) IN

(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM TABLES

WHERE TABLE_TYPE = 'VIEW')),

CONSTRAINT VIEWS_IS_UPDATABLE_CHECK_OPTION_CHECK

CHECK ((IS_UPDATABLE, CHECK_OPTION) NOT IN

(VALUES ('NO', 'CASCADED'), ('NO', 'LOCAL')))

)

Note to proposal reader: This adds two columns: VALIDTIME SUPPORT and VALIDTIME PRECISION.

Description

1. The values of VALIDTIME SUPPORT have the following meanings:

STATE The view being described has valid-time support.

NONE The view being described does not have valid-time support.

2. The value of VALIDTIME PRECISION is the valid-time precision of the view being described.

70 DBL:MAD-146r2 and X3H2-96-501r2

19.2.3 Subclause 12.2.4 TABLE CONSTRAINTS base table

1) Insert this new Table to SQL/Temporal immediately following Subclause 12.2.3, \VIEWS base table".

Function

The TABLE CONSTRAINTS table has one row for each table constraint associated with a table. It e�ec-
tively contains a representation of the table constraint descriptors.

De�nition

CREATE TABLE TABLE_CONSTRAINTS

(

CONSTRAINT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT_TYPE INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT CONSTRAINT_TYPE_NOT_NULL NOT NULL

CONSTRAINT CONSTRAINT_TYPE_CHECK

CHECK (CONSTRAINT_TYPE IN

('UNIQUE',

'PRIMARY KEY',

'FOREIGN KEY',

'CHECK')),

TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER

CONSTRAINT TABLE_CONSTRAINTS_TABLE_CATALOG_NOT_NULL NOT NULL,

TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER

CONSTRAINT TABLE_CONSTRAINTS_TABLE_SCHEMA_NOT_NULL NOT NULL,

TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER

CONSTRAINT TABLE_CONSTRAINTS_TABLE_NAME_NOT_NULL NOT NULL,

IS_DEFERRABLE INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT TABLE_CONSTRAINTS_IS_DEFERRABLE_NOT_NULL NOT NULL,

INITIALLY_DEFERRED INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT TABLE_CONSTRAINTS_INITIALLY_DEFERRED_NOT_NULL

VALIDTIME_SUPPORT INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT VALIDTIME_SUPPORT_CHECK

CHECK (VALIDTIME_SUPPORT IN ('SEQUENCED','NONSEQUENCED','NONE')),

VALIDTIME_PERIOD INFORMATION_SCHEMA.CARDINAL_NUMBER,

CONSTRAINT TABLE_CONSTRAINTS_PRIMARY_KEY

PRIMARY KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME),

CONSTRAINT TABLE_CONSTRAINTS_DEFERRED_CHECK

CHECK ((IS_DEFERRABLE, INITIALLY_DEFERRED) IN

(VALUES ('NO', 'NO'),

('YES', 'NO'),

('YES', 'YES'))),

CONSTRAINT TABLE_CONSTRAINTS_CHECK_VIEWS

CHECK (TABLE_CATALOG

<> ANY (SELECT CATALOG_NAME FROM SCHEMATA)

OR

((TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME) IN

DBL:MAD-146 and X3H2-96-501r2 71

(SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM TABLES

WHERE TABLE_TYPE <> 'VIEW'))),

CONSTRAINT TABLE_CONSTRAINTS_UNIQUE_CHECK

CHECK (1 =

(SELECT COUNT (*)

FROM (SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME

FROM TABLE_CONSTRAINTS

WHERE CONSTRAINT_TYPE IN ('UNIQUE', 'PRIMARY KEY')

UNION ALL

SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME

FROM REFERENTIAL_CONSTRAINTS

UNION ALL

SELECT CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME

FROM CHECK_CONSTRAINTS) AS X

WHERE (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME)

= (X.CONSTRAINT_CATALOG, X.CONSTRAINT_SCHEMA, X.CONSTRAINT_NAME))),

CONSTRAINT UNIQUE_TABLE_PRIMARY_KEY_CHECK

CHECK (UNIQUE (SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME

FROM TABLE_CONSTRAINTS

WHERE CONSTRAINT_TYPE = 'PRIMARY KEY'))

)

Note to proposal reader: This adds two columns: VALIDTIME SUPPORT and VALIDTIME PERIOD.

Description

1. The values of VALIDTIME SUPPORT have the following meanings:

SEQUENCED The table constraint being described was speci�ed with VALIDTIME and without
NONSEQUENCED.

NONSEQUENCED The table constraint being described was speci�ed with NONSEQUENCEDVALID-
TIME.

NONE VALIDTIME was not speci�ed in the table constraint being described.

2. The value of VALIDTIME PERIOD is the value of the <value expression> contained in the <validtime
option> associated with the table constraint being described.

72 DBL:MAD-146r2 and X3H2-96-501r2

19.2.4 Subclause 12.2.5 ASSERTIONS base table

1) Insert this new Table to SQL/Temporal immediately following Subclause 12.2.4, \TABLE CONSTRAINTS
base table".

Function

The ASSERTIONS table has one row for each assertion. It e�ectively contains a representation of the as-
sertion descriptors.

De�nition

CREATE TABLE ASSERTIONS

(

CONSTRAINT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,

CONSTRAINT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,

IS_DEFERRABLE INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT ASSERTIONS_IS_DEFERRABLE_NOT_NULL NOT NULL,

INITIALLY_DEFERRED INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT ASSERTIONS_INITIALLY_DEFERRED_NOT_NULL NOT NULL,

CHECK_TIME INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT ASSERTIONS_CHECK_TIME_CHECK

CHECK (CHECK_TIME IN ('IMMEDIATE', 'DEFERRED')),

VALIDTIME_SUPPORT INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT VALIDTIME_SUPPORT_CHECK

CHECK (VALIDTIME_SUPPORT IN ('SEQUENCED','NONSEQUENCED','NONE')),

VALIDTIME_PERIOD INFORMATION_SCHEMA.CARDINAL_NUMBER,

CONSTRAINT ASSERTIONS_PRIMARY_KEY

PRIMARY KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME),

CONSTRAINT ASSERTIONS_FOREIGN_KEY_CHECK_CONSTRAINTS

FOREIGN KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME)

REFERENCES CHECK_CONSTRAINTS,

CONSTRAINT ASSERTIONS_FOREIGN_KEY_SCHEMATA

FOREIGN KEY (CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA)

REFERENCES SCHEMATA,

CONSTRAINT ASSERTIONS_DEFERRED_CHECK

CHECK ((IS_DEFERRABLE, INITIALLY_DEFERRED) IN

VALUES (('NO', 'NO'),

('YES', 'NO'),

('YES', 'YES')))

)

Note to proposal reader: This adds two columns: VALIDTIME SUPPORT and VALIDTIME PERIOD.

Description

1. The values of VALIDTIME SUPPORT have the following meanings:

DBL:MAD-146 and X3H2-96-501r2 73

SEQUENCED The assertion being described was speci�ed with VALIDTIME and without NONSE-
QUENCED.

NONSEQUENCED The assertion being described was speci�ed with NONSEQUENCED VALID-
TIME.

NONE VALIDTIME was not speci�ed in the assertion being described.

2. The value of VALIDTIME PERIOD is the value of the <value expression> contained in the <validtime
option> associated with the assertion being described.

74 DBL:MAD-146r2 and X3H2-96-501r2

20 Acknowledgments

This change proposal was written by the four authors listed on the title page. The �rst author was supported
in part by NSF grant ISI-9202244 and by grants from IBM, the AT&T Foundation, and DuPont. The second
and third authors were supported in part by the Danish Natural Science Research Council, grant 9400911. In
addition, the third author was supported by grants 11{1089{1 and 11{0061{1, also provided by the Danish
Natural Science Research Council. The document was produced in part during visits by the �rst author to
Aalborg University and by the second author to the University of Arizona.

This change proposal presents an improved and extended version of some of the constructs in TSQL2,
which was designed by a committee consisting of Richard T. Snodgrass (chair), Ilsoo Ahn, Gad Ariav, Don
S. Batory, James Cli�ord, Curtis E. Dyreson, Ramez Elmasri, Fabio Grandi, Christian S. Jensen, Wolfgang
K�afer, Nick Kline, Krishna Kulkanri, T.Y. Cli� Leung, Nikos Lorentzos, John F. Roddick, Arie Segev,
Michael D. Soo and Suryanarayana M. Sripada. Their participation in the TSQL2 design was critical.

We thank Curtis Dyreson for helpful comments, and Hugh Darwen and Mike Sykes for their suggested
changes. Jim Melton provided extensive help on all of the proposed language extensions; the authors greatly
appreciate the time Jim took to explain the intricacies of writing change proposals. Jim and Krishna Kulkarni
also provided corrections to a later draft. This revision bene�ted from suggestions from Mike Sykes and Hugh
Darwin. Finally, we thank the other ANSI and ISO members for their suggestions.

DBL:MAD-146 and X3H2-96-501r2 75

A Formal De�nition of Compatibility Properties

We have adopted the convention that a data model consists of two components, namely a set of data
structures and a language for querying the data structures [15]. Notationally, M = (DS, QL) then denotes a
data model, M, consisting of a data structure component, DS, and a query language component, QL. Thus,
DS is the set of all databases, schemas, and associated instances, expressible by M, and QL is the set of all
queries in M that may be formulated on some database in DS. We use db to denote a database and q to
denote a query.

A.1 Upward Compatibility

One data model is syntactically upward compatible with another data model if all data structures and legal
query expressions of the latter model are contained in the former model.

Definition 1: (syntactical upward compatibility) Let M1 = (DS1; QL1) and M2 = (DS2; QL2) be two
data models. Model M1 is syntactically upward compatible with model M2 if

� 8db2 2 DS2 (db2 2 DS1) and

� 8q2 2 QL2 (q2 2 QL1). ut

When transitioning from one system to a new system, it is important that the new data model contains
the existing data model. If that is the case, all existing application code will remain syntactically correct.

For a query expression q and an associated database db, both legal elements of QL and DS of data
model M = (DS;QL), de�ne hhq(db)iiM as the result of evaluating q on db in data model M . With this
notation, we can precisely describe the requirements to a new model that guarantee uninterrupted operation
of all application code. In addition to the previous syntactical requirement, we add the requirement that all
queries expressible in the existing model must evaluate to the same results in the existing and new models.

Definition 2: (upward compatibility) Let M1 = (DS1; QL1) and M2 = (DS2; QL2) be two data models.
Model M1 is upward compatible with model M2 if

� M1 is syntactically upward compatible with M2, and

� 8db2 2 DS2 (8q2 2 QL2 (hhq2(db2)iiM2
= hhq2(db2)iiM1

)). ut

This concept captures the conditions that need to be satis�ed in order to allow a smooth transition from
a current system, with data model M2, to a new system, with data model M1.

A.2 Temporal Upward Compatibility

Intuitively, the requirement is that a query q will return the same result on an associated snapshot database
db as on the counterpart of the database with valid-time support, T (db). Further, modi�cations should not
a�ect this. The precise de�nitions given next is explained in the following.

Definition 3: (temporal upward compatibility) Let MT = (DST ; QLT) and MS = (DSS ; QLS) be
temporal and snapshot data models, respectively. Also, let T be an operator that changes the support of
a table without temporal support to the table with valid-time support with the same explicit attributes.
Next, let u1; u2; : : : ; un denote modi�cation operations. With these de�nitions, modelMT is temporal upward

compatible with model MS if

� MT is upward compatible with MS and

� 8dbS 2 DSS (8qS 2 QLS (hhqS(un(un�1(: : : (u1(dbS) : : :))))iiMS
=

(hhqS(un(un�1(: : : (u1(T (dbS))))))iiMT
))). ut

76 DBL:MAD-146r2 and X3H2-96-501r2

Assume that, when moving to the new system, some of the existing (snapshot) tables are transformed
into tables with valid-time support, using ALTER, without changing the existing set of (explicit) attributes.
This transformation is denoted by T in the de�nition. Then the same sequence of modi�cation statements,
denoted by the ui in the de�nition, is applied to the snapshot and the temporal databases. Next, consider
any query in the snapshot model. Such queries are also allowed in the temporal model, due to upward
compatibility being required. The de�nition states that any such query evaluated on the resulting temporal
database, using the semantics of the temporal query language, yields the same result as when evaluated on
the resulting snapshot database, now using the semantics of the snapshot query language.

A.3 Sequenced Valid Semantics

We �rst de�ne the notion of sequenced valid semantics among query languages. We use r and rvt for
denoting an instance without and with valid-time support, respectively. Similarly, db and dbvt are sets of
table instances without and with valid-time support, respectively.

The de�nition uses a valid-timeslice operator �M
v;M

c (e.g., [9, 1]) which takes as arguments a table with
valid-time support rvt (in the data model Mvt) and a valid-time granule c and returns a table without
temporal support r (in the data model M) containing all rows valid at time c. In other words, r consists of
all rows of rvt whose valid time includes the time granule c, but without the valid time. This operator was
already introduced in Section 7.1; here, we simply have emphasized the models involved by using them as
superscripts.

Definition 4: (sequenced valid semantics) Let M = (DS;QL) be a snapshot relational data model, and
let Mvt = (DSvt; QLvt) be a valid-time data model. Data model Mvt is sequenced valid with respect to data
model M if

8q 2 QL (9qvt 2 QLvt (8dbvt 2 DSvt (8c (�M
v;M

c (qvt(dbvt)) = q(�M
v;M

c (dbvt)))))). ut

Graphically, sequenced valid semantics implies that for all query expressions q in the snapshot model,
there must exist a query qvt in the temporal model so that for all dbvt and for all c, the commutativity
diagram shown in Figure 9 holds.

?

-

?

-

dbvt

�M
v;M

c (dbvt)

qvt(dbvt)

q(�M
v;M

c (dbvt)) = �M
v;M

c (qvt(dbvt))

qvt

q

timeslices at c timeslice at c

Figure 9: sequenced valid semantics of query qvt with respect to query q at a chronon c

We require that each query q in the snapshot model has a counterpart qvt in the temporal model that
is sequenced valid with respect to it. Observe that qvt being sequenced valid with respect to q poses no
syntactical restrictions on qvt. It is thus possible for qvt to be quite di�erent from q, and qvt might be very
involved. This is undesirable, as we would like the temporal model to be a straight-forward extension of the
snapshot model. Consequently, we require that qvt and q be syntactically identical.

Definition 5: (syntactically identical sequenced-valid extension) Let M = (DS;QL) be a snapshot data
model, and let Mvt = (DSvt; QLvt) be a valid-time data model. Data model Mvt is a syntactically identical

sequenced-valid extension of model M if both of the following conditions hold.

1. Data model Mvt is sequenced valid with respect to data model M and

DBL:MAD-146 and X3H2-96-501r2 77

2. Each query in QLvt that is sequenced valid with respect to a query in QL is syntactically identical to
that query. ut

If the valid-time data model treats tables with valid-time support as such, it is possible to use the same
syntactical constructs (i.e., qvt and q are identical) for querying tables with and without valid-time support.
In this case, the type of support determines the meaning of the syntactical construct.

However, the identity property is incompatible with also requiring temporal upward compatibility. This
latter property requires that a query from the snapshot model, when applied to a database with valid-time
support, returns a table without temporal support. The property just de�ned requires the snapshot query
to return a table with valid-time support when evaluated on the database with valid-time support.

Thus, not both of these properties can be satis�ed by a temporal data model and the snapshot model it
generalizes.

Our solution is to slightly relax the identity requirement, leading to the property de�ned below. With
that property satis�ed, the temporal queries may still exploit the programmers' intuition about the snapshot
query language as much as possible.

Definition 6: (syntactically similar sequenced-valid extension) Let M = (DS;QL) be a snapshot data
model, and let Mvt = (DSvt; QLvt) be a valid-time data model. Data model Mvt is a syntactically similar

sequenced-valid extension of model M if both of the following conditions hold.

1. Data model Mvt is sequenced valid with respect to data model M and

2. For each query qvt in QLvt that is sequenced valid with respect to a query q in QL, qvt = S1qS2, where
S1 and S2 are text strings that depend on QLvt but not on qvt. ut

This property is consistent with temporal upward compatibility; the language designer simply has to select
at least one of S1 or S2 as being non-empty. For the addition to SQL/Temporal proposed here, S1 is simply
\VALIDTIME", and S2 is the empty string.

A.4 Properties of SQL/Temporal

We have developed a formal denotational semantics for SQL/Temporal, in terms of the semantics of SQL3.
This semantics allowed us to prove the following important properties.

� SQL/Temporal is upward compatible with SQL3.

� SQL/Temporal is temporally upward compatible with SQL3.

� The VALIDTIME reserved word prepended to the SELECT statement ensures (syntactically similar) se-
quenced valid semantics [1, 3].

� SQL/Temporal is temporally ungrouped [4].

