
TSQL2

TSQL2 Language Speci�cationRichard T. Snodgrass (chair)Ilsoo Ahn Gad Ariav Don Batory James Cli�ordCurtis E. Dyreson Ramez Elmasri Fabio GrandiChristian S. Jensen Wolfgang K�afer Nick Kline Krishna KulkarniT. Y. Cli� Leung Nikos Lorentzos John F. RoddickArie Segev Michael D. Soo Suryanarayana M. SripadaSeptember, 1994
Correspondence may be directed to the chair of the TSQL2 Language Design Committee, Richard T. Snodgrass, Departmentof Computer Science, University of Arizona, Tucson, AZ 85721, rts@cs.arizona.edu. The a�liations and e-mail addressesof the TSQL2 Language Design Committee members may be found in a separate section at the end of the document.

Contents1 Introduction 12 Normative References 13 De�nitions, notations, and conventions 14 Desired Features 15 Concepts 35.1 Time Ontology : 35.2 Base Line Clock : 35.3 Data Types : 45.4 Time-lines : 45.5 Aggregates : 45.6 Valid-time Tables : 45.7 Transaction-time and Bitemporal Tables : 55.8 Schema Speci�cation : 55.9 Restructuring : 55.10 Temporal Selection : 65.11 Temporal Projection : 65.12 Update : 65.13 Cursors : 65.14 Schema Versioning : 65.15 Vacuuming : 65.16 System Tables : 66 SQL-92 Compatibility 67 Implementation 78 Modi�ed Language Syntax 79 Section 4 Concepts 79.1 Section 4.5 Datetimes and intervals : 710 Section 5 Lexical Elements 810.1 Section 5.2 <token> and <separator> : 810.2 Section 5.3 <literal> : 910.3 Section 5.4 Names and identi�ers : 1511 Section 6 Scalar Expressions 1611.1 Section 6.1 <data type> : 1611.2 Section 6.2 <value speci�cation> and <target speci�cation> : : : : : : : : : : : : : : : : 1811.3 Section 6.3 <table reference> : 1911.4 Section 6.5 <set function speci�cation> : 2111.5 Section 6.8 <datetime value function> : 2311.6 Section 6.10 <cast speci�cation> : 2411.7 Section 6.11 <value expression> : 2711.8 Section 6.14 <datetime value expression> : 2811.9 Section 6.15 <interval value expression> : 2911.10Section 6.?? <interval value function> : 3011.11Section 6.?? <period value expression> : 31i

11.12Section 6.?? <period value function> : 3211.13Section 6.?? <temporal element value expression> : 3311.14Section 6.?? <temporal element value function> : 3411.15Section 6.?? <instant set value expression> : 3511.16Section 6.?? <instant set value function> : 3612 Section 7 Query expressions 3712.1 7.1 <row value constuctor> : 3712.2 Section 7.3 <table expression> : 3812.3 Section 7.6 <where clause> : 3912.4 Section 7.7 <group by clause> : 4012.5 Section 7.8 <having clause> : 4212.6 Section 7.9 <query speci�cation> : 4313 Section 8 Predicates 4413.1 Section 8.1 <predicate> : 4413.2 Section 8.2 <comparison predicate> : 4513.3 Section 8.7 <quanti�ed comparison predicate> : 4613.4 Section 8.11 <overlaps predicate> : 4714 Section 10 Additional Common Elements 4814.1 Section 10.1 <interval quali�er> : 4815 Section 11 Schema de�nition and manipulation 4915.1 Section 11.3 <table de�nition> : 5015.2 Section 11.4 <column de�nition> : 5115.3 Section 11.5 <default clause> : 5215.4 Section 11.10 <alter table statement> : 5315.5 Section 11.?? Distributions : 5516 Section 12 Module 5616.1 Section 12.5 <SQL procedure statement> : 5717 Section 13 Data manipulation 5917.1 Section 13.3 <fetch statement> : 5917.2 Section 13.5 <select statement: single row> : 6017.3 Section 13.7 <delete statement: searched> : 6117.4 Section 13.8 <insert statement> : 6217.5 Section 13.9 <update statement: positioned> : 6317.6 Section 13.10 <update statement: searched> : 6418 Section 21 Information Schema and De�nition Schema 6518.1 Section 21.3.8 TABLES base table : 6518.2 Section 21.3.?? TEMPORAL SPEC base table : 6518.3 Section 21.3.?? SURROGATE base table : 6519 Section 22 Status Codes 6620 History 67Acknowledgements 67ii

1 IntroductionThis document speci�es a temporal extension to the SQL-92 language standard. The language is desig-nated TSQL2.The document is organized as follows. The next section indicates the starting point of the design, theSQL-92 language. Section 4 lists the desired features on which the TSQL2 Language Design Committeereached consensus. Section 5 presents the major concepts underlying TSQL2. Compatibility with SQL-92 is the topic of Section 6. Section 7 briey discusses how the language can be implemented. Subsequentsections specify the syntax of the language extensions.2 Normative ReferencesThe following standards contain provisions that, through reference in this document, constitute provisionsof this language speci�cation.| ISO/IEC 9075:1992, International Organization for Standardization/International ElectrotechnicalCommission|Database Language SQL.TSQL2 is a fully upwardly compatible extension of SQL-92. The functionality of user-de�ned timesupport in SQL-92 is enhanced. Support for valid and transaction time has been added.The language has been evaluated against the Test Suite of Temporal Database Queries.3 De�nitions, notations, and conventionsThis document adheres to the terminology de�ned in ISO/IEC 9075:1992. Where possible, the documentalso adheres to the terminology de�ned in the consensus temporal database glossary.The syntax description is a modi�cation of the SQL-92 syntax description, and follows all conventionsused therein.4 Desired FeaturesThis section lists the desired features that should be supported by TSQL2. These features guided thedesign of the language.We �rst considered aspects of the data model.� TSQL2 should not distinguish between snapshot equivalent instances, i.e., snapshot equivalenceand identity should be synonymous.This provides conceptual simplicity.� TSQL2 should support only one valid-time dimension.� For simplicity, tuple timestamping should be employed.� TSQL2 should be based on homogeneous tuples.� Valid time support should include support for both the past and the future.While some existing temporal models only include valid time support up to now, it is importantto provide support for future valid time so that planning activities can be accommodated.� Timestamp values should not be limited in range or precision.SQL-92 is limited to A.D., to 9999 years, and to an excessive coarse precision of seconds for arepresentation of 20 positions. It is also not su�ciently de�ned (e.g., addition is implementationde�ned!) For temporal databases to be used in scienti�c applications, as well as by historians and1

others requiring an extended range, the representation and semantics must be extended and bebetter de�ned.We then considered the language proper.� TSQL2 should be a consistent, fully upwardly compatible extension of SQL-92.� TSQL2 should allow the restructuring of tables on any set of attributes.Such an ability was �rst proposed in the TempSQL language proposal.� TSQL2 should allow for exible temporal projection, but TSQL2 syntax should reveal clearly whennon-standard temporal projections are being done.� Operations in TSQL2 should not accord any explicit attributes special semantics.For example, operations should not rely on the notion of a key.� Temporal support should be optional, on a per-table basis.Tables that are not speci�ed to be temporal should be considered to be snapshot tables. It isimportant to be an extension of SQL-92's data model when possible, not a replacement. Hence, theschema de�nition language should allow the de�nition of snapshot tables, when temporal supportis not desired. Similarly, it should be possible to derive a snapshot table from a temporal table.� User-de�ned time support should include instants, periods, and intervals.User-de�ned time support in SQL-92 is greatly awed. C.J. Date has listed many of the problemswith it.� Existing aggregates should have temporal analogues in TSQL2.It is important that existing language features such as aggregates still apply in the temporal datamodel.� Multiple calendar and multiple language support should be present in timestamp input and output,and timestamp operations.SQL-92 supports only one calendar, a particular variant of the Gregorian calendar, and one timeformat. The many uses of temporal databases demand much more exibility.� It should be possible to derive temporal and non-temporal tables from underlying temporal andnon-temporal tables.Finally, we made ease of implementation a priority.� TSQL2 tables should be implementable in terms of tables in some �rst normal form representationalmodel.In particular, the language should be implementable via a data model that employs period-timestamped tuples. This is the most straightforward representational model, in terms of extendingcurrent relational technology. Nevertheless, the language should accept implementation using otherrepresentational models, such as attribute timestamped representational models.� TSQL2 must have an e�ciently implementable algebra that allows for optimization and that is anextension of the snapshot algebra.Current DBMS implementations are based on the snapshot algebra. The temporal algebra usedwith the TSQL2 temporal data model should contain temporal operators that are extensions ofthe operations in the snapshot algebra. Snapshot reducibility is also highly desired, so that, forexample, optimization strategies will continue to work in the new data model.� The language data model should allow multiple representational data models.In particular, it would be best if the data model accommodated the major temporal data modelsproposed to date, including attribute timestamped models.2

 Dawn of Time
 (The Big Bang)
(14,000,000,000 B.C.
 +/− 4,000,000,000)

 Past
 Synchronization
 Point
 (1/1/9,000 B.C.)

 UTC/TAI
 Synchronization
 Point
 (A.D. 1/1/1972)

 End of Time?

Ephemeris
 Time

Mean Solar Days UTC TDT

 Future (Moving)
 Synchronization
 Point
(Currently A.D. 7/1/1993)Figure 1: The Base Line Clock5 ConceptsHere we briey outline the major concepts behind the TSQL2 extension. Much more discussion may befound in the commentaries.5.1 Time OntologyThe TSQL2 model of time is bounded on both ends. The model refrains from deciding whether timeis ultimately continuous, dense, or discrete. TSQL2 does not allow the user to ask a question thatwill di�erentiate the alternatives. Instead, the model accommodates all three alternatives by assumingthat an instant on a time-line is much smaller than a chronon, which is the smallest entity that atimestamp can represent exactly (the size of a chronon is implementation-dependent). An instant canonly be approximately represented. A discrete image of the represented times emerges at run-time astimestamps are scaled to user-speci�ed (or default) granularities and as operations on those timestampsare performed to the given scale.An instant is modeled by a timestamp coupled with an associated scale (e.g., day, year, month). Aperiod is modeled by the composition of two instant timestamps and the constraint that the instanttimestamp that starts the period equals or precedes (in the given scale) the instant timestamp thatterminates the period.5.2 Base Line ClockA semantics must be given to each time that is stored in the database. SQL-92 speci�es that timesare given in UTC seconds, which are not de�ned before 1958, and in any case cannot be used to dateprehistoric time, as UTC is based in part on solar time.TSQL2 includes the concept of a baseline clock, which provides the semantics of timestamps. Thebaseline clock relates each second to physical phenomena. Since we are targeting use for a general-purposedatabase, we attempted to anticipate the needs of an average database user and to provide a baselineclock that meets those needs.The baseline clock is shown in Figure 1 (not to scale). It partitions the time line into a set ofcontiguous periods. Each period runs on a di�erent clock. A synchronization point delimits a periodboundary. The baseline clock and its representation are independent of any calendar. We use Gregoriancalendar dates in this discussion only to provide an informal indication of when the synchronizationpoints occur.From the Big Bang to Midnight January 1, 9000 B.C. the baseline clock runs on ephemeris time.For historic instants, 9000 B.C. to January 1, 1972, the baseline clock follows the mean solar day clock.The mean solar clock carries the baseline clock up to Midnight January 1, 1972 after which the baselineclock follows UTC. Midnight January 1, 1972 is when UTC was synchronized with the atomic clock andthe current system of leap seconds was adopted. In particular, during the period in which the baseline3

clock uses UTC, 26 leap seconds were added. The baseline clock runs on UTC until one second beforeMidnight, January 1, 1995. This is the next time at which a leap second might be added (leap secondannouncements are made by the International Earth Rotation Service). After Midnight January 1, 1995,until the \Big Crunch" or the end of our baseline clock, the baseline clock follows Terrestrial DynamicTime (TDT) since both UTC and mean solar time are unknown and unpredictable. Also, since 1984,TDT has been favored over ephemeris time by the international standards community.5.3 Data TypesSQL-92's datetime and interval data types are augmented with a period data time, of speci�able rangeand precision. The range and precision can be expressed as an integer (e.g., a precision of 3 fractionaldigits) or as an interval (e.g., a precision of a week). Operators are available to compare timestamps andto compute new timestamps, with a user-speci�ed precision. Temporal values can be input and outputin user-speci�able formats, in a variety of natural languages. Calendars and calendric systems permitthe application-dependent semantics of time to be incorporated.A surrogate data is introduced in TSQL2. Surrogates are unique identi�ers that can be compared forequality, but the values of which cannot be seen by the users. In this sense, a surrogate is \pure" identityand does not describe a property (i.e., it has no observable value). Surrogates are useful in identifyingobjects associated with time-varying attributes, but are not a replacement for keys.5.4 Time-linesThree time-lines are supported in TSQL2: user-de�ned time, valid time, and transaction time. All threehave the ontology described above. Hence values from disparate time-lines can be compared, at anappropriate precision. Transaction-time is bounded by initiation, the time when the database wascreated, and until changed. In addition, user-de�ned and valid time have two special values, beginningand forever, where are the least and greatest values in the ordering. Transaction time has the specialvalue until changed.Valid and user-de�ned data types can be temporally indeterminate. In temporal indeterminacy, it isknown that an event stored in a temporal database did in fact occur, but it is not known exactly whenthat event occurred. An instant (interval, period) can be speci�ed as determinate or indeterminate; if thelatter, then the possible mass functions, as well as the generality of the indeterminacy to be representedcan be speci�ed. The quality of the underlying data (termed its credibility) and the plausibility of theordering predicates expressed in the query can be controlled on a per-query or global basis.Finally, temporal values (instant timestamps) can be now-relative. A now-relative time of \now - 1day", interpreted when the query was executed on June 12, 1993, would have the bound value of \June11, 1993." The user can specify whether values to be stored in the database are to be bound (i.e., notnow-relative) or unbound.5.5 AggregatesThe conventional SQL-92 aggregates are extended to apply over temporal domains. They are alsoextended to return time-varying values and to permit grouping via a partitioning of the underlying timeline, termed temporal grouping. Values can be weighted by their duration during the computation of theaggregate. Finally, one new temporal aggregate, RISING is added. A taxonomy of temporal aggregatesidenti�es fourteen possible kinds of aggregates; there are instances of all of these kinds in TSQL2.5.6 Valid-time TablesThe snapshot tables currently supported by SQL-92 continue to be available in TSQL2. TSQL2 alsoallows state tables to be speci�ed. In such tables, each tuple is timestamped with a temporal element,which is a union of periods. As an example, the Employee table with attributes Name, Salary andManager could contain the tuple (Tony, 10000, LeeAnn). The temporal element timestamp would record4

the maximal (noncontiguous) periods in which Tony made $10000 and had LeeAnn as his manager.Information about other values of Tony's salary or other managers would be stored in other tuples. Thetimestamp is implicitly associated with each tuple; it is not another column in the table. The range,precision and indeterminacy of the timestamps within the temporal element can be speci�ed.Temporal elements are closed under union, di�erence, and intersection. Timestamping tuples withtemporal elements is conceptually appealing and can support multiple representational data models.Dependency theory can be extended to apply in full to this temporal data model.TSQL2 also allows event tables to be speci�ed. In such tables, each tuple is timestamped with aninstant set. As an example, a Hired table with attributes Name and Position could contain the tuple(LeeAnn, Manager). The instant set timestamp would record the instant(s) when LeeAnn was hired as aManager. Information about other values of her positions would be stored in other tuples. In this case,the timestamp is implicitly associated with each tuples.5.7 Transaction-time and Bitemporal TablesOrthogonally to valid time, transaction time can be associated with tables. The transaction time of atuple, which is a temporal element, speci�es when that tuple was considered to be logically stored in thedatabase. If the tuple (Tony, 10000, LeeAnn) was stored in the database on March 15, 1992 (say, withan APPEND statement) and removed from the database on June 1, 1992 (say, with a DELETE statement),then the transaction time of that tuple would be the period from March 15, 1992 to June 1, 1992.The transaction timestamps have an implementation-dependent range and precision, and are deter-minate.In summary, there are six kinds of tables: snapshot (no temporal support beyond user-de�ned time),valid-time state tables (consisting of sets of tuples timestamped with valid-time elements), valid-timeevent tables (timestamped with valid-time instant sets), transaction-time tables (timestamped withtransaction-time elements), bitemporal state tables (timestamped with bitemporal elements), and bitem-poral event tables (timestamped with bitemporal instant sets).5.8 Schema Speci�cationThe CREATE TABLE and ALTER statements were extended to allow speci�cation of the valid- and trans-action-time aspects of temporal tables. The scale and precision of the valid timestamps can also bespeci�ed and later altered.5.9 RestructuringThe FROM clause in TSQL2 allows tables to be restructured so that the temporal elements associatedwith tuples with identical values on a subset of the columns are coalesced. For example, to determinewhen Tony made a Salary of $10000, independent of who his manager was, the Employee table could berestructured on the Name and Salary columns. The timestamp of this restructured tuple would specifythe periods when Tony made $10000, informationwhich might be gathered from several underlying tuplesspecifying di�erent managers.Similarly, to determine when Tony had LeeAnn as his manager, independent of his salary, the tablewould be restructured on the Name and Manager columns. To determine when Tony was an employee,independent of how much he made or who his manager was, the table could be restructured on only theName column.Restructuring can also involve partitioning of the temporal element or instant set into its constituentmaximal periods or instants, respectively. Many queries refer to a continuous property, in which maximalperiods are relevant. 5

5.10 Temporal SelectionThe valid-time timestamp of a table may participate in predicates in the WHERE clause by via VALID()applied to the table (or correlation variable) name. The transaction-time of a table can be accessedvia TRANSACTION(). The operators have been extended to take temporal elements and instant sets asarguments.5.11 Temporal ProjectionConventional snapshot tables, as well as valid-time tables, can be derived from underlying snapshot orvalid-time tables. An optional VALID or VALID INTERSECT clause is used to specify the timestamp of thederived tuple. The transaction time of an appended or modi�ed tuple is supplied by the DBMS.5.12 UpdateThe update statements have been extended in a manner similar to the SELECT statement, to specify thetemporal extent of the update.5.13 CursorsCursors have been extended to optionally return the valid time of the retrieved tuple.5.14 Schema VersioningSchema evolution, where the schema may change, is already supported in SQL92. However, old schemasare discarded; the data is always consistent with the current schema. Transaction time support dictatesthat previous schemas be accessible, termed schema versioning. TSQL2 supports a minimal level ofschema versioning.5.15 VacuumingUpdates, including (logical) deletions, to transaction time tables result in insertions at the physicallevel. Despite the continuing decrease in cost of data storage, it is still, for various reasons, not alwaysacceptable that all data be retained forever. TSQL2 supports a simple form of vacuuming, i.e., physicaldeletion, of data when such tables are being managed.5.16 System TablesThe TABLES base table has been extended to include information on the valid and transaction timecomponents (if present) of a table. Two other base tables have been added to the de�nition schema.6 SQL-92 CompatibilityAll aspects of TSQL2 are pure extensions of SQL-92. The user-de�ned time in TSQL2 is a consistentreplacement for that of SQL-92. This was done to permit support of multiple calendars and literalrepresentations. Legacy applications can be supported through a default SQL92 calendric system.The defaults for the new clauses used to support temporal tables were designed to satisfy snapshotreducibility, thereby ensuring that these extensions constitute a strict superset of SQL-92.6

7 ImplementationDuring the design of the language, considerable e�ort was expended to ensure that the language could beimplemented with only moderate modi�cation to a conventional SQL-92-compliant DBMS. In particular,an algebra has been demonstrated that can be implemented in terms of a period-stamped (or instant-stamped, for event tables) tuple representational model; few extensions to the conventional algebra wererequired to fully support the TSQL2 constructs. This algebra is snapshot reducible to the conventionalrelational algebra.Support for multiple calendars, multiple languages, mixed precision, and indeterminacy have beenincluded in prototypes that demonstrated that these extensions have little deleterious e�ect on executionperformance.Mappings from the data model underlying TSQL2, the bitemporal conceptual data model, to variousrepresentational data models have been given elsewhere.8 Modi�ed Language SyntaxThe organization of this section follows that of the SQL-92 document. The syntax is listed undercorresponding section numbers in the SQL-92 document. All new or modi�ed syntax rules are markedwith a bullet (\�") on the left side of the production.Where appropriate, we provide disambiguating rules to describe additional syntactic and semanticrestrictions. We assume that the reader is familiar with the SQL-92 proposal, and that a copy of theproposal is available for reference.9 Section 4 Concepts9.1 Section 4.5 Datetimes and intervalsThis section is replaced with the material found above in Section 5.

7

10 Section 5 Lexical Elements10.1 Section 5.2 <token> and <separator>The production for the non-terminal <delimiter token> is augmented.<delimiter token> ::=� �� <period string>The production for the non-terminal <reserved word> is modi�ed to add 25 reserved words. Toconserve space, we do not copy the existing 227 reserved word de�nitions from the SQL-92 document.<reserved word> ::=� �� CALENDRIC �� CONTAINS �� CREDIBILITY� �� DISTRIBUTION� �� EVENT� �� GENERAL� �� INAPPLICABLE �� INDETERMINATE� �� MEETS� �� NEW �� NOBIND �� NONSTANDARD� �� PERIOD �� PLAUSIBILITY �� PRECEDES �� PREVIOUS �� PROPERTIES� �� RISING� �� SCALE �� SNAPSHOT �� STATE �� SURROGATE� �� VACUUM� �� VALID� �� WEIGHTED

8

10.2 Section 5.3 <literal>The production for the non-terminal <general literal> is augmented.<general literal> ::=� �� <period literal>The <date string>, <time string>, <timestamp string>, and <interval string> are generalized.The <year-month literal>, <day-time literal>, <day-time interval>, <time interval>, <years value>,<months value>, <days value>, <hours value>, <minutes value>, <seconds value>, <seconds integervalue>, <seconds fraction> and <datetime value> productions are all removed.The allowable datetime, interval, and period literals is expanded to support multiple character sets,user-speci�ed representations, and indeterminate and now-relative values.<date literal> ::=� DATE <date string> <calendric-property speci�cation><time literal> ::=� TIME <time string> <calendric-property speci�cation><timestamp literal> ::=� TIMESTAMP <timestamp string> [<timestamp precision>] <calendric-property speci�cation><interval literal> ::=� INTERVAL [<sign>] <interval string> <interval quali�er> <calendric-property speci�cation><date string> ::=� <datetime string><datetime string> ::=� <character string literal>� �� <determinate datetime string>� �� <now-relative datetime string>� �� <indeterminate now-relative datetime string>� �� <now-relative with indeterminate datetime string><time string> ::=� <datetime string><timestamp string> ::=� <datetime string><interval string> ::=� <character string literal>� �� <determinate interval string>� �� <indeterminate interval string>� �� <now-relative interval string><period literal> ::=� PERIOD <period string> [<period precision>] <calendric-property speci�cation><period string> ::=� <character string literal> 9

Format-related property values describe the contents of temporal constants. The BNF grammar forformat strings is as follows.<format string> ::=� <quote> [<character representation> �� �eld speci�cation>]: : : <quote><�eld speci�cation> ::=� <less than operator> <�eld identi�er>[<comma> <translation table name> [<comma> <�eld formatting speci�cation>: : :]]<greater than operator><�eld identi�er> ::=� <identi�er><translation table name> ::=� <identi�er><�eld formatting speci�cation> ::=� W <unsigned integer>� L� R� Z� B� SSyntax rules 7, 19, 20, 21, 22, 23 and 24 are removed, as they impose fairly arbitrary restrictions ontimestamps.Additional syntax rules:1. A <format string> de�nes the syntax of strings speci�ed as the values of format properties inproperty tables. A <format string> must be contained in an activated property table to a�ect thetranslation timestamps or literal values.2. In a <�eld speci�cation>, the table represented by the <translation table name> and the characterpattern shown by the <�eld formatting speci�cation>, determine the output format and translationfor the given <�eld identi�er>.3. Valid <�eld formatting speci�cation>s are as follows.Case:� Wnum|place the value in an output �eld of width num. The default �eld width is just largeenough to contain the constant and a sign if speci�ed. Truncation will occur on the right ifthe value is too large, and the �eld is left-justi�ed. Truncation will occur on the left is the�eld is too large, and the �eld is right justi�ed. Only one W speci�cation is permitted for each<�eld formatting speci�cation>.� L|place the value left-justi�ed in the �eld. Cannot be speci�ed with R.� R|place the value right-justi�ed in the �eld. Right justi�cation is the default. Cannot bespeci�ed with L.� Z|pad the �eld with zeros. Cannot be speci�ed with B.� B|pad the �eld with blanks. Blank padding is the default. Cannot be speci�ed with Z.10

� S|include a sign character in the output. For negative numeric values the sign is alwaysdisplayed. S forces a positive sign for positive numeric values. Cannot be speci�ed for non-numeric data.4. Within a <format string>, <less than operator> <less than operator> denotes a single <less thanoperator>.5. Within a<format string>, <quote><quote> (that is, a<quote symbol>) denotes a single<quote>.6. Any <character representation> appearing in the format string appears in an output string inthe same relative position and order with respect to other <character representation>s and <�eldspeci�cation>s.7. A <datetime string> is any sequence of characters not containing a single <quote>.Case:� The value represented by a <datetime string> is the special granule beginning if the <datetimestring> is identical to the value of the beginning string property.� The value represented by a <datetime string> is the special granule forever if the <datetimestring> is identical to the value of the forever string property.� The value of a <datetime string> is the special value until changed if the <datetime string>is identical to the value of the until changed string property.� The value represented by a <datetime string> is the special granule initiation if the <datetimestring> is identical to the value of the initiation string property. This datetime is the creationtime of the schema for the database; no transaction time stored in this database can precedeethis instant.� The value of a <datetime string> is the special value now if the <datetime string> is identicalto the value of the now string property. This special value, when bound in an executedstatement, is identical to the value of CURRENT TIMESTAMP.� The value represented by a <datetime string> is the value returned by a calendar if the<datetime string> is a contiguous subset of a string consitent with the value of the determi-nate datetime format property, which can include references to calendric-speci�c �elds. Thecalendar named in the value of the input epoch override property is attempted �rst. If thiscalendar does not recognize one of the �elds, the calendars are attempted in the order speci�edfor the current calendric system.� Let A be a valid <datetime string>, representing the datetime B. Let T be a string consistentwith the time zone format property, which can include references to the �eldsminute and hour.Let TZ be an INTERVAL HOUR TO MINUTE computed from the values of the hour and minute�elds. If the value of the datetime with time zone property, with the period �eld replaced withA and the time zone �eld replaced with B, is identical to the <datetime string>, then thevalue represented by the <datetime string> is the datetime B displaced by a time zone o�setof TZ.� Let A be a valid <datetime string>, representing the datetime B. Let T be a string con-tained in the translation table named by the time zone name table. Let TI be the in-dex associated with this string in this translation table. Let TZ be an INTERVAL HOUR TOMINUTE computed by looking up TI and B in the system-wide timezone table provided bythe DBA, with the schema (INDEX SMALLINT, VALIDTIME PERIOD, ENDTIME TIMESTAMP,OFFSET INTERVAL HOUR TO MINUTE), where B overlaps VALIDTIME. If the value of the date-time with time zone property, with the period �eld replaced with A and the time zone �eldreplaced with B, is identical to the <datetime string>, then the value represented by the<datetime string> is the datetime B displaced by a time zone o�set of TZ.11

� Let A and B be valid <datetime string>s, representing the datetimes C and D. Let Ebe a string consistent with the distribution format property, which can include references tothe �eld distribution name. If the value of the indeterminate datetime property, with thedeterminate datetime 1 �eld replaced with A, the determinate datetime 2 �eld replaced withB, and the distribution �eld replaced with E, is identical to the <datetime string>, then thevalue represented by the <datetime string> is the indeterminate datetime with lower supportC, upper support D, and distribution as named in E.� Let A be a valid <determinate interval string>, representing the interval B. Let C be a stringconsistent with the sign format property, which can include references to the �eld sign. Ifthe value of the now relative datetime format property, with the now �eld replaced with thevalue of the property now string, the determinate interval �eld replaced with A, and the sign�eld replaced with C, is identical to the <datetime string>, then the value represented bythe <datetime string> is the now-relative datetime now + B or now - B, dependening onwhether the sign �eld value is 0 or 1.� Let A be a valid <now-relative datetime string>, representing the datetime B. Let C bea valid <determinate datetime string>, representing the datetime D. Let E be a stringconsistent with the distribution format property, which can include references to the �elddistribution name. If the value of the indeterminate now relative datetime format property,with the now relative datetime �eld replaced with B, the determinate datetime �eld replacedwith D, and the distribution �eld replaced with E, is identical to the <indeterminate now-relative datetime string>, then the value represented by <indeterminate now-relative datetimestring> is the indeterminate now-relative datetime with lower support B, upper support D,and distribution as named in E.� Let A be a valid <indeterminate interval string>, representing the interval B, with lowersupport C, upper support D, and distribution E. Let F be a string consistent with thesign format property, which can include references to the �eld sign. If the value of thenow relative with indeterminate interval datetime format property, with the now �eld replacedwith the value of the property now string, the indeterminate interval �eld replaced with A,and the sign �eld replaced with F , is identical to the <now-relative with indeterminate date-time string>, then the value represented by the <now-relative with indeterminate datetimestring> is the indeterminate datetime with lower support now + C or now - C depending onwhether the sign �eld value is 0 or 1, upper support D, and distribution E.8. An <interval string> is any sequence of characters not containing a single <quote>.Case:� The value of an <interval string> is the special value all of time if the <interval string> isidentical to the value of the all of time string property.� The value of an <interval string> is the special value negative all of time if the <intervalstring> is identical to the value of the negative all of time string property.� The value of an <interval string> is the value returned by a calendar if the <interval string>is a contiguous subset of a value consitent with the value of the determinate interval formatproperty, which can include references to calendric-speci�c �elds. The calendar named inthe value of the input epoch override property is attempted �rst. If this calendar does notrecognize one of the �elds, the calendars are attempted in the order speci�ed for the currentcalendric system.� Let A and B be valid <determinate interval string>s, representing the intervals C and D. LetE be a string consistent with the distribution format property, which can include referencesto the �eld distribution name. If the value of the indeterminate interval property, with thedeterminate interval 1 �eld replaced with A, the determinate interval 2 �eld replaced withB, and the distribution �eld replaced with E, is identical to the <interval string>, then the12

value represented by the <interval string> is the indeterminate interval with lower supportC, upper support D, and distribution as named in E.� Let A be a valid <determinate datetime string>, representing the datetime B. Let C be astring consistent with the sign format property, which can include references to the �eld sign,whose value is restricted to being 1. If the value of the now relative interval format property,with the now �eld replaced with the value of the property now string, the datetime �eldreplaced with A, and the sign �eld replaced with C, is identical to the <now-relative intervalstring>, then the value represented by the <now relative interval string> is the now-relativeinterval now - B.9. A <period string> is any sequence of characters not containing a single <quote>.Case:� The value of a <period string> is the special value all of time if the <period string> isidentical to the value of the all of time period string property.� Let A and B be valid <datetime string>s, representing datetimes C and D. If the value ofthe determinate period format property, with the determinate datetime 1 �eld replaced by Aand the determinate datetime 2 �eld replaced by B, is identical to the <period string>, thenthe value of the <period string> is the period from C to D.� Let A be a valid<period string>, representing the period B. Let T be a string consistent withthe time zone format property, which can include references to the �elds minute and hour.Let TZ be an INTERVAL HOUR TO MINUTE computed from the values of the hour and minute�elds. If the value of the period with time zone property, with the period �eld replace with Aand the time zone �eld replaced with B, is identical to the <datetime string>, then the valuerepresented by the <period string> is the period B displaced by a time zone o�set of TZ.� Let A be a valid <datetime string>, representing the datetime B. Let T be a string con-tained in the translation table named by the time zone name table. Let TI be the in-dex associated with this string in this translation table. Let TZ be an INTERVAL HOURTO MINUTE computed by looking up TI and B in the system-wide timezone table providedby the DBA, with the schema INDEX SMALLINT, VALIDTIME PERIOD, ENDTIME TIMESTAMP,OFFSET INTERVAL HOUR TO MINUTE), where B overlaps VALIDTIME. If the value of the pe-riod with time zone property, with the period �eld replace with A and the time zone �eldreplaced with B, is identical to the <datetime string>, then the value represented by the<period string> is the period B displaced by a time zone o�set of TZ.10. The data type of a <period literal> is PERIOD.11. The starting delimiter and ending delimiter �elds mentioned within the determinate period formatdetermine whether the period literal is closed-closed, closed-open, open-closed, or open-open. Inany case, the value is stored internally as a closed-closed period.12. The non-terminal <calendric-property speci�cation> is de�ned in Appendix 16.1.13. If <calendric-property speci�cation> contains a <calendric-spec clause> then the calendric systemnamed in the <calendric-spec clause> is used when interpreting this literal. Otherwise, the globallydeclared calendric system whose scope includes this literal is used.14. If <calendric-property speci�cation> contains a <property-spec clause> then the properties con-tained in the named property table are activated before interpreting this literal, and deactivatedafter interpreting this literal.15. If no DECLARE CALENDRIC SYSTEM command has been entered then the implementation de�neddefault calendric system is assumed. 13

Additional general rules:1. The precision of a <time literal> is SECOND(0) if <time precision> is not present. Otherwise, it isthat speci�ed by <time precision>.2. The precision of a <timestamp literal> is SECOND(0) if <time precision> is not present. Otherwise,it is that speci�ed by <timestamp precision>.3. The granule denoted by a <datetime literal> is assumed to be the �rst granule represented by thedatetime string. This behavior may be changed with appropriate �eld names.4. Period literals are interpreted as follows. The beginning granule of the period is the �rst granulecontained in the period, and the ending granule of the period is the last granule contained in theperiod. This behavior may be changed with appropriate �eld names.5. Closed-closed periods are closed on both ends (i.e., the period includes both speci�ed datetimes).Closed-open periods do not contain their speci�ed ending datetime; they terminate one granulebefore their ending datetime. Similarly, open-closed periods do not contain their speci�ed startingdatetime, and open-open do not contain either their speci�ed starting or ending datetimes.6. If the current calendric system is unable to successfully interpret a datetime, period, or intervalliteral then an exception condition is raised: data exception|invalid time value literal.

14

10.3 Section 5.4 Names and identi�ersThe following productions are added.<calendric system name> ::=� <identi�er><property table name> ::=� <table name><time granularity> ::=� <identi�er>Additional syntax rules:1. The identi�ers denoting calendric systems and property tables are implementation dependent.2. The available <time granularity>s are implementation dependent, but must include YEAR, MONTH,DAY, HOUR, MINUTE, and SECOND.

15

11 Section 6 Scalar Expressions11.1 Section 6.1 <data type>The production for the non-terminal <data type> adds two new types.<data type> ::=� �� <period type>� �� <surrogate type><period type> ::=� [<indeterminate data type>] PERIOD [<period precision>] [WITH TIME ZONE]<period precision> ::=� <period quali�er>The production, <indeterminate data type> is added.<indeterminate data type> ::=� [NONSTANDARD] [GENERAL] INDETERMINATE<surrogate type> ::=� SURROGATEThe <datetime type> non-terminal is modi�ed.<datetime type> ::=[<indeterminate data type>] DATE� �� [<indeterminate data type>] TIME [<time precision>] [WITH TIME ZONE]� �� [<indeterminate data type>] TIMESTAMP [<timestamp precision>] [WITH TIME ZONE]<time precision> ::=� <left paren> <time fractional seconds precision> <right paren><timestamp precision> ::=� <timestamp quali�er><interval type> ::=� [<indeterminate data type>] INTERVAL [<interval quali�er>]Additional general rules:1. The delimiting datetimes of a period shall have the same precision and scale.2. Values of type SURROGATE cannot be seen (displayed). Consequently, attributes of SURROGATE typeare not allowed in the outermost SELECT clause of a query. Also, attributes of surrogate type cannotbe assigned an explicit value.3. A special reserved word, NEW may be used when updating an attribute value of SURROGATE type.The new value is a previously unused value. 16

4. Values of type SURROGATE can only be compared with respect to identity.5. The default distribution is standard (not NONSTANDARD).6. The default indeterminate datetime is compact (not GENERAL).7. The default datetime is determinate (not INDETERMINATE).8. The size of the timestamp format allocated depends on the kind of timestamp selected and the user-speci�ed precision. Enough space must be allocated to the data �elds to accommodate the precisionof the timestamp (precision rules are described elsewhere). The default indeterminate timestampformat is the chunked with standard distributions format. By specifying GENERAL the user choosesto use one of the general, indeterminate timestamp formats. By specifying NONSTANDARD the userchooses to use one of the nonstandard timestamp formats.

17

11.2 Section 6.2 <value speci�cation> and <target speci�cation>The productions for the non-terminals <parameter speci�cation> and <variable speci�cation> are aug-mented to allow calendric system and property selection per-item.<parameter speci�cation> ::=� <parameter name> [<indicator parameter>] [<calendric-property speci�cation>]<variable speci�cation> ::=� <embedded variable name> [<indicator variable>] [<calendric-property speci�cation>]Additional syntax rules:1. The non-terminal <calendric-property speci�cation> is de�ned in Appendix 16.1.2. If <calendric-property speci�cation> is speci�ed then <parameter name>must have the data type<character string type>. Similar remarks apply to <embedded variable name>.3. If <calendric-property speci�cation> is speci�ed then the value contained in <parameter name>or <variable name> is interpreted as a temporal value according to the calendric system and/orcalendar properties named by the <calendric-property speci�cation>.4. If <calendric-property speci�cation> contains a <calendric-spec clause> and the data type of thecolumn corresponding to the <parameter speci�cation> or <variable speci�cation> is DATE, TIME,TIMESTAMP, PERIOD, or INTERVAL, then the calendric system named in the <calendric-spec clause>is used to translate the timestamp into a temporal value.5. If <calendric-property speci�cation> contains a <property-spec clause> and the data type of thecolumn corresponding to the <parameter speci�cation> or <variable speci�cation> is DATE, TIME,TIMESTAMP, PERIOD, or INTERVAL, then the property table named in the <property-spec clause>are activated before translating the timestamp, and deactivated immediately after translating thetimestamp.6. If no SET CALENDRIC SYSTEM command has been entered then the implementation de�ned defaultcalendric system is assumed.
18

11.3 Section 6.3 <table reference>The production for the non-terminal <table reference> is replaced with the following. The �rst com-ponent can be more complex than a single <table name>, and multiple space-separated <correlationname>s are permitted.<table reference> ::=� <table source> [[AS] <corr> � <corr> 	...]� �� <derived table> [AS] <corr> � <corr> 	...�� <joined table><corr> ::=� <correlation> [WITH CREDIBILITY <integer>]�� <joined table>The following productions are added. The �rst allows table references to be de�ned in terms of othertable references. The rest serve to de�ne <correlation modi�er>.<table source> ::=� <table name> <correlation modi�er>� �� <correlation name> <correlation modi�er><correlation> ::=� <correlation name> [<left paren> <derived column list> <right paren>]<correlation modi�er> ::=� [<left paren> <coalescing columns> <right paren>][<left paren> <partitioning unit> <right paren>]<coalescing columns> ::=� <column name> [�<comma> <column name> 	...]� �� <asterisk><partitioning unit> ::=� �� INSTANT� �� PERIODAdditional syntax rules:1. <coalescing columns> of <asterisk> imply all the attributes of the <table name> or <correlationname>.2. If the <coalescing attributes> are not present, then <asterisk> is assumed.3. If a <correlation modi�er> is applied to a <table source>, then a <correlation> is required.4. If the <correlation modi�er> is applied to a <correlation name>, then the attributes are drawnfrom the table upon which the <correlation name> is based, and augment those attributes asso-ciated with the <correlation name>. The latter attributes can be mentioned in this <correlationmodi�er>, but is not required.5. If <partitioning unit> is not speci�ed, then Element is assumed.6. If <partitioning unit> is not speci�ed, then no partitioning is assumed.7. Partitioning on INSTANT is only allowed for event tables.19

Additional general rules:1. Let CM be the <correlation modi�er>. Let CN be a <column name> contained in CM , and Cbe the column.Case:� If CM is associated with a <table name>, then let T be that table name. The table identi�edby T is the ultimate table of CN .� If CN is associated with a <correlation name>, then let D be that <correlation name>. Theultmate table of CN is the ultimate table of D.2. C must be a column of its ultimate table.3. Only those <column name>s indicated as <coalescing columns> are accessible via the <correlationname>.4. The credibility is a value between 0 and 100 (inclusive).5. If the credibility phrase is missing, the default credibility is 100 or as speci�ed by the user with aset statement.

20

11.4 Section 6.5 <set function speci�cation>An optional clause to the general set function production was added for weighted aggregates.<general function type> ::=<set function type> <left paren> [<set quanti�er>]� [WEIGHTED]<value expression> <right paren>One aggregate was added to the set function type.<set function type> ::=� �� RISINGAdditional syntax rules:1. Let DT be the data type of the <value expression>.2. If RISING is speci�ed, the data type of the result is a period.3. If SUM is speci�ed, DT shall not be an instant or a period.4. If AVG is speci�ed, DT shall not be a period, an event set, or a temporal element.5. If COUNT is speci�ed, WEIGHTED has no e�ect.Additional general rules:1. If WEIGHTED is speci�ed, and DT is temporal, then WEIGHTED has no e�ect on the aggregate.2. If WEIGHTED is speci�ed, let A be the speci�ed attribute of the aggregate and let T be the argumentsource.Case:(a) If MAX is speci�ed, then the result is attribute A of the tuple, where, of T, attribute A multipliedby the number of granules in its timestamp is maximal.(b) If MIN is speci�ed, then the result is attribute A of the tuple, where, of T, attribute A multipliedby the number of granules in its timestamp is minimal.(c) If SUM is speci�ed, then the result is the sum of all attributes A in T, piecewise multipled bytheir timestamps, divided by the sum of the timestamps.(d) If AVG is speci�ed, then the result is the SUM function over T divided by the cardinality of T.3. If RISING is speci�ed without WEIGHTED, then the result shall be the largest period such that theargument source T is monotonic increasing. If WEIGHTED is speci�ed, then the largest period iscomputed over the value of each attribute multipled by its timestamp.4. If MIN, MAX, SUM, or AVG is speci�ed and T is a timestamp, thenCase:(a) If MIN is present, then use PRECEDE to determine the minimum timestamp, except in the casethat A is an interval, in which case return the interval with the minimal number of granules.(b) If MAX is present, then use not PRECEDE to determine the maximum timestamp, except inthe case that A is an interval, in which case return the interval with the maximal number ofgranules. 21

(c) If SUM is present, if the type of A is an interval, then return an interval equal in length to thesum of the granules in T. Otherwise, the type of A must be a temporal element or event set,and the result is the result of set union of the elements of T.(d) If AVG is present, if the type of A is an interval, then return an interval equal in length tothe average number of granules in T. Otherwise, the type of A must be an instant. Pick anyorigin O. Compute the average of the distance from O to each instant in T, and return theinstant representing the distance from O to this average.5. If SUM is speci�ed, T is INTERVAL and the sum is not within the range of data type then an exceptioncondition is raised: data exception|time value out of range.

22

11.5 Section 6.8 <datetime value function>Expressions evaluating to or taking as a parameter periods or temporal expressions are added.<datetime value function> ::=� �� BEGIN <left paren> <period value expression> <right paren>� �� END <left paren> <period value expression> <right paren>� �� FIRST <left paren> <datetime value expression> <comma> <datetime value expression><right paren>� �� LAST <left paren> <datetime value expression> <comma> <datetime value expression><right paren>� �� FIRST <left paren> <instant set value expression> <right paren>� �� LAST <left paren> <instant set value expression> <right paren>� �� VALID <left paren> � <table name> �� <correlation name> 	 <right paren>� �� SCALE <left paren> <datetime value expression> AS <time granularity> <right paren>� �� NOBIND <left paren> <datetime literal> <right paren>� �� NOBIND <left paren> <column reference> <right paren>Additional general rules:1. FIRST (LAST) extracts the �rst (last) instant from the instant set.2. Use of VALID must be on valid or bitemporal event tables which are partitioned.3. Local invocation of a scale function overrides the global default.4. The granularity of the resulting type of the SCALE operation is <time granularity>.5. A NOBIND function can only appear in the target list of an insert or modify statement. Any otheruse of a nobind will generate a compile-time error.

23

11.6 Section 6.10 <cast speci�cation>Casting to di�erent granularities is allowed, by adding to the options of the <cast target>.<cast target> ::=<domain name>�� <data type>� �� <time granularity>Casting between data types is extended to include the temporal types. No syntactic changes oradditions are required to do this.Additional syntax rules:1. The table showing allowable data conversions is augmented to add the PERIOD (P), temporalelement (TE), instant set (IS) data types, and to add the time granularity (G) cast target.<data type> of TD<data type> of SD EN AN VC FC VB FB D T TS YM DT P TE IS GEN Y Y Y Y N N N N N M M N N N NAN Y Y Y Y N N N N N N N N N N NC Y Y M M Y Y Y Y Y Y Y Y Y Y NB N N Y Y Y Y N N N N N N N N ND N N Y Y N N Y N Y N N Y Y Y YT N N Y Y N N N Y Y N N Y Y Y YTS N N Y Y N N Y Y Y N N Y Y Y YYM M Y Y Y N N N N N Y N N N N YDT M Y Y Y N N N N N N Y N N N YP N N Y Y N N N N N M M Y Y N YTE N N N N N N N N N N N N Y Y YIS N N N N N N N N N N N N Y Y Y2. If SD is AN and TD is YM or DT then the conversion is �rst done to the EN type.3. If SD is EN and TD is YM or DT then the conversion is dependent on the current calendric systemin e�ect when the <cast speci�cation> is executed.4. If SD is C and TD is D, T, TS, YM, DT, or P then the conversion is dependent on the currentcalendric system and set of input properties in e�ect when the <cast speci�cation> is executed.Let CS be the current calendric system and PS be the appropriate output format string currentlyin e�ect when the <cast speci�cation> is executed. Then the <cast speci�cation> CAST(C AS X)where X is D, T, TS, YM, DT, or P is equivalent to the following.C WITH CALENDRIC CS WITH PROPERTIES PS5. If SD is D, T, TS, YM, DT, or P and TD is FC or VC then the conversion is dependent on thecurrent calendric system and set of output properties in e�ect when the <cast speci�cation> isexecuted, as described in Section 5.3 <literal>.6. If SD is D, T, or TS and TD is P then the conversion results in a period of duration one granule.7. If SD is C and TD is P then the conversion is �rst done to the T data type.8. Let CS be the current calendric system and PS be the appropriate output format string currentlyin e�ect when the <cast speci�cation> is executed. Then the <cast speci�cation> CAST(T AS X)where T is D, T, TS, TM, DT, or P and X is VC or FC is equivalent to the following.24

T WITH CALENDRIC CS WITH PROPERTIES PS9. If SD is YM or DT and TD is EN or AN then the conversion is dependent on the current calendricsystem in e�ect when the <cast speci�cation> is executed.10. If SD is C, D, T, or TS and TD is TE then the conversion is �rst done to the P type.11. If SD is P and TD is TE, then the conversion is into a temporal element containing one period.12. If SD is C, T, TS, or P and TD is IS then the conversion is �rst done to the TE type.13. If SD is TE and TD is IS then the conversion is done by applying FIRST to each period in the set.14. If SD is D, T, TS, YM, DT, P, TE, or IS and TD is G then the conversion results in a value of thedata type SD at the underlying granularity TD.Additional general rules:1. Rule 3(c) is replaced with the following.If TD is exact numeric and SD is interval then if there is a representation of SV in the type TD thatdoes not lose any leading signi�cant digits then TV is that representation. Otherwise, an exceptioncondition is raised: data exception|numeric value out of range.2. Rule 5(e) is replaced with the following.If SD is a datetime, interval or period then let Y be the calendar dependent character stringproduced from SV such that the interpreted value of Y is SV and the interpreted precision of Y isthe precision of SD.Case:� If Y contains any <SQL language character> that is not in the repertoire of TD then anexception condition is raised: data exception|invalid character value for cast.� If the length in characters LY of Y is equal to LTD then TV is Y.� If the length in characters LY of Y is less than LTD then TV is extended on the right byLTD� Y spaces.� Otherwise an exception condition is raised: data exception|string data, right truncation.3. Rule 6(e) is replaced with the following.If SD is a datetime, interval or period then let Y be the calendar dependent character stringproduced from SV such that the interpreted value of Y is SV and the interpreted precision of Y isthe precision of SD.Case:� If Y contains any <SQL language character> that is not in the repertoire of TD then anexception condition is raised: data exception|invalid character value for cast.� If the length in characters LY of Y is less than or equal to MLTD then TV is Y.� Otherwise an exception condition is raised: data exception|string data, right truncation.4. Rules 9(b){(c) are deleted, and Rule 9(a) is replaced with the following.If TD is a datetime data type and SD is a character string then the determination of TV from SVis calendar dependent. If TV cannot be determined from SV then an exception condition is raised:data exception|invalid character value for cast.5. Rules 10 and 11 are deleted. 25

6. Rule 12 is replaced with the following.If TD is an interval data type, thenCase:(a) If SD is exact numeric then the determination of TV from SV is calendar dependent.If the representation of SV in the data type TD would result in the loss of leading signi�cantdigits, then an exception condition is raised: data exception|time value out of range.(b) If SD is character string then the determination of TV from SV is calendar dependent.If TV cannot be determined from SV then an exception condition is raised: data exception|invalid character value for cast.(c) If SD is P and TD is YM or DT, then the duration of SD is determined in the precision ofTD.

26

11.7 Section 6.11 <value expression>The production for the non-terminal <value expression> is augmented to include expressions evaluatingto periods, to temporal elements, and to instant sets.<value expression> ::=� �� <period value expression>� �� <temporal element value expression>� �� <instant set value expression>

27

11.8 Section 6.14 <datetime value expression>The <time zone speci�er> is augmented to allow symbolic time zones, such as 'MST'. The productionfor the non-terminal <period primary> is augmented to also include references to tables themselves.Also, expressions evaluating to temporal expressions are added.<time zone speci�er> ::=LOCAL�� TIME ZONE <interval value expression>� �� TIME ZONE <character string literal>Operand 1 Operator Operand 2 Yields- interval intervalinterval + interval intervalinterval - interval intervaldatetime + interval datetimedatetime - interval datetimeinterval + datetime datetimedatetime - datetime intervalinterval * numeric intervalnumeric * interval intervalinterval / numeric intervalinterval / interval numericinterval + period periodperiod + interval periodperiod - interval periodTable 1: Valid Arithmetic Expressions and Results.Additional general rules:1. If <character string literal> is a string contained in the translation table named by the time zone -name. Let TI be the index associated with this string in this translation table. Let B be the valueof<datetime primary>. Let TZ be an INTERVAL HOUR TO MINUTE computed by looking up TI andB in the system-wide timezone table provided by the DBA, with the schema INDEX SMALLINT,VALIDTIME PERIOD, ENDTIME TIMESTAMP, OFFSET INTERVAL HOUR TO MINUTE), where B over-laps VALIDTIME.2. The following is added to Rule 3.The semantics of <datetime value expression>s involving <period term>s is calendar-dependent.If the underlying granularities of both are supplied by the SQL92 calendar, then the semantics areas follows. (Original Rule 3 goes here.)3. Operands are coerced to the global scale/cast speci�ed in the last SET SCALE/SET CAST commandprior to the operation. If no such command was issued or the defaults are speci�ed, then operandsare scaled as needed to enforce ledt-operand semantics.4. The range of intermediate results is the maximum allowed by the implementation.5. The following is added to Rule 6.If <datetime value expression> is speci�ed, the semantics is calendar-dependent. If the underlyinggranularities of both the <datetime value expression> and the <datatime term>, as well as the<period quali�er> are supplied by the SQL92 calendar, then the semantics are as follows. (OriginalRule 6 goes here.) 28

11.9 Section 6.15 <interval value expression>The following production is added to the <interval value expression> non-terminal.<interval value expression> ::=� �� <interval value function>New general rules:1. The following is added to Rule 6.If <datetime value expression> is speci�ed, the semantics is calendar-dependent. If the underlyinggranularities of both the <datetime value expression> and the <datatime term>, as well as the<period quali�er> are supplied by the SQL92 calendar, then the semantics are as follows. (OriginalRule 6 goes here.)

29

11.10 Section 6.?? <interval value function>This is a new section.<interval value function> ::=� INTERVAL <left paren> <period value expression> <right paren>� �� ABSOLUTE <left paren> <interval value expression> <right paren>� �� SCALE <left paren> <interval value expression> AS <time granularity> <right paren>� �� NOBIND <left paren> <interval literal> <right paren>� �� NOBIND <left paren> <column reference> <right paren>Additional general rules:1. Local invocation of a scale function overrides the global default.2. The granularity of the resulting type of the SCALE operation is <time granularity>.3. A NOBIND function can only appear in the target list of an insert or modify statement. Any otheruse of a nobind will generate a compile-time error.

30

11.11 Section 6.?? <period value expression>This is a new section.<period value expression> ::=� <period primary>� �� <interval value expression> <plus sign> <period value expression>� �� <period value expression> f<plus sign> �� <minus sign>g <interval value expression><period primary> ::=� <period literal>� �� <column reference>� �� <scalar subquery>� �� <case expression>� �� <period value function>� �� <cast speci�cation>Additional syntax rules:1. The data type of a <period value expression> is PERIOD.2. Table 1 lists the arithmetic expressions involving time that are valid.Additional general rules:1. If a temporal arithmetic operation yields a PERIOD value that is out of range then an exceptioncondition is raised: data exception|time value out of range.

31

11.12 Section 6.?? <period value function>This is a new section.<period value function> ::=� VALID <left paren> � <table name> �� <correlation name> 	 <right paren>� �� TRANSACTION <left paren> � <table name> �� <correlation name> 	 <right paren>� �� PERIOD <left paren> <datetime value expression> <comma> <datetime value expression><right paren>� �� INTERSECT <left paren> <period value expression> <comma><period value expression> <right paren>� �� FIRST <left paren> <temporal element value expression> <right paren>� �� LAST <left paren> <temporal element value expression> <right paren>� �� SCALE <left paren> <period value expression>� �� NOBIND <left paren> <period literal> <right paren>� �� NOBIND <left paren> <column reference> <right paren>Additional general rules:1. Use of VALID is allowed only on valid time state or bitemporal state tables that are partitioned,and denotes a maximal period in the timestamp of the underlying tuple.2. Use of TRANSACTION is allowed only on transaction or bitemporal tables, and denotes a maximalperiod in transaction time when the values of the columns and the valid time associated with thetuple remained constant.3. FIRST (LAST) extracts the �rst (last) maximal period from the temporal element.4. Local invocation of a scale function overrides the global default.5. The granularity of the resulting type of the SCALE operation is <time granularity>.6. A NOBIND function can only appear in the target list of an insert or modify statement. Any otheruse of a nobind will generate a compile-time error.
32

11.13 Section 6.?? <temporal element value expression>The following are new nonterminals introduced into the language.<temporal element value expression> ::=� <temporal element value term>� �� <temporal element value expression> � <plus sign> �� <minus sign> 	<temporal element value term><temporal element value term> ::=� <temporal element value factor><temporal element value factor> ::=� <temporal element value primary><temporal element value primary> ::=� <temporal element value function>Additional general rules:1. `+ ' (` - ') on temporal elements is set union (di�erence).

33

11.14 Section 6.?? <temporal element value function>A new nonterminal, <temporal element value function>, is added.<temporal element value function> ::=� VALID <left paren> � <table name> �� <correlation name> 	 <right paren>� �� INTERSECT <left paren> <temporal element value expression> <comma><temporal element value expression> <right paren>� �� SCALE <left paren> <temporal element expression> AS <time granularity> <right paren>Additional general rules:1. Use of VALID denotes the temporal element timestamping of the underlying tuple, which must beassociated with a valid time or bitemporal state table that has not been partitioned.2. Intersection of temporal elements is set intersection.3. Local invocation of a scale function overrides the global default.4. The granularity of the resulting type of the SCALE operation is <time granularity>.

34

11.15 Section 6.?? <instant set value expression>The following are new nonterminals introduced into the language.<instant set value expression> ::=� <instant set value primary>� �� <instant set value expression> � <minus> �� <plus> 	 <instant set value primary><instant set value primary> ::=� <instant set value function>Additional general rules:1. `+ ' (` - ') on instant sets is set union (di�erence).

35

11.16 Section 6.?? <instant set value function>A new nonterminal, <instant set value function>, is added.<instant set value function> ::=� VALID <left paren> � <table name> �� <correlation name> 	 <right paren>� �� INTERSECT <left paren> <instant set value expression> <comma><instant set value expression> <right paren>Additional general rules:1. Use of VALID denotes the instant set timestampingof the underlying tuple, which must be associatedwith a valid-time or bitemporal event table that has not been partitioned.

36

12 Section 7 Query expressions12.1 7.1 <row value constuctor>A tuple can now include a valid time.<row value constructor> ::=<row value constructor element>� �� <left paren> <row value constructor list> <right paren> [<valid value>]�� <row subquery><valid value> ::=� VALID � <element value expression> �� <interval value expression>�� <event value expression> �� <event set value expression> 	

37

12.2 Section 7.3 <table expression>The production for the non-terminal <table expression> is replaced with the following, adding oneclause.<table expression> ::=� [<valid clause>]<from clause>[<where clause>][<group by clause>][<having clause>]The following production is added.<valid clause> ::=� � VALID �� VALID INTERSECT 	 � <temporal element value expression>�� <period value expression> �� <datetime value expression>�� <instant set value expression> 	Additional general rules:1. VALID INTERSECT T is equivalent toVALID INTERSECT(T; INTERSECT(C1, : : :, INTERSECT(Cn�1, Cn)))The correlation variables are listed in order of increasing granularity.where Ci are the correlation variables (or table names) mentioned in the SELECT clause.2. The default VALID clause isVALID INTERSECT PERIOD 'all of time':3. If the VALID clause speci�es a period or instant value, the values from the other value-equivalenttuples are gathered into a temporal element or instant set, respectively.
38

12.3 Section 7.6 <where clause>To the production for <where clause> is added the plausibility phrase.<where clause> ::=� WHERE <search condition> [WITH PLAUSIBILITY <integer>]Additional general rules:1. The plausibility is a value between 1 and 100 (inclusive). A value of 1 implies a non-zero plausibilityless than 1.2. If the plausibility phrase is missing, the default plausibility is 100 or as speci�ed by the user witha set statement.

39

12.4 Section 7.7 <group by clause>The production for grouping column reference is extended.<grouping column reference> ::=<column reference> [<collate clause>]� �� <temporal partition><temporal partition> ::=� � VALID <left paren> � <table name> �� <correlation name> 	 <right paren>� �� <column reference> 	� [USING � <partition expression> �� INSTANT]� [LEADING <partition expression>]� [TRAILING <partition expression>]<partition expression> ::=� <integer>� �� <time granularity granularity>� �� <integer> <time granularity>� �� PERIOD 'All of time' <time granularity>Additional syntax rules:1. If the using clause, or the leading clause or the trailing clause is present, and VALID is not present,then the type of the <column reference> in a <temporal partition> clause must be a timestamp.If the <column reference> is simply a timestamp with no leading, trailing, of using clause, thenpartition the relation as SQL-92 de�nes.2. VALID associated with a particular table may only be present once in a <group by clause>Additional general rules:1. If the special period PERIOD 'All of time' <time granularity> is present in the using clause,then the partition includes all of the time-line. If the leading clause (trailing) includes the PERIOD'All of time' <time granularity>, then the leading partition (trailing) is of maximal length (i.e.includes all previous (later) granules on the time-line).2. The granularity of the using, leading, and trailing clauses, if they are present, must be the same asthe granularity of the table.3. If the type of the <column reference> in a <temporal partition> clause is a timestamp, or VALIDis present, thenCase:(a) If the using clause is not present, then the default is INSTANT for clauses which contain VALID,and PERIOD 'All of time' <time granularity> for <column references> in a <temporalpartition>. The default granularity is the table's granularity. The using and leading clausesmay only specify integral multiples of this granularity.(b) If the leading (or trailing) clause is not present, then the default length of the missing clauseis length 0.(c) The granularity in the leading, trailing, and using clauses is a calendar granularity.(d) If a granularity is given without the accompanying integer length, the length is assumed tobe 1. 40

4. If any or all of the using, trailing or leading clauses are present, or VALID is present, then partitionthe table the following way. These computations are done at the underlying granularity of thevalid clause. The result of the <temporal partition> will be an assignment of tuples to one ormore granules in the query result's valid time-line. Then an aggregate value will be computedover the set of tuples associated with each granule. For each tuple, we determine which granulesit associated with in the following way. Also, if the <column reference> is a timestamp, then inthe following, use the values of the timestamp instead of the valid time from that relation whenprocessing the <temporal partition> which contains that <column reference>.(a) For each <temporal partition> (with R the expression's <table name> or <correlationname>), determine which granules the tuple overlaps. This is done by computing the least(L) and greatest granules (G) which overlap the tuple's valid time from R, in the granularityof the valid clause, with respect to the leading, trailing, and using clauses. The tuple is �rsttentativly associated with the sequence of granules from L to G, inclusive.(b) The using clause speci�es how many consecutive granules (f g1; : : : ; gn g) are to be consideredfor each partition. The leading and trailing clauses extend this sequence by their integralamounts, respectively to the beginning and the end of the sequence. A tuple overlaps allgranules in a partition if it's valid time with respect to R intersects f g1; : : : ; gn g.(c) If for all <temporal parition>'s, a tuple is tentatively associated to a granule g, then the tupleis associated with g.

41

12.5 Section 7.8 <having clause>Additional general rules:1. Let T be one of the clauses in the <temporal partition> clause.2. If T contains a using clause, then the using clause must be larger than a single granule, and theleading and trailing clauses must be zero length.3. If the group-by clause contains a <temporal partition>, then the result of a reference to valid timein the having clause is the valid time of the group de�ned by the <temporal partition>.

42

12.6 Section 7.9 <query speci�cation>The production is replaced with the following, adding one optional reserved word.<select statement: single row> ::=� SELECT [<set quanti�er>] [SNAPSHOT] <select list> <table expression>We add an option to indicate use of the completed schema.<select list> ::=<column list>�� <asterisk>� �� <asterisk> <asterisk>�� <select sublist> [� <comma> <select sublist> 	...]Additional general rules:1. SNAPSHOT speci�es that the resulting table will be a snapshot table. In this case, the <tableexpression> should not include a <valid clause>.2. Speci�cation of the ** option results in the use of the completed schemes for the table(s) speci�ed.

43

13 Section 8 Predicates13.1 Section 8.1 <predicate>The production for the non-terminal <predicate> is replaced with the following.<predicate> ::=<comparison predicate>�� <between predicate>�� <in predicate>�� <like predicate>�� <null predicate>�� <quanti�ed comparison predicate>�� <exists predicate>�� <unique predicate>�� <match predicate>� �� <precedes predicate>� �� <meets predicate>� �� <overlaps predicate>� �� <contains predicate>

44

13.2 Section 8.2 <comparison predicate>No new syntax rules are required, but additional disambiguating rules are required for interval compar-ison.1. The <less than operator>, <greater than operator>, and <equals operator> are valid for intervalcomparison.

45

13.3 Section 8.7 <quanti�ed comparison predicate>No additional productions are required. The following syntax rules are added.Additional syntax rules:1. Let T1 be the type of <value expression>.2. Let T2 be the type of <row value expression>.3. If either T1 or T2 is DATE, TIME, TIMESTAMP, PERIOD or INTERVAL then T1 and T2 must be comparableas de�ned in Table 2.

46

13.4 Section 8.11 <overlaps predicate>The following productions are added for the new comparison operators. (The production for the OVERLAPSpredicate is extended.) The applicable types are broadened to include temporal elements.<overlaps predicate> ::=<row value constructor 1> OVERLAPS <row value constructor 2>� �� <row value expression 1> OVERLAPS <row value expression 2><precedes predicate> ::=� <row value expression 1> PRECEDES <row value expression 2><meets predicate> ::=� <row value expression 1> MEETS <row value expression 2><contains predicate> ::=� <row value expression 1> CONTAINS <row value expression 2>This grammar is overly permissive in that it generates semantically illegal expressions. This is,however, consistent with the grammar originally provided in the SQL-92 standard for datetime valuecomparison. Expressions violating type constraints will be detected during semantic analysis.Additional syntax rules:1. Let T1 be the type of <row value expression 1>.2. Let T2 be the type of <row value expression 2>.3. T1 and T2 must be either PERIOD or datetime.4. T1 and T2 shall be comparable as de�ned in Table 2.5. Any comparison involving the PERIOD or datetime data types not listed in Table 2 is disallowed.Operand 1 Operator Operand 2interval = intervalinterval < intervalinterval > intervaldatetime/period/element = datetime/period/elementdatetime/period/element PRECEDES datetime/period/elementdatetime/period/element OVERLAPS datetime/period/elementdatetime/period/element CONTAINS datetime/period/elementdatetime/period/element MEETS datetime/period/elementTable 2: Permitted Set of Comparison Operators
47

14 Section 10 Additional Common Elements14.1 Section 10.1 <interval quali�er>This is signi�cantly generalized to allow implementation-de�ned granularities. The <non-second date-time �eld> non-terminal is removed, <timestamp quali�er> and <period quali�er> are added, and thefollowing non-terminals are modi�ed.<start �eld> ::=� <time granularity> [<left paren> <interval leading �eld precision> <right paren>]� �� <left paren> <interval string> <interval quali�er> <right paren><end �eld> ::=� <time granularity> [<left paren> <interval fractional seconds precision> <right paren>]<single datetime �eld> ::=� <time granularity> [<left paren> <interval leading �xed position>[<comma> <interval trailing �eld position>] <right paren>]<timestamp quali�er> ::=� [<start �eld> TO] <end �eld>� �� <single datetime �eld><period quali�er> ::=� <timestamp quali�er>The general rules are signi�cantly generalized to remove fairly arbitrary restrictions.

48

15 Section 11 Schema de�nition and manipulationWe add to the production for <schema element> to allow dynamic de�nition of distributions.<schema element> ::=� �� <create distribution statement>

49

15.1 Section 11.3 <table de�nition>The production for the non-terminal<table de�nition> is augmented with an additional, optional clause,as well as with a <vacuuming de�nition>.<table de�nition> ::=CREATE [� GLOBAL �� LOCAL 	 TEMPORARY] TABLE <table name><table elements>� [<temporal de�nition>]� [<vacuuming de�nition>][ON COMMIT � DELETE �� PRESERVE] ROWS]Three productions are added.<temporal de�nition> ::=� AS � VALID [STATE �� EVENT 	 [<timestamp precision>][AND TRANSACTION]� �� AS TRANSACTION<vacuuming de�nition> ::=� VACUUM <datetime value expression>Additional general rules:1. Case:(a) if neither VALID nor transaction is speci�ed, the table is a snapshot table.(b) If AS VALID STATE is speci�ed, and TRANSACTION is not speci�ed, then the tuples are times-tamped with valid-time elements that are sets of non-contiguous periods. The precision andscale of the periods can be speci�ed.(c) If AS VALID EVENT is speci�ed, and TRANSACTION is not speci�ed, then the tuples are times-tamped with valid-time instant sets. The precision and scale of the instants can be speci�ed.(d) If TRANSACTION is speci�ed, and VALID is not speci�ed, then the tuples are timepstamped withtransaction-time elements. The scale of the timestamps is implementation-dependent.(e) If TRANSACTION and VALID STATE are speci�ed, the the tuples are timestamped with bitem-poral elements that are sets of bitemporal chronons. The precision and scale of the valid-timedimension can be speci�ed; the scale of the transaction-time dimension is implementation-dependent.(f) If TRANSACTION and VALID EVENT are speci�ed, the the tuples are timestamped with bitempo-ral instant sets that are sets of bitemporal chronons. The precision and scale of the valid-timedimension can be speci�ed; the scale of the transaction-time dimension is implementation-dependent.2. The <vacuuming de�nition> is only allowed when the table supports transaction time.3. If <vacuuming de�nition> is not speci�ed, VACUUM TIMESTAMP CURRENT TIMESTAMP is assumed(the default). 50

15.2 Section 11.4 <column de�nition><column de�nition> ::=<column name> �<data type>� [INAPPLICABLE <value expression>]��<domain name> 	[<default clause>][<column constraint de�nition>...][<collate clause>]Additional General Rules:1. The INAPPLICABLE clause expressions may be either simple of a function only of the attributes inthe completed schema for the table.

51

15.3 Section 11.5 <default clause>The production for the non-terminal <default clause> is changed to the following.<default clause> ::=<literal>�� <datetime value function>� �� <interval value function>� �� <period value function>�� USER�� SYSTEM USER�� NULLAdditional syntax rules:1. If <datetime value function>, <period value function>, or <interval value function> is speci�edthen any parameters passed to these functions must be property values representing a special timevalue or literal values.2. Let T be the type of the column being initialized.3. If T is DATE, TIME, TIMESTAMP, PERIOD, or INTERVAL then USER and SYSTEM USER may not bespeci�ed.4. If T is DATE, TIME or TIMESTAMP then either a <literal> representing a <datetime literal> or a<datetime value function> may be speci�ed. The calendric system used to interpret the constantis the calendric system whose scope is the smallest scope which encompasses the literal. Theproperties used to interpret the constant are the set of properties active when the default clause isexecuted.5. If T is PERIOD then either a <literal> representing a <period literal> or a <period value function>may be speci�ed. The calendric system used to interpret the constant is the calendric system whosescope is the smallest scope which encompasses the literal. The properties used to interpret theconstant are the set of properties active when the default clause is executed.6. If T is INTERVAL then either a <literal> representing an <interval literal> or an <interval valuefunction> may be speci�ed. The calendric system used to interpret the constant is the calendricsystem whose scope is the smallest scope which encompasses the literal. The properties used tointerpret the constant are the set of properties active when the default clause is executed.
52

15.4 Section 11.10 <alter table statement>The <alter table statement> is augmented with the following alternatives.<alter table action> ::=� �� <add valid de�nition>� �� <drop valid de�nition>� �� <replace valid def>� �� <add transaction de�nition>� �� <delete transaction de�nition>� �� <scale valid de�nition>� �� <cast valid de�nition>� �� <alter vacuuming de�nition>The following productions are added.<add valid de�nition> ::=� ADD [VALID] � STATE �� EVENT 	 [<timestamp precision>]<drop valid de�nition> ::=� DROP VALID<replace valid de�nition> ::=� REPLACE [VALID] [� STATE �� EVENT] [<timestamp precision>]<add transaction de�nition> ::=� ADD TRANSACTION<drop transaction de�nition> ::=� DROP TRANSACTION<scale valid de�nition> ::=� SCALE VALID AS <timestamp precision><cast valid de�nition> ::=� CAST VALID AS <timestamp precision><alter vacuuming de�nition> ::=� VACUUM <datetime value expression>Additional syntax rules:1. Let T be the table identi�ed in the containing <alter table statement>.2. For the <add valid de�nition>, T shall be a snapshot or transaction-time table.3. For the <drop valid de�nition>, T shall be a valid-time or bitemporal table.4. For the <replace valid de�nition>, T shall be a valid-time or bitemporal table.5. For the <add transaction de�nition>, T shall be a snapshot table or a valid-time table.6. For the <drop transaction de�nition>, T shall be a transaction-time or bitemporal table.7. For the <scale valid de�nition>, T shall be a valid-time or bitemporal table.53

8. For the <cast valid de�nition>, T shall be a valid-time or bitemporal table.9. For the <alter vacuuming de�nition>, T shall be a transaction-time or bitemporal table.Additional general rules:1. For the <drop valid de�nition>, if T is a state table, it is converted to a snapshot table withcontents SELECT SNAPSHOT * FROM T WHERE T OVERLAPS CURRENT TIMESTAMPIf T is an event table, it is converted to a snapshot table with contentsSELECT SNAPSHOT * FROM T2. In the <replace valid de�nition>, scale or cast is used as speci�ed by the <set scale statement>or <set cast statement>.3. For <scale valid de�nition>, the temporal element of each tuple of T is converted to the newprecision and scale, using a cast or scale operation.4. If T was an state table and <valid de�nition> speci�es period, then only the precision or scale ofT's valid-time timestamps is altered. The temporal element of each tuple of T is converted to thenew precision and scale. If the scale in increased, the additional fractional digits are set to zero.5. If T was an state table and <valid de�nition> speci�es event, then the timestamp of each tuple inT is converted from a set of periods to a set of instants, equivalently,SELECT * VALID BEGIN(T) FROM T(PERIOD)6. If T was an event table and <valid de�nition> speci�es event, then only the precision or scale of T'svalid-time timestamps is altered. The instants in the timestamp of each tuple of T are convertedto the new precision and scale. If the scale in increased, the additional fractional digits are set tozero.7. If T was an event table and <valid de�nition> speci�es period, then the timestamp of each tuplein T is converted from a set of instants to a set of periods, equivalently,SELECT * VALID PERIOD(T, T) FROM T(EVENT)8. The <datetime value expression> must, when the <alter table statement> is issued, evaluate to atime value that is either not before the current cut-o� point or is after the current time.9. When an <alter table statement> with an <add transaction time> clause, but with no <altervacuuming de�nition>, is applied to a table that does not support transaction time, the time the<alter table statement> takes e�ect is used as the cut-o� point of the altered table.
54

15.5 Section 11.?? DistributionsThis is a new section.<create distribution statement> ::=� CREATE [� GLOBAL �� LOCAL 	 TEMPORARY] DISTRIBUTION<distribution name> USING <table name><alter distribution statement> ::=� ALTER DISTRIBUTION <distribution name> USING <table name><drop distribution statement> ::=� DROP DISTRIBUTION <distribution name>Additional general rules:1. The distribution must conform to implementation-dependent distribution constraints, otherwise anexception is raised.2. The <create distribution statement> establishes a new distribution name.3. Altering a distribution e�ectively destroys the old distribution and replaces it with a new distribu-tion having the indicated table descriptor.

55

16 Section 12 ModuleThe production for the non-terminal <module contents> is changed to include a global calendric sys-tem declaration statement, and a new non-terminal <declare calendric system> is added to de�ne thisstatement.<module contents> ::=<declare cursor>� �� <declare calendric system>�� <dynamic declare cursor>�� <procedure><declare calendric system> ::=� DECLARE CALENDRIC SYSTEM WITH <calendric spec><calendric spec> ::=� DEFAULT� �� <calendric system name>Additional syntax rules:1. In a sequence of SQL statements, the last calendric system speci�ed in a DECLARE CALENDRICSYSTEM command remains in e�ect until a new DECLARE CALENDRIC SYSTEM command is entered.2. A DECLARE CALENDRIC SYSTEM WITH CALENDRIC DEFAULT statement reactivates the implementa-tion de�ned default calendric system.

56

16.1 Section 12.5 <SQL procedure statement>The production for the non-terminal <SQL session statement> is changed to include a session-levelcalendric system selection command, default session-level scale and align speci�cation commands, andan additional production is added to de�ne the calendric system selection command. We also add anoption to indicate which schema version to use.<SQL session statement> ::=<SQL set identi�er statement>�� <set constraints mode statement>�� <set transaction statement>� �� <set properties statement>� �� <set scale statement>� �� <set cast statement>� �� <set credibility statement>� �� <set plausibility statement>� �� <create distribution statement>� �� <alter distribution statement>� �� <drop distribution statement>� �� <schema set statement><set properties statement> ::=� SET PROPERTIES� [FOR CHARACTER SET [DEFAULT �� NATIONAL �� <character set>]]� [FOR � <time granularity> �� <calendar name>]WITH <property spec><calendric-property speci�cation> ::=� [<calendric-spec clause>] [<property-spec clause>: : :]<calendric-spec clause> ::=� WITH CALENDRIC <calendric spec><property-spec clause> ::=� WITH PROPERTIES <property spec><property spec> ::=� PREVIOUS� �� DEFAULT� �� <property table name>� �� <table value constructor><schema set statement> ::=� SET SCHEMA <datetime value expression><set credibility statement> ::=� SET CREDIBILITY � <integer> �� AS DEFAULT 	<set plausibility statement> ::=� SET PLAUSIBILITY � <integer> �� AS DEFAULT 	<set scale statement> ::=� SET SCALE �<time granularity> �� AS DEFAULT 	57

<set cast statement> ::=� SET CAST �<time granularity> �� AS DEFAULT 	Additional syntax rules:1. The non-terminal <calendric system name> must be an <identi�er> naming a calendric system.2. The non-terminal <property table name> is the name of a property table de�ning properties forthe speci�ed character set.3. The non-terminal <table value expression> enumerates the rows of a property table.4. The most recent invocation of a <set credibility statement> or a <set plausibility statement>takes precedence.5. If both the <set credibility statement> and the <set plausibility statement> are omitted, then thedefaults, 100 and 100, respectively, are assumed.6. The most recent invocation of a <set scale statement> or a <set cast statement> takes precedence.7. If both the <set scale statement> and the <set cast statement> are omitted (or speci�ed as default ,then left argument granularity semantics is assumed.8. Case:� If neither <time granularity> nor <calendar name> is speci�ed, then the properties for allgranularities are altered.� If <time granularity> is speci�ed, then only the properties for that granularity are altered.� If <calendar name> is speci�ed, then only the properties for the granularities de�ned by thatcalendar are altered.9. The <datetime value expression> evaluates to a transaction-time instant that identi�es a particularschema version.Additional general rules:1. Specifying SET PROPERTIES WITH PREVIOUS causes the previous set of active properties for thespeci�ed character set to be reactivated.2. Specifying SET PROPERTIES WITH DEFAULT causes the implementation de�ned set of default prop-erties for the speci�ed character set to be activated.3. A property table must have the schema (property:character string, value:character string). Thecommand to create a persistent property table with property values of length at most twentycharacters is the following.CREATE TABLE property table(property VARCHAR 20, value VARCHAR 20)4. If a <set properties statement> or <property-spec clause> names a non-existent <property tablename>, then an exception condition is raised: data exception|property table non-existent.58

17 Section 13 Data manipulation17.1 Section 13.3 <fetch statement><fetch statement> ::=FETCH [[<fetch orientation>] FROM] <cursor name> [INTO <fetch target list>]� [INTO VALID [PERIOD] <fetch target list>]Additional syntax rules:1. At least one of INTO <fetch target list> and INTO VALID [PERIOD] <fetch target list> must bepresent in a fetch statement.Additional general rules:1. When a <fetch target list> follows INTO VALID PERIOD, it must contain precisely a single <targetspeci�cation>. When a <fetch target list> follows INTO VALID (without PERIOD), it must containexactly two <target speci�cation>s.2. When a <fetch target list> follows INTO VALID PERIOD, it must contain precisely a single <targetspeci�cation>. This is only allowed with a state table is being evaluated by the SELECT statement.When a <fetch target list> follows INTO VALID (without PERIOD), it must contain exactly two<target speci�cation>s if a state table is being evaluated by the SELECT statement, and exactlyone <target spec�cation> is an event table is being evaluated.

59

17.2 Section 13.5 <select statement: single row>The production is replaced with the following, adding one optional reserved word.<select statement: single row> ::=� SELECT [<set quanti�er>] [SNAPSHOT] <select list>INTO <select target list><table expression>Additional general rules:1. SNAPSHOT speci�es that the resulting table will be a snapshot table. In this case, the <tableexpression> should not include a <valid clause>.

60

17.3 Section 13.7 <delete statement: searched>The production for the non-terminal <delete statement: searched> is augmented with an additional,optional clause. This clause references the non-terminal <valid clause> de�ned for the SELECT state-ment.<delete statement: searched> ::=DELETE FROM <table name>[WHERE <search condition>]� [<valid value>]Additional general rules:1. If T is a valid-time table, and the <valid value> is omitted, then the default valid value speci�edin the <table de�nition> is assumed. If there was no default value speci�ed, then the intervalPERIOD(TIMESTAMP CURRENT TIMESTAMP, NOBIND(TIMESTAMP 'now'))is assumed.

61

17.4 Section 13.8 <insert statement>The <insert column list> is modi�ed to permit the use of the NEW reserved word.<insert column list> ::=� <insert column> [� <comma> <insert column> 	...]The <insert column> is a new production.<insert column> ::=� <column name>� �� NEWAdditional general rules:1. NEW is permitted only when the <data type> of the corresponding column is SURROGATE.

62

17.5 Section 13.9 <update statement: positioned>Additional general rules:1. If T is a transaction-time or bitemporal table, the transaction time of the appended or updatetuple is PERIOD(TIMESTAMP CURRENT TIMESTAMP, NOBIND(TIMESTAMP 'until changed')).

63

17.6 Section 13.10 <update statement: searched><update statement: searched> ::=UPDATE <table name>SET <set clause list>� [<valid value>][WHERE <search condition>]Additional general rules:1. If T is a transaction-time or bitemporal table, the transaction time of the appended or updatetuple is PERIOD(TIMESTAMP CURRENT TIMESTAMP, NOBIND(TIMESTAMP 'until changed')).

64

18 Section 21 Information Schema and De�nition Schema18.1 Section 21.3.8 TABLES base tableALTER TABLE TABLES ADD COLUMNVALID TIME CHARACTER DATACONSTRAINT VALID TIME CHECKCHECK (VALID TIME IN ('STATE', 'EVENT', 'NONE'))ALTER TABLE TABLES ADD COLUMNTRANSACTION TIME CHARACTER DATACONSTRAINT TRANSACTION TIME CHECKCHECK (TRANSACTION TIME IN ('STATE', 'NONE'))ALTER TABLE TABLES ADD COLUMNVACUUM CUT-OFF TIMESTAMPThe precision and scale of the VACUUM CUT OFF column is implementation-de�ned.18.2 Section 21.3.?? TEMPORAL SPEC base tableCREATE TABLE TEMPORAL SPEC fTABLE NAME CHARACTER DATA,VALID SCALE INTERVAL,SCALE GRANULARITY CHARACTER DATA,VALID PRECISION INTERVAL,PRECISION GRANULARITY CHARACTER DATA,DISTRIBUTION CHARACTER DATA,GENERAL CHARACTER DATA,DEFAULT EVENT NONSTANDARD GENERAL INDETERMINATE TIMESTAMP,DEFAULT STATE NONSTANDARD GENERAL INDETERMINATE PERIOD,CONSTRAINT TEMPORAL SPEC PRIMARY KEYPRIMARY KEY (TABLE NAME),CONSTRAINT DISTRIBUTION CHECKCHECK (DISTRIBUTION IN ('STANDARD', 'NONSTANDARD'))CONSTRAINT GENERAL CHECKCHECK (GENERAL IN ('NONGENERAL', 'GENERAL'))gThe precision and scale of the VALID SCALE and VALID PRECISION columns is the maximumsupportedby the implementation.18.3 Section 21.3.?? SURROGATE base tableCREATE TABLE SURROGATE fTABLE NAME CHARACTER DATA,COLUMN NAME CHARACTER DATA,CONSTRAINT SURROGATE PRIMARY KEYPRIMARY KEY (TABLE NAME, COLUMN NAME)g 65

19 Section 22 Status CodesThe exception codes associated with the SQLSTATE parameter are modi�ed to support the period datatypeWe show only the changed exceptions.Condition Class Subcondition Subclassdata exception 22 time value out of range 008invalid time value literal 007property table non-existent 009

66

20 HistoryTemporal databases have been an active research topic for at least �fteen years. During this time, sev-eral dozen temporal query languages have been proposed. In April, 1992 Richard Snodgrass circulateda white paper proposing that a temporal extension to SQL be produced by the research community. Inparallel, the temporal database community organized the \ARPA/NSF International Workshop on anInfrastructure for Temporal Databases," which was held in Arlington, TX, in June, 1993. Discussions atthat workshop indicated that there was substantial interest in a temporal extension to SQL-92. A gen-eral invitation was sent to the community, and about a dozen people volunteered to develop a languagespeci�cation (over the next few months another half-dozen people joined the committee). The groupcorresponded via email from early July, 1993, submitting, debating, and re�ning proposals for the vari-ous portions of the language. In September, 1993, the �rst draft speci�cation, accompanied by thirteencommentaries, was distributed to the committee. In December, 1993 a much enlarged draft, accompaniedby some twenty-�ve commentaries, was distributed to the committee. A preliminary language speci�ca-tion appeared in the March, 1994 issue of ACM SIGMOD Record, and twenty-three commentaries weremade available via anonymous FTP at FTP.cs.arizona.edu. A tutorial of the language appeared in theSeptember, 1994 issue of ACM SIGMOD Record, and the �nal language speci�cation and twenty-eightcommentaries were also made available via anonymous FTP that month.ContributorsTSQL2 is remarkable, and perhaps unique, in that it was designed entirely via electronic mail, by acommittee that never met physically (in fact, no one on the committee has met every other committeemember).The language design committee is quite broad, comprising members from database vendors, industrialresearch labs, industrial users, and academia. Committee members reside in seven countries on threecontinents. All committee members have published scholarly papers in the area of databases; for most,temporal databases is their primary research focus.The TSQL2 Language Design Committee consists of Richard T. Snodgrass (chair), Department ofComputer Science, University of Arizona, Tucson, rts@cs.arizona.edu; Ilsoo Ahn, AT&T Bell Labora-tories, Columbus Ohio, ahn@cbnmva.att.com; Gad Ariav, Computer and Information Systems, Tel AvivUniversity, Israel, ariavg@ccmail.gsm.uci.edu; Don Batory, Department of Computer Sciences, Uni-versity of Texas at Austin, dsb@cs.utexas.edu; James Cli�ord, Information Systems Department, NewYork University, jcliffor@is-4.stern.nyu.edu; Curtis E. Dyreson, Department of Computer Science,University of Arizona, Tucson, curtis@cs.arizona.edu; Christian S. Jensen, Department of Mathe-matics and Computer Science, Aalborg University, Denmark, csj@iesd.auc.dk; Ramez Elmasri, Com-puter Science and Engineering Department, University of Texas at Arlington, elmasri@cse.uta.edu;Fabio Grandi, University of Bologna, Italy, fabio@deis64.cineca.it; Wolfgang K�afer, Daimler Benz,Ulm, Germany, kaefer%fuzi.uucp@germany.eu.net; Nick Kline, Department of Computer Science,University of Arizona, Tucson, kline@cs.arizona.edu; Krishna Kulkarni, Tandem Computers, Cuper-tino, CA, kulkarni_krishna@tandem.com, Ting Y. Cli� Leung, Data Base Technology Institute, IBM,San Jose, CA, cleung@almaden.ibm.com; Nikos Lorentzos, Informatics Laboratory, Agricultural Univer-sity of Athens, Greece, eliop@isosun.ariadne-t.gr; John F. Roddick, University of South Australia,The Levels, South Australia, roddick@unisa.edu.au; Arie Segev, University of California, Berkeley, CA,segev@csr.lbl.gov; Michael D. Soo, Department of Computer Science, University of Arizona, Tucson,soo@cs.arizona.edu; and Surynarayana M. Sripada, European Computer-Industry Research Centre,Munich, Germany, spripada@ecrc.de.AcknowledgementsRichard Snodgrass, Curtis Dyreson, Nick Kline, and Michael Soo were supported in part by NationalScience Foundation grants ISI-8902707 and ISI-9302244, IBM contract #1124 and a grant from the AT&T67

Foundation. Christian S. Jensen was supported in part by the Danish Natural Science Research Councilunder grants 11{1089{1 SE and 11{0061{1 SE. John F. Roddick was supported in part by researchgrants from the University of South Australia and the Institute of Computer Systems Engineering andAssurance.We appreciate the contributions of Petra Bayer, Suchen Hsu, Luis Hermosilla, Tom�as Isakowitz,Raghu Ramakrishnamand Y. Mitsopoulos in writing several of the commentaries. We also appreciate thecomments of Michael B�ohlen, Shashi Gadia, Sushil Jajodia, Henry Kucera, Robert Marti, Nelson Mattos,Sham Navathe, Leo So and Abdullah Tansel. Finally, we thank Patrick P. Kalua, Angelo Montanari,Sunil S. Nair, Elisa Peressi, Barbara Pernici, Edward L. Robertson, Nanlal L. Sarda, Maria Rita Scala,Paolo Tibertio, Alexander Tuzhilin and Gene T.J. Wuu for their role in developing the consensus testsuite of temporal database queries, which was very helpful in evaluating and re�ning TSQL2.

68

