
TEMPORAL DATABASES
Richard Thomas Snodgrass
A temporal database (see Temporal Database) contains time-varying data.

Time is an important aspect of all real-world phenomena. Events occur at
specific points in time; objects and the relationships among objects exist
over time. The ability to model this temporal dimension of the real world
is essential to many computer applications, such as accounting, banking,
econometrics, geographical information systems, inventory control, law, med-
ical records, multi-media, process control, reservation systems, and scientific
data analysis.

Conventional databases represent the state of an enterprise at a single
moment of time. Although the contents of the database continue to change
as new information is added, these changes are viewed as modifications to
the state, with the old, out-of-date data being deleted from the database.
The current contents of the database may be viewed as a snapshot of the
enterprise. When a conventional database is used, the attributes involving
time are manipulated solely by the application programs, with little help
from the database management system (DBMS).

Alternatively, in a temporal database, queries over previous states are
easy to specify. Also, modifications to previous states (if an error is detected,
or if more information becomes available) and to future states (for planning
purposes) are also easier to express using a temporal DBMS.

Almost all database applications concern time-varying information. In
fact, it is difficult to identify applications that do not involve the management
of time-varying data. The advantages provided by built-in temporal support
include higher-fidelity data modeling, more efficient application development,
and a potential increase in performance.

1 Time Data Types

Several temporal data types have proven useful. The most basic is a time
instant (see Instant), which is a particular chronon on the time line. An
evnet (see Event) is an instantaneous fact, that is, something occurring at
an instant. The event occurrence time (see Event Occurrence Time) of an
event is the instant at which the event occurs in the real world. The fact
in the database is timestamped (see Timestamp) with its event occurrence

1



time.
SQL-92 provides three instant data types: DATE (a particular day, with

a year in the range ad 1–9999), TIME (a particular second within a range of
24 hours), and TIMESTAMP (a particular fraction of a second, defaulting
to microsecond, of a particular day).

A time period (see Time Period) is the time between two instants. (Note:
in some of the literature, this notion is called a time interval, but this usage
conflicts with the SQL-92 data type INTERVAL, which is a different concept
altogether.) SQL-92 does not include periods, but periods are now part of
the evolving SQL3 specification.

A time interval (see Time Interval) is a directed duration of time, that
is, an amount of time with a known length, but not specific starting or
ending instants. A positive interval denotes forward motion of time, toward
the future; a negative interval denotes motion toward the past. Adding
the interval of -3 days to January 15, 1998 would result in January 12, 1998.
SQL-92 supports two kinds of intervals, month-year and second-day intervals.

A final temporal data type is temporal element(see Temporal Element),
which is a finite union of periods.

2 Associating Facts with Time

In the context of databases, two time dimensions are of general interest.
Valid time (see Valid Time) concerns the time a fact was true in reality (see
Logical Time). The valid time of an event is the time at which the event
occurred in the real world, independent of the recording of that event in
some database. Valid times can also be in the future, if it is expected that
some fact will be true at a specified time in the future. Transaction time (see
Transaction Time) concerns the time the fact was present in the database as
stored data. The transaction time (a period of time) of a fact identifies the
transaction that inserted the fact into the database and the transaction that
removed this fact from the database. Transaction times are consistent with
the serialization order of the transactions that entered or modified the facts
stored in the database (see Concurrency Control, Transaction Processing).

These two dimensions are orthogonal. A data model supporting neither
is termed snapshot (see Snapshot Relation, Distributed Snapshots), as it
captures only a single snapshot in time of both the database and the enter-

2



prise that the database models. A data model supporting only valid time is
termed valid-time (see Valid-Time Relation); one that supports only trans-
action time is termed transaction-time (see Transaction-Time Relation); and
one that supports both valid and transaction time is termed bitemporal (see
Bitemporal Relation) (temporal is a generic term implying some kind of time
support). Transaction-time and bitemporal relations are append-only, mak-
ing them prime candidates for storage on write-once optical disks.

A third kind of time may be included: user-defined time (see User-Defined
Time). This term refers to the fact that the semantics of these values are
known only to the user, and are not interpreted by the DBMS, as differenti-
ated from valid and transaction time, whose semantics are supported by the
DBMS.

Information that is temporally indeterminate (see Temporal Indetermi-
nacy) can be characterized as “don’t know exactly when” information. This
kind of information is prevalent; it arises in various situations, including finer
system granularity, imperfect dating techniques, uncertainty in planning, and
unknown or imprecise event times. An event is determinate (see Temporally
Determinate) if it is known precisely when it occurred.

3 Temporal Data Models

Support for time in conventional database systems is entirely at the level of
user-defined time (i.e., attribute values drawn from a temporal domain).

A temporal data model should simultaneously satisfy many goals. It
should capture the semantics of the application to be modeled in a clear and
concise fashion. It should be a consistent, minimal extension of an existing
data model, such as the relational model. It is best if the temporal data model
presents all the time-varying behavior of a fact or object coherently. The data
model should be easy to implement, while attaining high performance.

Time has been added to many data models. However, by far the majority
of work in temporal databases is based on the relational and object-oriented
data models. The experience of the last fifteen years and some forty data
models appearing in the literature argues that designing a temporal data
model with all of these characteristics is elusive at best, and is probably not
possible.

An effort has recently been completed to consolidate approaches to tem-

3



poral data models and calculus-based query languages, to achieve a consen-
sus extension to SQL-92 and an associated data model upon which future
research can be based. This extension is termed the Temporal Structured

Query Language, or TSQL2.
TSQL2 employs the Bitemporal Conceptual Data Model as its under-

lying data model, in which temporal databases are designed and queries
are expressed. This data model retains the simplicity and generality of the
relational model. A separate, representational data model, of equivalent ex-
pressive power, is employed for implementation and for ensuring high perfor-
mance. Other presentational data models may be used to render time-varying
behavior to the user or application. A coordinated suite of data models can
achieve in concert goals that no single data model could attain.

4 Temporal Query Languages

Some three dozen temporal relational query languages have been proposed
to date.

There have been three general approaches to adding valid-time support to
a data model and query language. The first approach utilizes the substantial
expressive power of the relational or object-oriented data model directly,
and thus requires no changes either to the model or to the query language
to support time-varying information. The disadvantage is that the user is
required to “roll his own” support for time when specifying the schema, and
also when specifying queries. This approach also renders query optimization
much more difficult, as there are no syntactic constructs provided in the
language that are specific to time.

A second approach is to include general extensions to the data model and
query language for other reasons, and then show how these extensions may
be used to support time-varying information. This approach has been used
only with object-oriented query languages.

The third approach is to propose specific data modeling and query lan-
guage constructs to support information varying over valid time (see Tem-
poral Logic). This is the approach adopted by the vast majority of temporal
relational query languages. Most add numerous new constructs and tempo-
ral operators, yet attempt to retain reducibility to the non-temporal query
language on which they are based, which ensures that the user’s intuition

4



about the base language carries over to the temporal extension.
In considering support for transaction time, an important distinction

must be made: either the tuples, object instances or attributes are them-
selves versioned (termed extension versioning), or the definitions of those
objects are versioned (termed schema versioning, see Schema Versioning). If
extension versioning is adopted, then schema versioning may or may not be
supported. If extension versioning is not supported, then schema versioning
is not relevant, as only the most recent version of the schema need be re-
tained. In schema evolution (see Schema Evolution), the schema can change
in response to the varying needs of the application. In schema versioning (see
Schema Versioning), there are multiple schemas logically in effect. Schema
versioning has been examined both in the context of relational databases and
in the context of object-oriented databases.

5 Architectural Issues

We now turn to the implementation of the temporal data models and query
languages.

Optimization of temporal queries is substantially more involved than
that for conventional queries, for several reasons. Optimization of temporal
queries is more critical, and thus easier to justify expending effort on, than
conventional optimization. The relations that temporal queries are defined
over may be larger, and often grow monotonically, implying that unoptimized
queries take longer and longer to execute.

On the other hand, there is greater opportunity for query optimization
when time is present. Time advances in one direction: the (transaction)
time domain is continuous expanding, and the most recent time point is the
largest value in the domain. This implies that a natural clustering on sort
order will manifest itself, which can be exploited during query optimization
and evaluation.

There have been four basic responses to this challenge. The first proposes
separating valid-time and transaction-time data, which grows monotonically,
from the current data, whose size is fairly stable and whose access is more
frequent. This separation, termed temporal partitioning (see Temporal Par-
titioning), was shown to significantly improve performance of some queries,
and was later generalized to allow multiple cached states, which further im-

5



proves performance.
A second approach is the introduction of new query optimization strate-

gies. A single query can be optimized by replacing the algebraic expression
with an equivalent one that is more efficient, by changing an access method
associated with a particular operator, or by adopting a particular implemen-
tation of an operator. To determine which access method is best for each
algebraic operator, meta-data, that is, statistics on the stored temporal data,
and cost models, that is, predictors of the execution cost for each operator
implementation/access method combination, are needed. Temporal data re-
quires additional meta-data, such as the time period over which the relation is
defined, the tuple arrival distributions, the distributions of the time-varying
attributes, regularity and granularity of temporal data, and the frequency of
the null values that are sometimes introduced when attributes within a tuple
aren’t synchronized.

Introducing new algorithms for expensive operators, such as joining two
tables, eliminating duplicates, aggregating over many rows, and coalescing
overlapping periods into a single period, is a third approach for gaining effi-
ciency. In particular, a wide variety of temporal joins have been considered.
The various algorithms proposed for these joins have generally been exten-
sions to nested loop or merge joins that exploit sort orders or local workspace,
as well as hash joins.

A fourth approach is to develop new temporal indexes. Conventional
indexes have long been used to reduce the need to scan an entire relation to
access a subset of its tuples. Indices are even more important in temporal
relations that grow monotonically in size. There has been a great deal of
research over the past five years in temporal indexing. Most of the indexes
are based on B+-Trees, which index on values of a single key; the remainder
are based on R-Trees, which index on ranges (periods) of multiple keys. There
has been considerable discussion concerning the applicability of point-based
schemes for indexing period data. Some argue that structures that explicitly
accommodate periods, such as R-Trees and their variants, are preferable;
others argue that mapping periods to their endpoints is efficient for search.

Temporal database research has been active for about twenty years. There
have been many significant accomplishments.

• The semantics of the time domain, including its structure, dimension-
ality, indeterminacy, and real-time aspects, is well-understood.

6



• A great amount of research has been focused on temporal data models,
addressing this extraordinarily complex and subtle design problem.

• The semantics of temporal relational schemas and their logical de-
sign are well understood. The Bitemporal Conceptual Data Model
is gaining acceptance as the appropriate model in which to consider
data semantics.

• Many temporal query languages have been proposed.

• Temporal joins, aggregation, duplicate elimination and coalescing are
well understood, and efficient implementations exist.

• More than a dozen temporal index structures have been proposed, sup-
porting valid time, transaction time, or both.

• A handful of prototype temporal DBMS implementations have been
developed.

• Several commercial temporal object-oriented DBMS’s are now on the
market.

The following research areas need to be addressed.

• Conceptual and physical database design of temporal schemas are still
in their infancy. In the past, such investigation has been hindered by
the plethora of temporal data models.

• Little has been done in integrating spatial, temporal, and active data
models, query languages, and implementation techniques.

• Achieving adequate performance in a temporal DBMS remains a chal-
lenge.

• To date, most research has assumed that applications will be designed
using a new temporal data model, implemented using novel tempo-
ral query languages, and run on as yet nonexistent temporal DBMSs.
In the short to medium term, this is an unrealistic assumption. Ap-
proaches for transitioning legacy applications will become increasingly
sought after as temporal technology moves from research to practice.

7



6 References

A series of six bibliographies concerning temporal databases culminating in
[4] references some 1200 papers. The book edited by Tansel [3] provides a
still-current snapshot of temporal databases research.

[1] C. S. Jensen, J. Clifford, R. Elmasri, S. K. Gadia, P. Hayes and S. Ja-
jodia (eds.), “A Glossary of Temporal Database Concepts,” ACM SIGMOD

Record : 23(1), 52-64, March, 1994.
[2] R. T. Snodgrass (ed), The TSQL2 Temporal Query Language, Kluwer

Academic Publishers, 1995.
[3] A. Tansel, J. Clifford, S. K. Gadia, S. Jajodia, A. Segev, and R. T. Snod-

grass, editors, Temporal Databases: Theory, Design, and Implementation,
Database Systems and Applications Series. Benjamin/Cummings, Redwood
City, CA, 1994.

[4] V. J. Tsotras and A. Kumar, “Temporal Database Bibliography Up-
date,” ACM SIGMOD Record: 25(1), 41-51, March, 1996.

8


