
Sequenced Subset Operators: Definition and Implementation

Joseph Dunn Sean Davey Anne Descour
Richard T. Snodgrass

Department of Computer Science
The University of Arizona, Tucson

fjdunn,sdavey,adescour,rtsg@cs.arizona.edu

Abstract

Difference, intersection, semi-join and anti-semi-join
may be considered binary subset operators, in that they
all return a subset of their left-hand argument. These
operators are useful for implementing SQL’s EXCEPT,
INTERSECT, NOT IN and NOT EXISTS, distributed
queries and referential integrity. Difference-all and
intersection-all operate on multi-sets and track the num-
ber of duplicates in both argument relations; they are
used to implement SQL’s EXCEPT ALL and INTER-
SECT ALL. Their temporally sequenced analogues,
which effectively apply the subset operator at each
point in time, are needed for implementing these con-
structs in temporal databases. These SQL expres-
sions are complex; most necessitate at least a three-way
join, with nested NOT EXISTS clauses. We consider
how to implement these operators directly in a DBMS.
These operators are interesting in that they can fragment
the left-hand validity periods (sequenced difference-all
also fragments the right-hand periods) and thus intro-
duce memory complications found neither in their non-
temporal counterparts nor in temporal joins and semi-
joins. This paper introduces novel algorithms for imple-
menting these operators by ordering the computation so
that fragments need not be retained in main memory. We
evaluate these algorithms and demonstrate that they are
no more expensive than a single conventional join.

1. Introduction

Due to the temporal nature of nearly all database
information, much work is being done to extend non-
temporal algorithms to the temporal domain. This
paper presents algorithms for four relational opera-
tors for which no temporal implementation has been
published: sequenced difference, sequenced intersec-
tion, sequenced semi-join and sequenced anti-semi-

join. These operations are necessary to maintain tem-
poral referential integrity between temporal relations,
to implement the EXCEPT, EXCEPT ALL, INTER-
SECT, INTERSECT ALL, NOT IN and NOT EX-
ISTS in SQL [Melton & Simon 93], and to perform ef-
ficient remote querying operations in distributed tempo-
ral databases. The challenge in implementing these op-
erations lies primarily in the subtractive nature of anti-
semi-join and difference.

Semi-join, anti-semi-join, intersection (and
intersection-all) and difference (and difference-all)
are similar in that they are all binary operators that
return only information from the left-hand relation,
so they can be thought of operations that “select a
subset of the left-hand side tuples.” We thus term these
operators “subset operators.” In a temporal application,
the analogous sequenced operators “select a subset
of the left-hand side tuples at each point in time, or
equivalently, select a subset of the left-hand side tuples
over a subset of the times spanned by those tuples.”

While in the non-temporal versions of all of these op-
erators the cardinality of the result is less than or equal
to that of the left-hand side (LHS) relation, the cardi-
nality of the result of the sequenced analogues is often
greater than that of the LHS. In fact, in the worst case,
the result cardinality is slightly larger than the product
of the cardinalities of the two underlying relations. This
aspect requires great care to ensure that the operation
can be performed within the main-memory buffer space
since the validity periods of the input relation(s) become
fragmented during processing.

In this paper, we first define and differentiate the
non-temporal and sequenced variants of difference, in-
tersection, semi-join and anti-semi-join and variants
that preserve duplicates: difference-all and intersect-all.
We then examine the implementation of each in turn.
Sequenced semi-join is straightforward, sequenced anti-
semi-join is more difficult, sequenced intersection and
sequenced difference are simple given sequenced semi-

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)
1063-6382/02 $17.00 © 2002 IEEE

join and sequenced anti-semi-join, respectively, and se-
quenced difference-all and sequenced intersect-all are
the most challenging to implement. The performance
of these algorithms is examined. We show that the per-
formance of our new algorithms is essentially the same
as a normal join.

2. Temporal Statements

There are three types of temporal statements (queries,
modifications, views, assertions, cursors): current, se-
quenced and non-sequenced [Snodgrass 00]. Current
statements deal with the data using “now” as the time of
interest. Non-sequenced statements consider all of the
data, without regard to time, i.e. they consider data as
it may have been valid “at any time.” Sequenced state-
ments deal with data over a specific period or periods
and is the most difficult to compute. A sequenced state-
ment is the equivalent of applying the corresponding
non-temporal statement at every instant of time and con-
catenating these results. A statement can be sequenced
in valid time, transaction time, or both; in this paper, we
restrict ourselves to mono-temporal sequencing (valid or
transaction time). The implementation of the sequenced
statement should manipulate the underlying periods di-
rectly, to efficiently compute the resulting periods.

Consider two relations, Cow with attribute tag and
Pen with attributes tag and pen. The Cow relation
gives a cow’s tenure within the feedlot. The Pen relation
states when a given cow resided in a particular pen on
the feedlot. A particular cow is identified by its tag,
which is an integer. These relations are time-varying:
associated with each is a timestamp indicating the period
when the tuple was valid.

We can ask, for which times is a cow’s pen known,
for all cows in the feedlot. This may be expressed in
the following query in the proposed temporal part of
SQL3 [Snodgrass et al. 96], as follows (the initial key-
word indicates that the statement is sequenced in valid
time).

VALIDTIME SELECT Cow.tag
FROM Cow, Pen
WHERE Cow.tag = Pen.tag

The non-temporal query (without the VALIDTIME) is
implemented with a semi-join operator; the sequenced
variant requires a sequenced semi-join operator.

Consider the referential integrity constraint that
Pen.tag references Cow.tag.

ALTER TABLE Pen ADD CONSTRAINT
FOREIGN KEY (tag) REFERENCES Cow

This non-temporal constraint may be implemented with
a NOT EXISTS subquery.

ALTER TABLE Pen ADD CONSTRAINT
NOT EXISTS (SELECT * FROM Pen
WHERE NOT EXISTS (SELECT * FROM Cow

WHERE Pen.tag = Cow.tag))

The NOT EXISTS here can be implemented as anti-
semi-join or difference operator.

A sequenced version of this referential constraint
might be expressed as follows [Snodgrass et al. 96].

ALTER TABLE Pen ADD CONSTRAINT
FOREIGN KEY (tag) VALIDTIME

REFERENCES Cow

This states that, at each point in time, Pen.tag ref-
erences Cow.tag. This sequenced constraint can simi-
larly be implemented with a sequenced anti-semi-join or
sequenced difference operator.

3. Operator Definition

In this paper, we will use the following notation:

L TR for sequenced semi-join, L
T
R for sequenced

anti-semi-join, L �T R for sequenced difference and
L \T R for sequenced intersection. The -all variants
(SQL’s EXCEPT ALL and INTERSECT ALL) are de-
noted by a subscript: L �TALL R and L \TALL R. We
considered only join predicates that are equalities on the
identically-named attributes; the discussion can easily
be generalized to equi-join predicates on dissimilarly-
named attributes. We term the join attribute-equivalent
tuples, matching tuples.

3.1. Common Characteristics

Semi-join and intersection are commutative. Anti-
semi-join and difference are subtractive operations; they
are not commutative. Most join implementations swap
the smaller relation into the inner position for improved
memory page utilization. Anti-semi-join and difference
disallow the swapping of inner and outer relations.

For clarity, we offer examples of each operation us-
ing the two relations given below. We can model that
the cow with tag 78453 was in the feedlot from Jan-
uary 1994 through April 1997 (here we use a granular-
ity [Bettini et al. 98] of month) and that that cow was
in pen 1 from January 1994 through December 1996.
We use closed-open periods at a granularity of month as
timestamps; these contain the starting month but not the
ending month. Hence, the last tuple of Cow is only valid
during the entire year of 1995.

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)
1063-6382/02 $17.00 © 2002 IEEE

Cow:
tag ValidTime

78453 [1/94–5/97)
12413 [1/95–8/97)
78453 [5/98–1)
97234 [1/95–1/96)

Pen:
tag pen ValidTime

78453 1 [1/94–1/97)
78453 3 [1/97–5/97)
12413 1 [1/95–7/97)
78453 1 [3/98–9/98)
78453 2 [9/98–1)

The tag and pen attributes are termed explicit at-
tributes, to differentiate them from the ValidTime time-
stamp. Two tuples in the same table that are identical in
the values of their explicit attributes are termed value-
equivalent [Snodgrass 87].

3.2. Sequenced Semi-Join

A semi-join operation performs the equivalent action
of a regular join but only returns information from the
LHS relation: Cow Pen= �Cow(Cow ./ Pen). The
result contains those tuples that would have participated
in a natural (or equi-) join. This characteristic of semi-
join operations makes them useful in distributed rela-
tional databases, where a smaller result means less time
spent in data transfer.

Ignoring the time attribute, Cow Pen would re-
turn the tags 78453 and 12413. Tag 97234 would be
eliminated, because it doesn’t participate in the join, by
virtue of not residing in the right-hand side (RHS).

We contrast this output with that of an analogous
sequenced semi-join. The result of Cow T Pen gives
the periods for which a cow’s pen is known.

Cow TPen:
tag ValidTime

78453 [1/94–1/97)
78453 [1/97–5/97)
12413 [1/95–7/97)
78453 [5/98–9/98)
78453 [9/98–1)

The first thing we notice is that tag 97234 is again ab-
sent, as expected. The second thing we notice is that
while the LHS contains four tuples, the result of the
semi-join contains five tuples. Compare the above result
with the following equivalent sequenced natural join.

Cow ./T Pen:
tag pen ValidTime

78453 1 [1/94–1/97)
78453 3 [1/97–5/97)
12413 1 [1/95–7/97)
78453 1 [5/98–9/98)
78453 2 [9/98–1)

Only the information stored in Cow (the left relation) is
returned by a semi-join unlike to the results of a standard
equijoin. We now see where the five tuples came from.
In this case, the validity period of the first LHS tuple,
[1/94–5/97), is broken into two sub-periods, [1/94–1/97)
and [1/97–5/97). The same thing happens to the third
LHS tuple, because the original period is not found in
the corresponding RHS tuple.

3.3. Sequenced Anti-Semi-Join

The anti-semi-join operator returns those LHS tu-
ples that do not match the RHS [Graefe 93]: L R=
L � (L R). One very important application of the
anti-semi-join is maintaining referential integrity. If a
referential integrity constraint was specified from Pen
to Cow, the anti-semi-join identifies those tuples in Pen
that violate this constraint.

A sequenced anti-semi-join returns the time comple-
ment of a sequenced semi-join. The sequenced anti-
semi-join’s usefulness lies in its ability to efficiently
confirm temporal referential integrity between two re-
lations. (Again, note the VALIDTIME keyword.)

ALTER TABLE Pen ADD CONSTRAINT
FOREIGN KEY (tag)

VALIDTIME REFERENCES Cow

We wish to identify tuples (and periods) in Pen that vio-
late this constraint. The expression provides the periods
for which a pen is specified for a non-existent cow .

�tag(Pen)
T
Cow:

tag ValidTime
78453 [3/98–5/98)

Going back to the original relations, we see that there
indeed a tuple for these two months in Pen but not in
Cow.

In the worst case, all the LHS and RHS tuples have
the same value for the join attribute and the LHS tuples
are all long-lived, that is, their validity period overlaps
the validity period of all RHS tuples. Let the cardinal-
ities of the LHS and the RHS relations be l and r, re-
spectively. Each LHS tuple may be split into as many as
r + 1 short segments, yielding a worst-case cardinality
of the result of l � r + l.

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)
1063-6382/02 $17.00 © 2002 IEEE

3.4. Sequenced Difference

There are two variations of the difference operation:
difference and difference-all. These two operations are
analogous to the SQL constructs EXCEPT and EXCEPT
ALL, respectively. The distinction between the regular
difference operation and the difference-all lies in how
the RHS matching tuples are counted.

Difference is a specialized form of anti-semi-
join, one which requires that the operands be union-
compatible. For union-compatible L and R relations,
the following holds.

L R = L� (L R)

= L� (L \ R) = L�R

This tautology also holds for sequenced difference, so

L �T R = L
T
R. Due to this tautology, a separate

implementation of sequenced difference is unnecessary.

3.5. Sequenced Difference-All

Difference-all is distinct from difference and anti-
semi-join in an important way: the cardinality of dupli-
cates in both operands must be tracked. Like difference,
difference-all subtracts the RHS tuples that match the
LHS tuples. But it operates on multi-sets, rather than
sets. If a particular tuple appears five times in the LHS
and three times in the RHS, the result will contain two
copies of this tuple.

These same distinctions apply to sequenced differ-
ence and difference-all, but in terms of the validity pe-
riods. Both subtract the time periods in the right side
matching tuples from the left side matching tuples and
then output tuples that contain time periods correspond-
ing to the time remaining in the left side tuples. In
sequenced difference, the validity periods for output tu-
ples correspond to those periods that are not overlapped
by the times of any of the right side matching tuples. For
sequenced difference-all, each intersecting period from
a particular matching right side tuple is removed from
only one matching left side tuple.

As an example, the expression �Tpen=1(�
T
pen(Pen))

yields the following L relation.

L:
pen ValidTime

1 [1/94–1/97)
1 [1/95–7/97)
1 [3/98–9/98)

Notice that duplicates exist at [1/95–1/97). If we se-
quenced difference-all the above relation with the fol-
lowing R relation,

R:
pen ValidTime

1 [6/95–6/96)
1 [1/96–5/98)

the following relation results.

L�TALL R:
pen ValidTime

1 [1/94–6/95)
1 [6/96–1/97)
1 [1/95–1/96)
1 [5/98–9/98)

Note that the duplicates hold only for [1/95–6/95); in
particular, there is only one tuple for [6/95–1/97), be-
cause the other was removed by the difference-all. As
one might imagine, such period calculations can get
complex. Note also that the cardinality of the result is
greater than that of the LHS (though, at any point in
time, e.g., 2/95, the cardinality of the result, here two
tuples during 2/95, is never more than the cardinality of
the LHS, here also two during 2/95).

Figure 1 illustrates sequenced difference-all. Here L
contains two tuples, as does R. In general, a result tuple
starts when a tuple from L starts, or when a tuple fromR

ends. Analogously, a result tuple ends when a tuple from
L ends, or when a tuple from R starts. This gives rise to
four cases, as illustrated by the four result tuples shown
in the figure. Note that the second tuple in R cancels for
its validity period a portion of L, but does not impact the
second tuple in L, which it completely overlaps, due to
the -all semantics.

Result:

R:

L:

Figure 1. Sequenced difference-all exam-
ple.

The size of the output relation may still indicate sig-
nificant processing. As with sequenced difference, se-
quenced difference-all has a worst-case complexity of
l � r + l.

3.6. Sequenced Intersection and Intersection-All

As with difference, there are two variations of the
intersection operation: intersection and intersection-
all, analogous to the SQL constructs INTERSECT and

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)
1063-6382/02 $17.00 © 2002 IEEE

INTERSECT ALL. Intersection is a specialized form of
semi-join, one that requires that the operands be union-
compatible. This also holds for sequenced intersection:
L \T R = L T R, Hence, a separate implementation
of sequenced intersection is not necessary.

Intersection-all tracks the number of duplicates. If
a particular tuple appears five times in the LHS and
three times in the RHS, the result will contain three
copies of this tuple. Another way of viewing this is that
intersection-all removes the extra tuples from the LHS:
L \ALL R = L �ALL (L �ALL R). This tautology
also holds for sequenced intersection-all (tautologies on
conventional relational operators always apply to their
sequenced analogues) and thus intersection-all can be
implemented with difference-all.

4. Related Work

The work that relates to the topic of this paper
comes from three areas: (1) implementation of the non-
temporal semi-join, difference and anti-semi-join oper-
ators, (2) expression of sequenced versions of these op-
erators in SQL [Snodgrass 00] and (3) temporal algo-
rithms for standard joins [Soo et al. 94, Zurek 96].

Semi-join, difference and anti-semi-join receive scant
mention in the literature. Graefe classifies as the
so-called “one-to-one match operations” all the var-
ious joins [Mishra & Eich 92], left and right semi-
joins, left, right and symmetric outer-joins, left and
right anti-semi-joins, symmetric anti-join, intersection,
union, left and right differences and symmetric or anti-
difference [Graefe 93]. He goes on to state that “Since
all these operations require basically the same steps
and can be implemented with the same algorithms, it
is logical to implement them in one general and effi-
cient module.” [Graefe 93, pp. 104]. While this state-
ment holds for these non-temporal operators, implemen-
tation of their temporal analogues is more difficult, due
to period fragmentation.

A good summary of proposed temporal algo-
rithms is given by Zurek [Zurek 96]. The ma-
jority of previous work in temporal join evalua-
tion has concentrated on refinements of the nested-
loop [Segev & Gunadhi 89, Gunadhi & Segev 90], sort-
merge algorithms [Leung & Muntz 90] and partition-
based algorithms [Leung & Muntz 92, Soo et al. 94].

5. Approach

We now present implementations of the sequenced
semi-join, anti-semi-join and difference-all operations.
Because these operators are quite similar, many design
decisions apply to the implementations of all three. We

describe common characteristics before continuing to
the individual implementations.

Sequenced semi-join, sequenced anti-semi-join and
sequenced difference are similar to standard tempo-
ral joins. Therefore, we were able to base our im-
plementations for each of these operations on exist-
ing temporal join algorithms. We examined the well-
known nested-loop, sort-merge and hash join methods
[Mishra & Eich 92]. These techniques are used to select
matching tuples; our algorithms come into play in ma-
nipulating those tuples and in deciding which modified
tuples are to be added to the output relation.

Nested-loop joins are not popular because of their
poor performance. The additional memory requirements
in the operations we are addressing arise from the exis-
tence of temporal elements in the sequenced anti-semi-
join and sequenced difference operations. (A temporal
element is a set of non-overlapping time periods that
encapsulates all the time information for a particular
fact [Jensen et al. 92].) Temporal elements considerably
complicate memory handling as we shall see shortly. A
nested-loop-based implementation would need to main-
tain a number of temporal elements proportional to the
number of tuples in the relations, which is clearly not
feasible. Therefore we did not consider the nested-loop
approach as a basis for our implementations. Instead, we
focus on sort-merge join approaches, and touch briefly
on hash joins in Section 5.4.

5.1. Sequenced Semi-Join Implementation

Implementing sequenced semi-join is a trivial mod-
ification to any existing join algorithm. We include
the semi-join operation in order to contrast the sim-
plicity of this implementation with the challenges intro-
duced by the subtractive operations of anti-semi-join and
difference-all.

The semi-join property that we will contrast with
anti-semi-join is the concept of tuple-comparison
independence. When left and right join attribute fields
match, we compare their respective timestamps and pro-
duce an output tuple corresponding to the temporal over-
lap. This timestamp is completely unaffected by the
previously produced tuples; nor will it influence the
result of future comparisons. This tuple-comparison
independence property does not immediately carry to
the anti-semi-join operation or the difference-all oper-
ation. Tracking the influence of individual comparisons
is what provides added challenge to the subtractive op-
erations.

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)
1063-6382/02 $17.00 © 2002 IEEE

5.2. Sequenced Anti-Semi-Join Implementation

While sequenced anti-semi-join can be implemented
via a modification to existing temporal join algorithms,
the changes are not as straight-forward as those required
for sequenced semi-join. Figure 2 illustrates this opera-
tor applied to a matched tuple set from relations L and
R. This figure also shows the final result relation.

Result Result

Match 1

Match 2

Match 4

Relation A (result) tuples

A matched tuple in the L relation

Match 3

Relation L tuple

Relation R matching tuples

Figure 2. Sequenced anti-semi-join exam-
ple demonstrating result tuples.

From Figure 3 we see that a tuple produced by a par-
ticular comparison (Match 1) may contain time periods
that are not included in the correct result. Both previous
and future attribute-equivalent comparisons may remove
parts of this tuple’s time contribution. Hence, any given
tuple’s contribution to the output relation is dependent
on all other tuples with the same join-attribute value.

Result Result

Match 1

Relation A (result) tuples

Comparison results

Relation R matching tuples

A matched tuple in the L relation

Comparison
produces
a time period
that is not in
result set.

Relation L tuple

Figure 3. First comparison of our match
set.

We considered several possible solutions to this prob-

lem. These solutions fell into three general cate-
gories: 1) ignore dependence during overlap compar-
isons, thereby increasing the cost of post-processing;
2) handle dependence by modifying the left tuple’s
timestamp at the cost of implementing temporal ele-
ments; or 3) eliminate the dependence of a tuple’s contri-
bution on future comparisons (although past dependence
remains) at the cost of pre-processing. Note that we did
investigate the first two possibilities, but the details are
not presented here due to limited space.

5.2.1 Pre-processing Approach

We can remove the need for post-processing or dynamic
memory allocation by exploiting a simple property of
time: If RHS tuple r splits LHS tuple l (new periods
will be denoted as l1 and l2) and the RHS relation is
sorted primarily by the join attribute(s), then secondarily
by start-time, it is always the case that l1 cannot be split
further. Figure 4 demonstrates this property. The first
RHS tuple causes one output tuple to be generated. The
second RHS tuple moves the start time of the remaining
period to later. The third RHS tuple generates a second
output tuple and uses up the remaining timestamp from
the LHS tuple.

Relation A (result) tuples

Comparison result

Relation R matching tuples

Relation L tuple

A matched tuple in the L relation

Match 3

Match 2

Match 4

OUTPUT
TUPLE

OUTPUT
TUPLE

Match 1 Even though split occured,
L tuple remains one period long.

Figure 4. Handling evaluation dependence
via start-time sorting.

By capitalizing on this sorted overlap analysis, we
avoid the need for a temporal element on a split-
producing overlap, because we need retain only a single
period for future comparisons. This single period is eas-
ily retained by overwriting the original starting times-
tamp of l. The pseudo-code for this algorithm, again
assuming closed-open period definitions, is given in Fig-
ure 5. We see that sorting the RHS on start time elimi-
nates all unnecessary comparisons as well as removing
the need for extra memory or for result-relation process-
ing. The algorithm can judge if it is possible for future
RHS tuples to modify the LHS tuples; if start-time eval-

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)
1063-6382/02 $17.00 © 2002 IEEE

uation indicates no change is possible, inner loop pro-
cessing is halted.

match(l, r):
result.start l.start;
result.stop first(l.stop, r.start);
int x last(l.start, r.stop);
emit(l.explicit, result.start, result.stop);
l.start x;

Figure 5. Processing periods in sequenced
anti-semi-join.

We stress that time-attribute sorting is only required
on the RHS, not on the LHS. (However, both the LHS
and the RHS need to be sorted primarily on the join
attributes.) As with conventional sort-merge join, all
of the matching RHS tuples are (anti-)joined with each
LHS tuple independently. If the LHS is sorted, the
matching RHS tuples that need to be considered can be
reduced (halting comparisons when l’s endpoint is less
than or equal to r’s start point) [Soo et al. 94]. If the
RHS is small, the LHS is very large, and the result is ex-
pected to be small, then nested-loop may be more attrac-
tive. However, if the RHS is small then the cost to sort
it is proportionally small—hence, this pre-processing al-
gorithm may still be preferred.

5.3. Sequenced Difference and Difference-All
Implementation

Sequenced difference is equivalent to sequenced anti-
semi-join when the relations are union compatible.
Therefore we won’t discuss further the implementation
of sequenced difference. (Since sequenced intersec-
tion is equivalent to sequenced semi-join and sequenced
intersection-all can be expressed in terms of sequenced
difference-all we do not discuss implementation of ei-
ther of these operators.)

Sequenced difference-all must keep track of the num-
bers of tuples from both sides during each instance of
time. Figure 6 shows a graphical representation of the
sequenced difference-all operation. Here, two LHS tu-
ples match four RHS tuples on the explicit attributes.
The various overlapping tuples partition the time-line
into ten segments, each of which must have the correct
number of tuples in the result. One tuple results in the
first, sixth, eighth, and tenth segments, and two in the
second and seventh segments.

Because of the problem of having to maintain a po-
tentially large temporal element, our goal was to find an
algorithm that doesn’t require additional memory. The

Match 1

Match 2

Match 4

Match 3

Join−attribute equivalent tuples in L

Relation L tuple

Relation R matching tuples

Relation D (result) tuples

Figure 6. Sequenced difference-all.

technique we used for anti-semi-join, outputting the ear-
lier period whenever a split occurs in a temporal element
on the left side, can’t be used here, because we must
also maintain a temporal element for each of the tuples
on the right side, as both the LHS and RHS tuples can
be fragmented. Initially we investigated a temporal el-
ement approach that did not require additional memory.
However, we determined that this approach was overly
complicated and instead adapted the anti-semi-join pre-
processing technique.

We observed in Section 5.2 that sorting the RHS
by attribute and sub-sorting the value packets by start
time was useful for the anti-semi-join implementation.
Expanding on this idea, we investigated sorting both
sides in an attempt to compensate for the fact that tu-
ples on the left and right could split into multiple pieces
during the course of the algorithm.

Sorting both sides in the same way does not solve
the problem, but sorting both by attribute and then sub-
sorting the RHS tuples by increasing start time and the
LHS by decreasing stop time does the job. Due to the
sorting of the RHS tuples we achieve the same benefits
as in the anti-semi-join. Thus, whenever a LHS tuple
is split into two segments the one with the earlier time
stamps can be added to the output run immediately since
the RHS sorting ensures that no other tuple can alter it.
The sorting of the LHS tuples by stop time means that
whenever a RHS tuple is split, the resulting tuple with
the latest timestamps can be discarded since no other
LHS tuple can affect it.

Figure 7 demonstrates the difference-all computation
performed on properly sorted left and right hand rela-
tions. The first LHS tuple splits the first RHS tuple into
two pieces, r1 and r2. Due to the sorting of the LHS
relation the later resulting piece, r2, can be discarded.
Since the start-time of the first RHS tuple did not change
the RHS is still sorted by ascending start-time (see R’).
Similarly, when r1 splits the second LHS tuple into two

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)
1063-6382/02 $17.00 © 2002 IEEE

segments, l1 and l2, l1 can be immediately written to the
output run since no other RHS tuple can possibly affect
it. Notice that the sorting of the LHS (see L”) is pre-
served since the stop time of the second LHS tuple has
not changed. In fact, the only way that the end-time of
a LHS tuple l can change is if a RHS tuple r overlaps
the end of l. Thus l would be trimmed to the remaining
segment, but this could be written to the output run since
r has the earliest start-time of any RHS tuple. Similarly,
the remainder of r can be discarded since l has the latest
end-time of any LHS tuple. Thus the left and right hand
sortings are preserved in all cases and so can be relied
on as an invariant.

R:

R’:

L’:

L:

L’’:

r1

l2

R’’:

Figure 7. Handling splitting correctly in se-
quenced difference-all

Figure 8 shows how the timestamps of a pair of tu-
ples, l and r, that match on all the explicit attributes, are
manipulated. Interestingly, the only change from Fig-
ure 5, for sequenced anti-semi-join, is the fourth line
here, in which the stop time of the RHS tuple is altered.

match(l, r):
result.start l.start;
result.stop first(l.stop, r.start);
int x last(l.start, r.stop);
r.stop first(l.start, r.stop);
emit(l.explicit, result.start, result.stop);
l.start x;

Figure 8. Processing periods in sequenced
difference-all.

5.4. Summary

These approaches are also amenable to hash-based
joins, with some care. The LHS and RHS are each
hashed according to the join attribute(s). Then a new
phase reads each of the RHS partitions and sorts it ap-
propriately. The join phase then reads each LHS par-
tition fully, sorts it appropriately, then merges it block
by block with the corresponding RHS partition. Thus
the duality that Graefe, Linville and Shapiro previously
observed with conventional equi-join [Graefe et al. 94]
also applies to subset operators. A critical change is that
an extra pass is required over the RHS to sort each par-
tition. This extra pass will probably render hash-based
sequenced subset operators less efficient than their sort-
based equivalents.

We complete this discussion with two related topics,
sort order and temporal coalescing.

The sequenced semi-join operator requires sorting
only by the join attribute. The result retains that sort
order. The sequenced anti-semi-join requires sorting the
LHS on the join attribute; the result will also retain that
order. Finally, the sequenced difference-all requires the
LHS to be sorted by attribute and then by descending
stop time. The result will be sorted by attribute, but not
necessarily by stop time.

Temporal coalescing [Böhlen et al. 96,
Snodgrass 00] merges value-equivalent tuples whose va-
lidity periods meet or overlap, and is similar to duplicate
elimination. Coalescing is not applicable to sequenced
difference-all nor intersection-all, because duplicates
impact the correctness of these operators. However,
coalescing of either or both sides will not impact the
correctness of sequenced semi-join, anti-semi-join,
intersection, nor difference, and can significantly reduce
their execution cost. (This is a temporal analogue of
projecting out the join attributes during the sorting of
the RHS.) The result will be coalesced if the LHS is
already coalesced, except for sequenced semi-join, in
which the result may not be coalesced even if both the
LHS and RHS are coalesced (see Section 3.2).

6. Algorithm Performance

We implemented sequenced semi-join, sequenced
anti-semi-join and sequenced difference-all. In previous
work [Li et al. 01], we showed that skew in sort-merge
join needs to be handled carefully, for both correctness
and efficiency. Since the operators in the present paper
perform equality matching only on the join attributes,
skew is definitely present here. We based our sequenced
subset implementations on “spooled cache with multiple
runs” (SC-n), a variant of sort-merge join that utilizes a

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)
1063-6382/02 $17.00 © 2002 IEEE

small (32KB) cache to avoid excessive rereading when
tuples associated with a particular join attribute value are
present both in main memory and on disk. (We note in
passing that this is not an issue with the modified hash-
join approach mentioned in Section 5.4.) In our pre-
vious work, SC-n was shown to exhibit excellent per-
formance, while being much simpler than some of the
alternative approaches.

The sorting of the RHS complicates the operation of
the tuple cache. Normally tuples could be put into the
cache in any order, as long as each LHS tuple is joined
with each applicable RHS tuple at some point. Since
the sort order is critical to the correctness of the subset
join computation, this order must be preserved. When
a new LHS tuple is considered, it must be joined first
with the cache and then with the RHS tuples in the runs.
Furthermore, when tuples are be put into the cache, all
the right hand runs must be rewound and added to the
cache so that later tuples which will need to join with
the cache can join with all the applicable tuples in order.

We implemented both the Grace and the Hybrid
[Mishra & Eich 92] variants of each of these algorithms,
for a total of six algorithms. We did not apply the
optimization of projecting out the join attributes and the
ValidTime attribute of the RHS for sequenced semi-join
and anti-semi-join, which of course would reduce the
I/O cost in writing out the intermediate sorted relation
and subsequently reading it back in.

The experiments were performed using the TIMEIT
system, which is a software package [Kline & Soo 98]
developed to support the prototyping of temporal
database components. Some parameters are fixed for all
the experiments. They are shown in Table 1(a). In all test
cases, the generated relations were randomly ordered.

Parameter Value
memory size 1MB

cache size 32KB
cluster size 32KB
page size 1KB
tuple size 16 bytes

join attribute 4 bytes

Metric Conversion
sequential I/O cost 1 msec
random I/O cost 10 msec

attribute compare 20 nsec
attribute move 20 nsec

Table 1. System characteristics and cost
metrics.

TIMEIT collects a variety of metrics, shown in Ta-
ble 1(b); both main memory operations and disk I/O op-
erations were measured. TIMEIT then combines these
into a single metric of elapsed time in seconds using
the stated weights, thereby not tying the measurements
to the underlying processor. We emphasize that this is
a computed metric, not actual wall clock time, and so
does not capture all of the subtle differences of the algo-
rithms. However, such an approach allows us to under-
stand exactly how each of these metrics is affected by
the parameters and algorithms.

Throughout the course of these experiments we fixed
several parameters of the sample databases. Each tuple
consisted of 16 bytes of which eight were used by the
two integer timestamps. The other eight bytes consisted
of two integer-sized explicit attributes. Only the first ex-
plicit attribute was used as the joining attribute. In all of
these operations, the arity of the resulting tuples is equal
to that of the tuples in the left-hand relation.

We tested the performance of these operations in a
series of experiments that varied the main memory size,
tuple fragmentation, LHS cardinality and RHS cardi-
nality. Many sample databases were generated to test
the accuracy of the algorithms and our understanding of
their behavior. In the interest of space, these results are
not shown, as the significant behavior can be character-
ized by the following analysis.

We used two LHS relations and two RHS relations,
carefully designed to ensure identically-sized resulting
relations, so that the I/O costs of writing out the result
are the same for all six algorithms. Both LHS relations
require 1 megabyte, with 65536 tuples. Both RHS rela-
tions require 16 MB and contain 1M tuples. The result
is always 16MB, with 1M tuples. The tuple order of all
input relations was randomized before the subset opera-
tor was applied.

The first LHS-RHS relation pair was used with semi-
join and anti-semi-join. The LHS has unique join at-
tribute values and each tuple has a lifespan of 950
chronons. The RHS has 16 tuples for each join attribute
value, generated by taking the LHS 950-chronon times-
pans and creating a series of evenly spaced and sized
tuples within each timespan (as shown in Figure 9, with
three rather sixteen RHS tuples shown). Thus each tuple
from the 1MB relation would be split into 16 parts.

L:

R:

Figure 9. LHS and RHS relations used in
testing semi-join and anti-semi-join.

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)
1063-6382/02 $17.00 © 2002 IEEE

The second LHS-RHS relation pair was used with
difference-all. The LHS is in groups of eight tuples with
the same join attribute value (to test handling of dupli-
cates), all with a lifespan of 996 chronons. This implies
8,192 unique join attribute values.) The RHS has 16� 8
tuples for each join attribute value. The first set of 16 are
in the position shown in the previous figure, with subse-
quent sets of 16 offset by 4 chronons (see Figure 10,
again, with just three tuples shown). The difference-all
has to contend with the many fragments generated; the
result will end up with 16�8 short fragments of various
sizes, ranging from four to 32 chronons in length.

L:

R:

Figure 10. LHS and RHS relations used in
testing difference-all.

Figure 11 shows the total computation time (I/O and
CPU) for the six algorithms, varying the size of main
memory from 0.5MB to 16MB (recall that the LHS re-
lation is 1MB, the RHS relation is 16MB and the result-
ing relation is 16MB). Note that the y-axis starts at 65
seconds; both axes are linear. This graph shows a clear
correlation between the increasing main memory and
decreasing computation time. In smaller memory con-
figurations the data must be read and sorted in smaller,
more numerous, segments. Reading and writing these
smaller segments requires more random I/O than read-
ing and writing larger, more continuous runs. The cost
of disk seeks accounts for most of this difference, as
shown in Table 2. This table gives, for the smallest and
largest memory configurations, the number of seeks, the
contribution to the time of those seeks and the time of
the rest of the processing (I/O and CPU). After factoring
out the number of seeks, there is much less difference in
the performance of these algorithms between these two
memory configurations.

Figure 12 is a graph of the post-sorting non-I/O costs
at various memory sizes (note that here the y-axis starts
at 0 seconds). At first it would seem that this graph
should be nearly flat because the computation involves
the same data regardless of the size of main mem-
ory. However, there is a large discrepancy between se-
quenced difference-all and the semi and anti-semi-joins,
ranging from 1.2 seconds at the large memory to more
than 9 seconds at the small memory (again, for Grace).

70

80

90

100

110

120

130

0.5 1 2 4 8 16

T
ot

al
 C

om
pu

ta
tio

n
T

im
e

(s
ec

)

Memory Size (MB)

Grace Difference-All
Grace Semi-Join

Grace Anti-Semi-Join
Hybrid Difference-All

Hybrid Semi-Join
Hybrid Anti-Semi-Join

Figure 11. Total time over varying main
memory.

0

2

4

6

8

10

12

0.5 1 2 4 8 16

P
os

t S
or

tin
g

C
P

U
 T

im
e

(s
ec

)

Memory Size (MB)

Grace Difference-All
Hybrid Difference-All

Grace Semi-Join
Hybrid Semi-Join

Grace Anti-Semi-Join
Hybrid Anti-Semi-Join

Figure 12. CPU costs over varying main
memory.

In the data used for difference-all, there are eight dupli-
cate values for each explicit attribute in the LHS (in the
data for semi-join and anti-semi-join, there are no such
duplicates in the LHS). All six algorithms effectively do
a nested-loop join over the duplicate tuples, 1�16 = 16
LHS-RHS tuple pairs for semi-join and anti-semi-join
and 8�128 = 1024 pairs for difference-all. This implies
that for each LHS tuple, for these data sets, difference-
all must examine 8 more RHS tuples. This completely
explains the separate curve for difference-all.

We conclude from these experiments that the domi-
nant cost of all of these algorithms is the sorting of both
argument relations and outputing the resulting tuples.
The algorithms consist primarily of a single scan of the
two input relations, with minor variations on the seek
time and CPU time required. The sequenced extensions
do not incur additional intermediate I/O, nor significant
additional processing time.

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)
1063-6382/02 $17.00 © 2002 IEEE

0.5MB 16MB
Algorithm Seeks Seek Time Other Time Seeks Seek Time Other Time

(#) (secs) (secs) (#) (secs) (secs)
Grace Semi-Join 1853 18.5 71.0 9 0.1 71.5
Hybrid Semi-Join 4768 47.7 67.5 42 0.4 69.4
Grace Anti-Semi-Join 1861 18.6 72.0 9 0.1 71.0
Hybrid Anti-Semi-Join 4795 48.0 68.5 42 0.4 70.0
Grace Difference-All 1865 18.7 81.3 9 0.1 72.7
Hybrid Difference-All 4766 47.7 75.8 42 0.4 70.6

Table 2. Contribution of disk seeks during merge phase to overall time.

7. Summary and Future Work

In this paper we have discussed six temporal database
operations: sequenced semi-join, sequenced anti-semi-
join, sequenced difference, sequenced difference-all,
sequenced intersection and sequenced intersection-all.
The challenge is in dealing with the fragmentation of the
left-hand periods of validity. In the worst case, a single
tuple from the left-hand side can be fragmented into a
number of pieces exceeding the cardinality of the right-
hand size relation; we wish to permit this computation
to run in restricted main memory buffers.

We showed how to express in SQL three of
these operators, sequenced semi-join, anti-semi-join
and difference-all; the other three can be imple-
mented via the first three. For sequenced anti-
semi-join and difference-all, the SQL statements are
quite complex, requiring three or four joins and sub-
queries [Snodgrass 00]. Hence, we considered how
these operators could be implemented inside a temporal
DBMS.

We provided new algorithms for the three base op-
erators, exploiting the sort order to emit result tuples as
they are produced and to retain the needed state in the
existing buffers. We implemented these three operators
and measured their performance under a variety of con-
ditions. In all cases, the execution time was that of a
single conventional join, dominated by the cost of the
sort, the initial read scane and the the cost of outputing
the result tuples.

Our implementations for these operations are based
on sort-merge join. However, our approach is not en-
tirely dependent on the partitioning method used to col-
lect tuples together [Graefe 93]; hash joins could be
modified to implement these three algorithms. It would
also be useful to consider parallel implementations of
these operators.

It may be possible to adapt the difference-all ap-
proach to support intersection-all. The advantage of do-
ing so is that two scans of the LHS would not be neces-
sary, nor would writing out an intermediate relation, as

is the case when intersection-all is implemented via two
difference-all operations.

Finally, it would be interesting to implement bitem-
poral versions of these operators, sequenced in both
valid and transaction time. [Böhlen et al. 00, pp. 449-
451] gives an example in which bitemporal difference
between a single LHS tuple and two RHS tuples gener-
ates eleven fragments in the result. It is not clear whether
our approach of separate sort orders would apply; there
is some theoretical evidence [Chomicki & Toman 98]
that it would not.

8. Acknowledgements

We thank Dengfeng Gao and Stephen Kobourov for
their help. This work was supported in part by NSF
grants EIA-0080123 and IIS-0100436 and by a grant
from the Boeing Corporation.

References

[Allen 83] J. F. Allen, “Maintaining Knowledge about
Temporal Intervals,” Communications of the
ACM 26(11), pp 832–843, 1983.

[Bettini et al. 98] C. Bettini, C. E. Dyreson,
W. S. Evans, R. T. Snodgrass and X. S. Wang,
“A Glossary of Time Granularity Concepts,”
in Temporal Databases: Research and
Practice, O. Etzion, S. Jajodia and S. Sripada
(eds.), Springer, pp. 406–413, 1998.

[Böhlen et al. 96] M. H. Böhlen, R. T. Snodgrass
and M. D. Soo, “Coalescing in Tempo-
ral Databases,” in the Proceedings of the
International Conference on Very Large
Databases, pp. 180–191, Mumbai (Bombay)
India, September, 1996.

[Böhlen et al. 00] M. H. Böhlen, C. S. Jensen and
R. T. Snodgrass, “Temporal Statement Mod-

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)
1063-6382/02 $17.00 © 2002 IEEE

ifiers,” ACM Transactions on Database Sys-
tems, 25(4):407–456, December 2000.

[Chomicki & Toman 98] J. Chomicki and D. Toman,
“Temporal Logic in Information Systems,”
chapter 3 of Logics for Databases and Infor-
mation Systems, J. Chomicki and G. Saake,
editors, Kluwer, pp. 31–70, 1998.

[Edara & Gadia 93] M. Edara and S. Gadia. “Updates
and Incremental Recomputation of Active Re-
lational Expression in Temporal Databases,”
Proceedings of the International Workshop on
an Infrastructure for Temporal Databases, pp.
O1–O27, 1993.

[Etzion et al. 93] O. Etzion, A. Gal and A. Segev.
“Temporal Active Databases,” Proceedings of
the International Workshop on an Infrastruc-
ture for Temporal Databases, pp. EE1–EE13,
1993.

[Graefe 93] G. Graefe, “Query Evaluation Techniques
for Large Databases,” ACM Computing Sur-
veys 25(2), pp. 73–170, 1993.

[Graefe et al. 94] Goetz Graefe, Ann Linville and
Leonard D. Shapiro, “Sort vs. Hash Revis-
ited,” IEEE Transactions on Knowledge and
Data Engineering 6(6):934–944, December,
1994

[Gunadhi & Segev 90] H. Gunadhi and A. Segev. “A
Framework for Query Optimization in Tem-
poral Databases,” Proceedings of the 5th In-
ternational Conference on Statistical and Sci-
entific Database Management, pp. 131–147,
1990.

[Jensen et al. 92] C. S. Jensen, J. Clifford, S. K. Gadia,
A. Segev and R. T. Snodgrass. “A Glossary
of Temporal Database Concepts,” ACM SIG-
MOD Record 21(3), pp. 35–43, 1992.

[Kline & Soo 98] N. Kline and M. Soo, “The
TIMEIT Temporal Database Testbed,” 1998.
www.cs.auc.dk/TimeCenter/soft-
ware.htm.

[Leung & Muntz 90] T. Y. Leung and R. Muntz,
“Query Processing for Temporal Databases,”
in Proceedings of the 6th International Con-
ference on Data Engineering, Los Angeles,
California, February 1990.

[Leung & Muntz 92] T. Y. Leung and R. Muntz, “Tem-
poral Query Processing and Optimization in

Multiprocessor Database Machines,” in Pro-
ceedings of the Conference on Very Large
Databases, August 1992.

[Li et al. 01] W. Li, D. Gao and R. T. Snodgrass, “Skew
Handling Techniques in Sort-Merge Join,”
TIMECENTER Technical Report TR-62, June,
2001.

[Melton & Simon 93] J. Melton and A. R. Simon. Un-
derstanding the New SQL: A Complete
Guide, Morgan-Kaufmann Publishers, San
Francisco, CA, 1993.

[Mishra & Eich 92] P. Mishra and M. H. Eich. “Join
Processing in Relational Databases,” ACM
Computing Surveys, 24:63–113, 1992.

[Segev & Gunadhi 89] A. Segev and H. Gunadhi,
“Event-Join Optimization in Temporal Rela-
tional Databases,” in Proceedings of the Con-
ference on Very Large Databases, pages 205–
215, August 1989.

[Snodgrass 87] R. T. Snodgrass, “The Temporal Query
Language TQuel,” ACM Transactions on
Database Systems, (12)2:247–298, June,
1987.

[Snodgrass 00] R. T. Snodgrass, Developing Time-
Oriented Database Applications in SQL,
Morgan Kaufmann Publishers, San Francisco,
2000.

[Snodgrass et al. 96] R. T. Snodgrass, M. H. Böhlen,
C. S. Jensen and A. Steiner. International Or-
ganization for Standardization Proposal ANSI
X3H2-96-501r1: “Adding Valid Time to
SQL/Temporal,” 1996.

[Soo et al. 94] M. D. Soo, R. T. Snodgrass and
C. S. Jensen. “Efficient Evaluation of the
Valid-Time Natural Join,” Proceedings of the
Tenth IEEE International Conference on Data
Engineering, pp. 282–292, 1994.

[Tansel et al. 93] A. Tansel, J. Clifford, S. Gadia, S. Ja-
jodia, A. Segev and R. T. Snodgrass. Tempo-
ral Databases: Theory, Design, and Imple-
mentation, Benjamin/Cummings Publishing
Company, 1993.

[Zurek 96] T. Zurek, Parallel Temporal Nested-Loop
Joins. Ph.D. Dissertation, Dept. of Computer
Science, Edinburgh University, 1996.

Proceedings of the 18th International Conference on Data Engineering (ICDE�02)
1063-6382/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

