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Abstract 
In  valid-time indeterminacy, it is  known that an event stored 

in  a temporal database did in  fac t  occur, but it is not known 
ezactly when the event occurred. W e  present an eztension of 
the tuple-timestamped temporal data model, called the the pos- 
sible chronons data model, t o  support valid-time indetrrtninncy 
In the possible chronons data model, each event is represented 
with a set of possible chronons, delimiting when the event might 
have occurred, and a probability distribution over that set .  W e  
eztend the TQuel query languaye with constructs that specify 
the user’s credibility in  the underlying valid-time data and the 
user’s plausibility i n  the relationships among that data. W e  
outline a formal tuple calculus semantics,  and show that this 
semantics reduces t o  the determinate semantics on determinate 
data.  

1 Overview 
A valid-time database recorcls the history of a i l  enterprise 

[Jensen et  al. It associates with each event. a times- 
tamp indicating when that. event. occurred. Oft.en a user knows 
only approximately when an everkt Iiappened. Fur iilstailce, she 
may know that  it happened “between 2 PM and 4 I’M,” “on 
Friday,” “sometime last week,” or “around the middle of the 
month.” These are examples of valid-time indeterminacy. In- 
formation that  is valid-time indeterminate can be characterized 
as “don’t know when” information, or more precisely, “don’t 
know ezactly when” information. This kind of information has 
various sources, including the following. 

19921. 

granularity - In perhaps most cases, the granularity of the 
database does not match the precision to which an event 
time is known. For example, an event time known to within 
one day and recorded on a system with tiniest,anips in the 
granularity of a microseconcl happened sometime during 
that day, but during which microsecond is unknown. 

should be able to  control, via query language constructs, the 
amount of indeterminacy present in derived information; and 
the query evaluator should accommodate valid-time indetermi- 
nacy in its processing. Query evaluation efficiency should re- 
main high iq the presence of valid-time indeterminacy, and it 
should not be affected at all i n  its absence. 

This docunient describes the possible chronons data  model. 
The model adds valid-time indeterminacy to  TQuel [Snodgrass 
19871. TQuel is a strict superset of Quel, the query language 
for Ingres [Stonebraker et al. 1976). TQuel has a complete, 
formal semantics which we extend to support valid-time inde- 
terminacy. We could have extended SQL [Melton 19901. While 
there are numerous proposed temporal extensions of SQL, none 
of these extensions have a complete, formal semantics. In ad- 
dition, the temporal database research community has yet to  
adopt a common model for research purposes. Since Que1 is 
equivalent to SQL in expressive power, our ideas can be applied 
to both languages. 

The next section introduces an example that  will be used 
throiighout the paper. We then examine the representation of 
valid-time incleterniiiiacy. After that, we explore what it means 
to retrieve information from a database with valid-time indeter- 
minacy. Emphasis i s  placed on providing a simple and intuitive 
retrieval method. We outline syntactic and semantic extensions 
to TQuel to support retrieval of valid-time indeterminate infor- 
mation. The final sections trace related work, summarize our 
approach, and discuss future work. 

2 Motivating Example 
An example valid-time database is shown in Figure 1. This 

database models a single company with two warehouses and 
one airplane factory. ‘The warehouses supply parts to  the fac- 
tory. Each warellouse keeps its own Sent relation, which is a 
history of parts shipnients sent from the warehouse to the fac- 
tory. ‘l’lie factc)ry niaintains the In-Production relation, which 
is a production history of airplanes built by the factory. 

lations and derived relations. 

dating techniques - Many dating techniques are inherently 
Valid-time indeterminacy naturally arises in both base re- 

It may surprise the reader to 
imprecise, such as radioactive and Carbon-14 clnling. 

future planning - Projected completion dates are often 
inexactly specified, i.e., the project will complete three to 
six months from now. 

unknown or imprecise event t imes - In general, event 
times could be unknown or iinprecise. For exaniple, assume 
that  we do  not know when an individual was born. The 
individual’s date  of birth could he recorded i n  IIIC clatabase 
as either unknown (they were horn betwe~m I I I I ~  dncl tlie 
beginning of time) or iniprccise (Ilicy were LOI.II I J ( .LW~~I I  
now and 150 years ago). 

Temporal database rnanageiiieiit systenis slioul~l provicle 
support for valid-time incleterniinacy. In particiiliir, users 
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note that the In-Production base relation is a valid-time in- 
determinate relation. This is because the granularity of the 
In-Production relation is a month while that  of the Sent and 
Received relations are just a single day (we are assuming an  
underlying timestamp granularity of one day). A month is an 
indeterminate value that represents a set of possible days. We 
know that. product.ion on an airplane started on some day in the 
inclicated month, but we can’t, be sure which one. For this exam- 
ple, we assume that production is equally likely t o  have started 
or cnrlecl during any clay i n  an indicated month; although, in 
geiieral we allow nonunifwni clist.ributions. 

l‘hr Keceiued relation is not niaintained by either the fac- 
t,ory or a warcllouse; rather it is a derived relation, the prod- 
uct. of educat.ecl guesswork. Parts are shipped by truck from a 
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Sent-by- Trump(Lot# ,  Par t )  
II Valid time 

Lot# P a r t .  
23 wing strut  
24 engine 

(at)  
May 6 
June 4 

Sent-by- Gr i f in (Lot# ,  Par t )  
( 1  Valid time 

Lot# Part  
30 wing strut  
31 wing strut  

(at) 
M ay 26 
June 9 

Model Serial# 
Centurion AB33 
Cutlass z19 
Centurion AB34 
Caravan FA2K 

Received( Warehouse,  Lot#,  Par t )  

Valid time 
(from) (to) 
March J une 
June July 
June August 
April May 

Warehouse 
h u m p  
Griffin 
Trump 24 engine 
Griffin I 31 I win; strut 

Lot# Part  
23 wing s h u t  
30 wina s h u t  

Valid time 
(at) 

May 10 - May 29 ei 
May 30 - June 18 e2 
June 8 - June 27 e3 
June 13 -July 2 e4 

Figure 1: An hist.orical database 

warehouse and arrive a t  the factory no earlier than ~1 and no 
later than 24 days after they leave a warehouse. The Received 
relation is computed from each warehouse’s Sent  relation by 
adding a 4-24 day “fudge factor” to  the valid-time attribute. 
The valid times in the Received relation are indeterminate; that  
is, we know roughly when the parts were received, but we do 
not know exactly which day they were received. We will assume 
that each possible day indicated by the recorded raiige of days 
is equally likely. For example, the batch of engines received 
from the Trump warehouse arrived on one of the days in the set 
{June 8, June 9, . . . , June 27}, but we have no reason to favor 
one day rather than another. 

In a database that supports valid-time indeterminacy, 
queries can make use of indeterminate information. Suppose 
that a few of the Centurion airplane owners have reported 
a faulty wing strut. Naturally, we would like to query the 
database to  determine which warehouse(s) supplied the defec- 
tive parts and, specifically, which lots are implicated (we give 
such a query in Section 5). In TQuel with valid-time irideterini- 
nacy, we could query to  determine which received shipnient of 
wing struts “overlaps” the procluclion of a Centurion airplane. 
Overlap is the operation of temporal intersection. 

There are two stages to determining an answei to a query. 
The first stage retrieves the data  that is relevant to lhe query. 
The second stage constructs an answer that satisfies the con- 
straints specified in the query. We provide separate controls for 
each stage. 

Ronge credibility changes the information available to query 
processing. For instance, given a uniform distribution assump- 
tion, it is unlikely that production on the Centurion seiial num- 
ber AB33 began early in March; but more likely that it started 
by late March. A typical user might be interested i n  only those 
production times which are likely, late March to early June for 
the Centurion, ignoring those tliat are unlikely. 111 the possi- 
ble chronons data  model, the user can express this preference 

by selecting an appropriate range credibility value. The chosen 
range credibility potentially modifies every interval in a valid- 
time relation, restricting the range of each interval. Effectively, 
non-credible starting and terminating times are eliminated to  
the chosen level of credibility during query processing, allowing 
the user to control the quality of the information used in the 
query. 

Ordering plausibility controls the construction of a n  answer 
to the query using the pool of credible information. For in- 
stance, a Centurion owner could query which shipment of wing 
struts plausibly arrived during production of his or her plane. 
Intuitively such a query relaxes the constraints on the relation- 
ship between the production times and the day a shipment was 
received from “absolutely sure of overlap?” to  “is i t  probable 
that they overlap?” or even to “is it even remotely possible 
that they overlap?”. The user selects the kind of overlap that 
she or he requires by setting an appropriate ordering plausibil- 
ity value. It is probable that lot number 31 from the Griffin 
warehouse was received during production the Centurion with 
serial number AB33, but it is impossible to be absolutely sure 
that it did. 

We believe that there is a natural division between indeter- 
minacy in the dataand indeterminacy in the query. The support 
for valid-time indeterminacy that we add to  TQuel allows the 
user to control both kinds of indeterminacy. Range credibility 
massages the information from which a plausible answer to the 
query is constructed. 

3 Extending the Data Model with In- 
determinacy 

In this section, we discuss how valid-time indeterminate 
events and intervals are represented in the data  model. 
3.1 Time 

In t,he temporal dat.abase conirnunity, two basic time mod- 
els have been proposed: the continuous model, in which time 
is viewed as being isomorphic to the real numbers, with each 
real nuniber corresponding t.o a ‘Lpoint” in time, and the dis- 
crete model, in which time is viewed as being isomorphic to 
the integers [Cliflord SL Tansel 19851. In the discrete model, 
the continuous hie- l ine is partitioned into line segments. Each 
segment is called a chronon [Ariav 1986, Clifford & Rao 19871. 
A chronon is the smallest duration of time that  can be repre- 
sented. We choose to use the discrete model. 

We do not assume a specific granularity or chronon size; 
a chronon may be of any duration (e.g., nanoseconds, years, 
Chinese imperial dynasties). We believe that specifying the 
granularit,y should be left to the implementation rather than 
fixed in the data  model. Our data  model supports only a single 
chronon size, although multiple granularities can be handled by 
representing the indeterminacy explicitly. 

We assume that. every event occurs a t  a point in time. Be- 
cause we are using a discrete model, a chronon represents a line 
segnient rather than a point. Hence, we can only record that 
an event occurred during a particular chronon. Two events 
that  occur during the same chronon may still occur a t  different 
t imes .  
3.2 Indeterminate Events 

An event is determinate if it is known when (i.e., during 
which chronon) it occurred. A determinate event cannot overlap 
two chronons. If it is unkiiown when an event occurred, but 
known t,hat it did occur, then the event is indeterminate.  The 
indet.erminacy refers t.0 the t ime  when the event occurred, not 
whet.her the event. occurred or noL. 1ndet.erminate events do not 
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I 

Valid time 

sg Griffin electrical May 31 
s7 Trump 

Figure 3: Examples of value incthpleteness 

i 
i 

.‘I 

’ 25 ‘ 50 75 ’ 25 50 75 
p.m.f. c. d. f. 

Figure 2: A “probably early” distribution 

model the situation where it is unknown if an event occurred a t  
all. 

An indeterminate event is described by a l o u w  stcppo+f 
chronon, an  upper rupport chronon, and a probability mass 
function (p.m.j.1. The support chrononsdeliniit wheii the event 
occurred; i t  occurred no earlier than the lower support chronon 
and no later than the upper support chronon. Betwwn h e  s u p  
port chronons is a period of indeterminacy. The period of inde- 
terminacy is a contiguous set of possible chronons. The event 
occurred during some chronon in this set, but during which is 
unknown. We use a. to denote the lower support chronon for 
the indeterminate event a, and a* to denote the upper support 
chronon. 

In some situations not all the possible chronons are equally 
likely. For instance, it  could be that the event most likely h a p  
pened during the earliest chronon in the period of indetermi- 
nacy. The probability mass function gives the probability that 
the event occurred during each chronon. In the terrniiiology of 
probability theory, this distribution is the density firnction for 
the event random variable. For an indeterminate event a, we 
define its p.m.f., Pa, by 

Pa(i)  = Pr[a = i ]  i E Z 

where Pr[a = i] is the probability that the event occurred dur- 
ing chronon i. All probability mass functions are considered to 
be independent; we make no provisions for joint, marginal, or 
dependent density functions. Note that, because we adopted 
the discrete model of time, a p.m.f. is a discrete, rather than a 
continuous, function. Figure 2 depicts a “probably early” mass 
function. The probability mass function for an indeterminate 
event is supplied by the user; the default distributioii is uniform 
probability. For example, the mass function depicted in Figure 2 
might illustrate the probability that a performer is “gonged” on 
The Gong Show (the performance is likely to end early). We 
will sometimes write the indeterminate event a as ( [a . ,a*] ,Pa) .  

A useful function derived from the probability mass function 
is the cumulative density function (c.d.f.), which is defined to 
be: 

Fa(i) = Pr[a 5 i ]  = P ~ ( I ; ) .  
k l i  

Intuitively, for each chronon the c.d.f. measures the probability 
that the event occurs sometime before o r  during a’clironon. 
Figure 2 shows the c.d.f. for the “probably early“ p.m.f. 

While the terminology used in the possible chronons data  
model suggests a difference between indeterminate and deter- 
minate events, it is instructive to note that  indeterminate events 
can be used to model determinate events. A determinate event 
is modeled by an indeterminate event with a set of possible 
chronons that contains a single chronon. In this case, the  prob- 
ability that the event occurred during that  single chronon is 
1. 

3.3 Indeterminate Intervals 
An interval bounded by indeterminate events (called the 

starting and terminating events) is termed an  indeterminate 
interval. An indeterminate interval could start during any 
chronon in the set of possible chronons of the starting event. 
Likewise, the indeterminate interval could end during any 
chronon in the set of possible chronons of the terminating event. 
Since it is unknown precisely when the starting or terminating 
events happen, it followathat it is unknown precisely when an 
indeterminate interval begins or ends. 

An indetermirrate interval represents a set of porrible inter- 
vals, one of which is the “real” interval, but which is unknown. 
A single possible interval is obtained by choosing one possible 
chronon from each bounding indeterminate event’s set of pob 

sible chronons. Every combination of chronons in the starting 
and terminating events’ set of possible chronons is in the set of 
possible intervals. 

For every indeterminate interval, every member of the set 
of possible chronons for the starting event must be before every 
member in the set of possible chronons in the terminating event. 
This ensures that every possible interval in an  indeterminate 
interval is a valid interval. That is, a possible interval cannot 
terminate before it starts, as might happen if the sets of possible 
chronons overlapped. There is one exception to  this maxim; the 
sets of possible chronons in the bounding events can overlap on 
a single chronon. As a result, each possible interval must span 
a t  least one chronon, and some possible intervals might span 
only that single chronon. 

Thus far we have only considered indeterminate intervals 
bounded by indeterminate events. What of indeterminate in- 
tervals that have determinate events as one or both bounding 
events? Since indeterminate events can be used to  model de- 
terminate events, no special provisions are needed to handle 
determinate bounding events. 

3.4 Other Kinds of Indeterminacy 
In the possible chronons da t a  model, valid-time indeter- 

minacy is orthogonal to other sources of incompletenam (c.f., 
[Motro 1990)). In particular, it  can peacefully coexist with value 
incompletenerr, where the value of an attribute (as o p p d  to 
a timestamp) is not fully known. For example, in the Received 
relation, we may be shipped a part which we have yet to  iden- 
tify (ss in Figure 3), has been partially identified (de restricts 
the kind of part to belong to the specified class of parts), or 
has been narrowed down to a set of possibilities (a,). While 
there are approaches that combine temporal and value incom- 
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pleteness (e.g., [Gadia et  al. 1992]), we advocate separating 
the various kinds of indeterminacy, so that useis can choose the 
combination that  is most appropriate for their application. 

We turn now from the data iiiodel to the query semantics. 

4 Review of TQuel 
We assume that  the reader is familiar with TQuel and the 

tuple calculus; we provide a quick review of TQuel’s retrieve 
statement. The interested reader will find many examples as 
well as a complete description of the syntax and semantics else- 
where [Snodgrass 1993, Snodgrass 19871. An example retrieve 
query that determines which wing s t r u t  shipments arrived dur- 
ing production of a Centurion airplane is shown in Figure 4. 
The retrieve has several components: the target list, specifying 
how the attributes of the relation being derived are computed 
from the attributes of the underlying relations; a i d i d  clause, 
specifying the valid time of tuples i n  the target relation: R where 
clause, specifying a relationship that. must be satisfied among 
the explicit attributes (those visible to the user) of the partic- 
ipating tuples; a when clause, specifying a relationship among 
the valid-timeattributes of the participating tuples; and an as 
of clause that performs a rollback on the temporal database 
(not shown in Figure 4). 

In the valid clause, a temporal expression consist.ing solely 
of temporal constructors specifies the valid time of tuples in 
the target relation. A temporal constructor chooses a n  event 
or interval that  satisfies some constructor specific constraints. 
For example, the First temporal constructor chooses the earli- 
est event from a pair of events. The temporal expression associ- 
ated with the when clause is cornposed of temporal const.ructois, 
boolean connectives, and temporul predicates. A teniporal pred- 
icate determines whether a pair of events or intervals satisfies 
some predicate specific constraints. For example, tlie precede 
predicate determines whether one event (or interval) is earlier 
than another. If so, the predicate evaluates to “true:” if not, it 
evaluates to “false.” 

5 Extensions to TQuel 
This section proposes a syntax and semantics for extending 

TQuel’s retrieve statement to support valid- time indet.erminacy. 
A primary design goal is to make this extension a iriinimal ex- 
tension. I t  will be shown in Section 5.8 that the new syntax 
and semantics preserves the nieaning of all extatit TQuel re- 
trieve statements. 

5.1 Syntactic Extensions for Valid-time 
Indeterminacy 

We make two syntactic extensions to TQuel’s retrieve state- 
ment, one to specify the range credibility and the other to spec- 
ify the ordering plausibility. Details are presented elsewhere 
[Dyreson & Snodgrass 1992A]. 

Range credibility appears (optionally) in the range state- 
ment of an interval relation. The credibility applies indepen- 
dently to the starting and terminating events in the interval. 
It can be any integer value between 0 and 100 (inclusive). The 
credibility phrase has an  initial default value of 100; this default 
value can be changed using a set statement. Range credibility 
is not applicable to event relations because removing indeter- 
minacy from an indeterminate event might. require partitioning 
the event’s period of indeterminacy. 

Ordering plausibility is tlie plausibility i n  the temporal or- 
dering of the events that  participate in the retrieval. The order- 
ing plausibility may be specified either for the entire when predi- 
cate and valid constructor or for a particular temporal predicate 

range o f  r is Received 
range of p is InSroduction with confidence 0 
retrieve (YH = r.Yarehouse, L t  = r .Lot# ,  St = p . S e r i a l t )  

v a l i d  at r 
where p.Hodel = “Centurion” and r.Part = “wing s t r u t ”  
when r overlap p probably 

Defective-Shipment-Candidates( WH, L#, S#) 

II Valid time 
WH I L# I S# 11 (at)  

Trump I 23 I AB33 11 May 10 - May29 
Griffin AB33 May30 - June 18 
Griffin I iy 1 AB34 11 June 13 - July 2 

Figure 4: A sample query and its result 

or constructor, in which case it appears in parentheses immedi- 
ately after the operator. The ordering plausibility is specified 
with an integer between 1 and 100 (inclusive). The plausibility 
phrases are optional and have an initial default value of 100, 
which can be changed using a set statement. 

The retrieve statement in Figure 4 shows a plausibility value 
of “probably” for the overlap temporal predicate in the when 
clause. This is syntactic sugar for a plausibility value of 60. 

5.2 Semantic Extensions 
The semantic extensions to support valid-time indetermi- 

nacy involve the redefinition of several existing functions and 
relations and the introduction of new functions. Specifically, 
we redefine the temporal ordering relation to support ordering 
plausibility, we introduce two “shrink“ functions to effect range 
credibility, we add an “adjust” function to the valid clause to 
ensure that only valid indeterminate intervals are constructed, 
and we redefine the coalescing operator, Reduce. In subsequent 
sections we consider each of these modifications in some de- 
tail. It is important, however, to observe that each function or 
relation that we redefine or add incorporates the determinate 
semantics. Support for valid-time indeterminacy is an extension 
of the cleterininale seniantics rather than a replacement. Hence, 
the semantics of existing queries is left unchanged (this point is 
reiterated i n  Seclion 5.8). 

5.3 Supporting Ordering Plausibility 
To support ordering plausibility we redefine the ordering re- 

lation Before. The semantics of retrieve without indeterminacy 
is based on a well-defined ordering of the valid time events in 
the underlying relations (Snodgrass 19871. Every temporal pred- 
icate and temporal constructor refers to this ordering to  deter- 
mine if the predicate is true or the constructor succeeds. A set 
of determinate events has a single temporal ordering. Given a 
temporal expression consisting of temporal predicates and tem- 
poral constructors, this ordering either satisfies the expression 
or fails to satisfy it. 

A set of indeterminate events, however, typically has many 
possible temporal orderings. Some of these temporal orderings 
are plausible while others are implausible. The user specifies 
which orderings are plausible by setting an appropriate ordering 
plausibility value. We stipulate that a temporal expression is 
satisfied if there exists a plausible ordering that satisfies it. 

In the determinate semantics, Before is the “<” relation 
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e4 e4 <prob el 

e2 
e3 
e4 

Figure 5: Table of a <prob 0 for the events in Received 

on event times. In the indeterminate semantics, the temporal 
ordering is given by the probabilistic ordering operator ‘‘<prob” 

which is defined as follows. For any two indeterminate events, 
a and P 

a <prob P = 1100 X Pr[a < P]J 
where 

Pr[a < PI = C pa(;) x pp( j )  i, j E Z. 
8 <J 

This formulation of the probabilistic ordering operator treats 
ordering probabilities that  are between 0 and 1 (after scaling 
by 100) as 0. That  is, it treats two events that have a small 
chance of occurring before each other as well-ordered in time. 
To distinguish the well-ordered case from this other case, we 
define the ordering probability to be 1 whenever its value as 
defined above, prior to  taking the floor, is between 0 and 1. 
Hence, to  evaluate every possible ordering, however improbable, 
an ordering plausibility of 1 suffices. 

The probabilistic ordering operator assumes that there are 
no dependencies between the probabilities associated with in- 
determinate events. It cannot be used to accurately compute 
the probability of orderings such as (a <prob <,,rob v). In the 
expression “(a precede P )  and (0 precede 7)” the two precedes 
are separately evaluated, returning boolean values that are sub- 
sequently anded. While this evaluation strategy is consistent 
with the determinate semantics, it is not equivalent to comput- 
ing a n  ordering of (a <prob P <prob v). 

Figure 5 shows the value of <prob  for each pair of events in 
the relation Received, placed on a time-line in  Figitrc 6. For 
instance, e2 <prob e3 = 88. 

To handle indeterminate events, we modify Before to include 
an additional initial parameter, the ordering plausibility y. The 
value of y can be any integer between 1 and 100 (inclusive). In 
general, higher (closer to 100) ordering plausibilities stipulate 
that more probable orderings sliould be considered plausible. 
The indeterminate Before is defined as follows. 

Before(y, a, P )  -(a i s  P )  A ( ( a  <prob P )  1 7) 

An event is never Before itself, regardless of the value of 7. Two 
events are said to  be equivalent if they have the same support 
chronons and the same probability mass functions. Two equiv- 
alent, but  not identical, events inay or may not be Before one 
another, depending on y. To distinguish identical It o m  equiva- 
lent events, each event appearing as an argument to Before is 

el H 
ez H 

e3 H 
e4 H 

Figure 6: A pictorial representat.ion of the Received event times 

el el el 

y = 01 y = 50 y = 100 

Figure 7: Ordering the events in Received depends on y 

tagged with the tuple from which it originates. The tags are 
compared by the Before function. If the tags do  not match, the 
binary infix operator <pro(,  determines the discrete probability 
of one event occurring “before” another. 

The ordering relation among the events in the relation Re- 
ceived depends on the ordering plausibility, y. The orderings 
given by differing values of y are graphically depicted in Fig- 
ure 7. Each directed edge in a graph indicates that  the orig- 
inating event is Before the terminating event. Some pairs of 
events are “indistinguishable,” that  is each occurs Before the 
other. If no edge connects two events, the events are “incom- 
parable,” neither occurs Before the other. Note that  Before, 
for y # 100, is not a typical ordering relation in that  it is not 
transitive nor asymmetric, although it is always irreflexive (Be- 
jore for y = 100 is transitive, asymmetric, and irreflexive for 
nonequivalent events). 

A useful generalization of Before is Set-Before. Set-Before 
is similar to Before, but operates on sets of events. 

Set-Before(y, a ,  0) w Vz E a Vy E P Before(y, I, y) 

Set-Before stipulates that the set of events a is before the set 
of events if every event in a is before every event in P ,  to  the 
specified ordering plausibility. 

The new ordering relations are used to  redefine the tempo- 
ral constructors and predicates. Below. we consider the First 
constructor in some detail since First is used in other construc- 
tors. Recall that First chooses the earliest event among a pair 
of events. But, with indeterminate events, choosing the earliest 
event among a pair of events is not always straightforward. In 
particular, for a given ordering plausibility, it could be that  that 
neither event in a pair or events is earlier, or it could be that  
both are earlier. In the indeterminatesemantics, First(y, a, 0) 
evaluates to 

a if Set-Before(y, a, P )  
P if Set-Before(?, 0, a) 
Q - 5 otherwise, where 

I) = a U 0  and 
15 = {zI I E 71 A -3y E r )  (Before(?, y, I))} 

To simplify discussion of First, consider the case where a and 
each contain a single indeterminate event. Determining which 
even1 occurs first has several possible outcomes: 

only U is first, 

only 0 is first, 

both a and P are first (each is before the other; the events 
are indistinguishable), or  

neither a nor 0 is first (neither is before the other; the 
events are incomparable). 

r 

I 

I 
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The first two outcomes are straightforward. The third outcome, 
that  for indistinguishable events, is handled by the fact that 
First is nondeterministic; each event is generated separately 
and may result in a separateoutput tuple. For the final possible 
outcome, since neither event is before the other, First constructs 
the set containing both events. Other temporal constructors 
and temporal predicates will treat the set as a set of events with 
no Before relationships between the members. In general, all 
members in a set of events are pairwise incomparable. Below 
we show several temporal expressions composed of the First 
constructor and the result of each expression using t,he events 
from the relation Received. 

Fir-450, { e l ) ,  {e311 = { e z )  
F W l O O ,  tez), { e l ) )  = { e : )  
Firrt(l, {el}, { e 3 } )  = { e z }  and { e 3 }  (both are first) 
First(lOO, {42}, { e 3 } )  = { e z ,  e 3 }  

(a is first) 
(P  is first) 

(incomparable events) 

The First constructor can deduce the first event among a group 
of events, even when some of those events are incomparable ( e z ,  
e3,  and e4 are incomparable for a plausibility of 100 as shown 
in Figure 7), for example: 

First(100, { e z } ,  First(100, { e 3 } , { e 1 ) ) )  = { e : } .  

The First constructor also works when some of the events are 
indistinguishable ( e z ,  eg ,  and e4 are indistinguishable for a plau- 
sibility of l ) ,  for example: 

First(1,  First(1, { e z } ,  { e l } ) ,  First(1, { e 3 } ,  ( e 4 ) ) )  = { e : } .  

The redefinition of the Last Lernporal constructor is similar 
to that of First and is omitted to save space. The definitions of 
the other temporal constructors change little; a parameter for 
the plausibility is added to each, e.g., 

ouerlap(y, ( a , P ) , ( s , J ) )  = (Last(r ,a,o),First(r ,P,s)) .  

Contrast this with the determinate semantics for the overlap 
constructor: 

overlap ((a, P ) ,  (q, 5)) = ( L a s t ( a ,  q), Firs t (P ,  Q ) .  

We are now in a position to redefine the temporal pred- 
icates. These definitions differ only slightly from the deter- 
minate semantics. A plausibility parameter is added to each 
predicate and Set-Before replaces Before since the temporal 
constructors now build sets of events rather than events. For 
example, in the determinate semantics, precede( ( i r ,P) ,  (q, 5)) 
is defined as B e f o r e ( L a s t ( a , P ) ,  First(q,C)), while in the in- 
determinate semantics precede(y,  (a, P ) ,  (q, 6)) is defined as 
Set-Before(y,  Last(?, a, p ) ,  First(?,  7,s)). 

5.4 Supporting Range Credibility 
Range credibility changes the data  that is available for query 

evaluation. In general, range credibility is used to eliminate 
some possible intervals from an indeterminate interval. It does 
so by eliminating some possible chronons from both the starting 
and terminating events’ set of possible chronons. To support 
range credibility we introduce two “shrink” functions: Shrink-s 
(shrink the startingevent) and Shrink-t (shrink the terminating 
event). The shrink functions compute a “shortened” version of 
an  indeterminate event by shrinking its period of indeterminacy 
and modifying its probability mass function. 

Shrink-s computes a “later” period of indeterminacy by re- 
moving some of the “earlier” chronons from the set of possible 
chronons. How many chronons to remove is governed by the first 

7 = 25 

y = 50 

7 = 75 

y = 100 20 
H 

Figure 8: Shrink-s(y, ([1,20), Uniform))  for several values of y 

argument, 7 ,  the range credibility. The value of y is between 0 
and 100 (inclusive). Every possible chronon that  has a cumu- 
lative probability less than the level of credibility is removed. 
Higher values (closer to 100) of y will remove more chronons 
from the set. Shrink-s( 100, a) will remove every chronon except 
the latest possible chronon in a. Shrink-s (0 ,a)  will leave a un- 
changed. Figure 8 shows the result of Shrink-a for several credi- 
bility values on the indeterminate event a = ([l, 201, Uniform) .  
Shrink-s is defined as follows. 

Shrink-s(y,  ([a., a*], Pa)) = ([I, a.], PA) 

where I is constrained by 

(a. 5 I 5 a* A Fa(I) 2 7) 
A 7(3a)(1 < i 5 a* A F,(i)  = Fa(2) 
A -(gj)(a* < j < I A Fa(l) > Fa(j) 2 7) 

and PA is the new mass function, PA(;)  = aT. Intuitively, 
the conditions on the function stipulate that  the desired chronon 
is in a group of chronons with the same cumulative probability 
(the cumulative probability is the chance that  the event oc- 
curs before or during the chronon in question). This group is 
the latest group such that the cumulative probability of all the 
chronons earlier than the group falls below y while the cumu- 
lative probability of each chronon within the group matches or 
exceeds y. The desired chronon is the latest chronon within this 
group. It is the latest rather than an  arbitrary chronon so that 
repeated shrinks will make progress. 

The function must also compute a new probability mass 
function since the old mass function might have assigned 
nonzero probability to  chronons that are no longer in the pe- 
riod of indeterminacy. To construct the new mass function, the 
probability of each of the remaining chronons is scaled by the 
cumulative probability of the chopped chronons. The new mass 
function is a conditional density function. That  is, the  proabili- 
ties are conditioned by the fact that  the period of indeterminacy 
is shrunk. 

Shrink-t is similar t o  Shrink-a, but it removes the ‘‘late’’ 
chronons from an event’s period of indeterminacy. The defini- 
tion of this function is similar t o  that of Shrink-a. 

With these two functions, it is possible to  define the tempo- 
ral constructor consisting entirely of a tuple variable associated 
with an interval relation. 

interual(y,  t )  = ({Shrink-s(y, tjrom)), {Shr ink- t (y ,  t t 4 ) ) )  

This function extracts the from timestamp from the tuple, 
shrinks it by y to create a ‘‘later’’ set of possible chronons, ex- 
tracts the t o  timestamp from the tuple, and shrinks it by y t o  
create an “earlier” set of possible chronons, thereby effecting the 



range credibility. If 7 = 100, then dl valid-time indeterminacy 
will be eliminated. The  function then constructs an interval 
consisting of the  pair of the starting event and the terminating 
event, each perhaps indeterminate. 

5.5 Adjusting 
The valid clause for a valid-time relation associates a valid 

time event or interval with each answer tuple. If the target 
relation is a n  event relation, one answer tuple is generated for 
each event in the set of events constructed by the valid clause. 
If the target relation is an  interval relation, then the starting 
and terminating events are chosen from the starting and termi- 
nating set of events constructed by the valid clause. However, 
the selected events do  not always form a valid interval since 
the events could have overlapping periods of indeterminacy (on 
more than a single chronon). 

The Adjust function ensures that this condition is not vio- 
lated by constructing a valid indeterminate interval from a pair 
of indeterminate events if it is plausible to  do  so. If the sets of 
possible chronons of the starting and terminating events over- 
lap, the function will shrink the sets of possible chronons so 
that  they do  not overlap. The constructed indeterminate inter- 
val represents only a subset of all the possible intervals since the 
shrinking process eliminates some possible intervals. The max- 
imum amount by which Adjust can shrink the sets of possible 
chronons is dictated by the ordering plausibility, gamma. We 
define Adjust as follows. 

A d j u s t ( y ,  a ,  0)  = (Shrank- t (J ,a) ,  Shrink-s(b,P)) 

where 8 is the smallest value less than or equal to (100 - y) 
such that  Eefore(100,  Shrink_t(S,a), Shrink-s (&,P)) .  When the 
starting event is entirely before the terminating event, this func- 
tion simply returns the interval as is. If this is not the case, it 
attempts to  isolate a plausibility, 5, that is the minimum amount 
each set of possible chronons needs to be shrunk by i n  order to 
construct a valid interval. The maximum amount each event is 
allowed t o  be shrunk is given by (100 - 7 )  (if y = 100, the Ee- 
fore  should be true without any shrinking). If no such S exists, 
then no interval is constructed because the construction would 
exceed the user chosen plausibility. 

5.6 Coalescing 
Tuples in TQuel relations are assumed to be coalesced, 

in that  tuples with identical values for the explicit attributes 
(termed value-equivalent tuples [McKenzie & Snodgrass 19911) 
neither overlap nor are adjacent in determinate valid time. How- 
ever, the tuples could overlap in indeterminate valid time. The 
tuples produced by the retrieve statement are coalesced by the 
Reduce function. A new function Reduce’ computes the mini- 
mal set of value-equivalent indeterminate tuples, i.e., the set for 
which there are no such tuples. Details are presented elsewhere 
[Dyreson & Snodgrass 1992A]. 

5.7 Semantics of the Example Query 
At this point, the semantics of t,he retrieve statement have 

been specified. As an example, we trace the computation of the 
query given in Figure 4 on the database given in Figure 1. The 
query will result in three tuples, also shown in Figure 4. First, 
the extent of the intervals in In-Production is unchanged by the 
shrink functions because the query uses a range credibility of 0. 
The where clause eliminates every tuple from In-Production ex- 
cept the Centurions. Likewise, the where clause also eliminates 
every tuple from Received except the wing strut tuples. 

The shipment of lot number 23  w a s  definitely received dur- 
ing production of the Centurion serial number AB33; it. satisfies 

the overlap with every plausibility. The other shipments might 
have been received. Lot number30 satisfies theoverlap for plau- 
sibilities lower than 65 because ([May 30, June 181, uniform) is 
Before ([June 1, June 301, uniform) for ordering plausibilities 
below 65. The other shipment, however, arrived too late in 
June to be considered plausible. It is plausible that  lot num- 
ber 31 arrived before the end of production only for ordering 
plausibilities of 28 or less. 

For production of the Centurion serial number 11834, all the 
shipments arrived too early, except for lot number 31 from the 
Griffin warehouse. 
5.8 Query Reducibility 

An important feature of the extended syntax and seman- 
tics is that  evaluation of a retrieve statement using the de- 
fault plausibility and credibility (both are 100) on a valid-time 
database with indeterminate or determinate interval relations 
and determinate event relations is equivalent t o  evaluation of 
the retrieve statement with the previous semantics (which has 
no support for valid-time indeterminacy) on the corresponding 
“interval reduced” database without valid-time indeterminacy. 
We will call this property query reducibility. By an  interval re- 
duced database, we mean a valid-time database in which the 
interval indeterminacy has been removed by replacing each in- 
determinate interval with its determinate portion (every inde- 
terminate interval has a determinate portion of at least one 
chronon). Query reducibility shows that  the meaning of all ex- 
tant TQuel queries and relations is preserved under the new 
semantics. It also shows that even if there is some indetermi- 
nacy in the database (i.e., if there are indeterminate interval 
relations), the user can choose to  ignore it (this is the default 
choice). 
T h e o r e m  The eztended semantics is  query reducible to the 
previous, valid-time determinate, semantics.  
The proof is given elsewhere [Dyreson & Snodgrass 1992A]. 

6 Imp 1 e me 11 tat i o n 
Our goal in implementing support for valid-time indetermi- 

nacy is to do so efficiently. The new or redefined functions 
discussed in the previous section, Adjus t ,  S h r i n k s ,  Shrink-t, 
Set-Before, Before, and Reduce’, are all executed in the “in- 
ner loop” of query processing. Significant slowdown of these 
operations would have a dramatic effect on the overall speed 
of query evaluation. Although implementing the new functions 
may appear costly, we have developed an  efficient implemen- 
tation based on heavy preprocessing of the probability infor- 
mation and approximating the actual computation when nec- 
essary [Dyreson & Snodgrass 1992A]. We have also developed 
a compact indeterininate event timestamp format (8  bytes for 
common indeterminate events) [Dyreson & Snodgrass 1992BI. 
In parallel with the theorem of query reducibility given in Sec- 
tion 5.8, conventional TQuel queries on determinate relations 
will incur no additional execution overhead under the new se- 
mantics. For queries on indeterminate relations, for a plausi- 
bility of 1 or 100 or a credibility of 0 or 100, the algorithms to  
support the new functions incur little overhead. These special, 
but common, credibility and plausibility levels indicate that  the 
user has chosen either not to use any probabilistic information 
or to interpret probabilistic information as determinate. For 
these situations, the algorithms to support the new functions 
are straightforward and quite efficient. 

7 Related Work 
Despite the wealth of research in incomplete information 

databases, there are few efforts that  address temporal incom- 

, 
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pleteness. Much of the previous research in incomplete informa- 
tion databases has concentrated on issues related to null values 
[Codd 1990, Date 1986, Vassiliou 1979, Zaniolo 19841. Another 
primary research thrust has studied the applicability of fuzzy 
set theory to  relational databases [Dubois & Prade 1988, Ze- 
mankova k Kandel 19851. 

Our work can be seen as an extension of the Probabilistic 
Data Model (PDM) [Barbard et  al. 19921. In PDM, attribute 
values are sets with weights attached to each element. The 
weight is the probability that the corresponding element is the 
value of the attribute. Queries use the probabilistic represen- 
tation in conjunction with a single user-given “confidence” to 
compute a result within the framework of the possible world 
semantics. 

Information that is valid-time indeterminate is also similar 
to disjunctive information, especially in the context of deductive 
databases [Liu & Sunderraman 19901. A set of possible chronons 
is of the exclusive-or variety of disjunctive information (only one 
disjunct is true) [Ola 19921. 

Recently, the issue of multtple time granularities, e.g., know- 
ing some events to the accuracy of seconds, other events to 
within a day, and yet other events to only within a year, has 
been examined [Ladkin 1987, Wiederhold et al. 19911. These 
approaches generally convert mixed granularities to the coars- 
est granularity, taking into account the semantics of the time- 
varying domains. Our work refines this approach because we 
convert the coarser granularities to indeterminacy and preserve 
the semantics of the finest granularity. 

Dutta uses a fuzzy set approach to handle generalized tem- 
poral events [Dutta 19891. A generalized temporal event is a 
single event that  has multiple occurrences. For example the 
event “Margaret’s salary is high” may occur at  various times 
as Margaret’s salary fluctuates to  reflect promotions and demo- 
tions. 

Generalized bitemporal elements are defined somewhat dif- 
ferently in a more recent paper [Kouramajian & Elmasri 1992). 
Bitemporal elements combine transaction time and valid time 
in the same temporal element [Jensen et al. 19921. Since TQuel 
also supports transaction time, valid-time indeterminacy and 
generalized bitemporal elements differ mainly in their handling 
of valid time. In their model, both the upper bound and the 
lower bound on a valid time interval could be a set of non- 
contiguous possible chronons. Unlike valid-time indeterminacy, 
the upper and lower bound sets could intersect and no proba- 
bilities are used. Since there are no probabilities, the user in 
general is limited to querying for answers which are either “def- 
inite” or those which are “possible” (or combinations thereof). 
Historically, these alternatives have a well-defined meaning in 
incomplete information databases [Lipski 19791. 

Another proposal intertwines support for value and temporal 
incompleteness [Gadia et al. 19921. By combining the different 
kinds of incomplete information, a wide spectrum of attribute 
values are simultaneously modeled, including values that are 
completely known, values that are unknown but are known to 
have occurred, values that are known if they occurred, and val- 
ues that are unknown even if they occurred. We feel that con- 
flating different kinds of incompleteness in a single temporal 
relational database model prevents the user from picking and 
choosing the kind of incomplete information support that she 
desires. 

In our approach, value, tuple, and temporal incompleteness 
are orthogonal. By combining valid-time indeterminacy with 
other kinds of incomplete information we can support each of 

the kinds of incomplete information found in Gadia et  al., plus 
others (e.g., fuzzy value incompleteness). Another difference 
between our approach and theirs is that  they make no use of 
probabilistic information. The user cannot express his or her 
credibility in the underlying data nor plausibility in the tempo- 
ral relationships in the data. 

Finally, the approach to valid-time indeterminacy espoused 
by Kahn and Gorry [Kahn & Gorry 19771 is reminiscent of those 
employed by the artificial intelligence community [Maiocchi & 
Pernici 19911. In their model, events and intervals are specified 
relative to each other; only a subset are actually tied to  the valid 
time line. An event may only be known to have occurred, say, 
between two other events. Their model is more general than 
the possible chronons data model, but also exhibits significant 
query processing overhead. 

8 Summary and Future Work 
This paper has extended the syntax and formal semantics 

of TQuel to support valid-time indeterminacy. This support 
provides the user with two controls on the retrieval process, 
range credibility and ordering plausibility. We have extended 
the range statement with an optional with clause to specify 
range credibility and extended the retrieve statement to specify 
ordering plausibilities. Range credibility changes the informa 
tion available to query processing. It eliminates some possible, 
but unlikely intervals from an indeterminate interval until the 
desired quality of information is reached. Ordering plausibility 
controls the coristruction of an answer to a query using the pool 
of credible information. A temporal expression is satisfied if 
there exists a plausible ordering (to the level specified by the 
user) that satisfies it. The approach has an intuitive seman- 
tics, is orthogonal to those proposed by others to handle value 
incompleteness and generalized events, refines previously pro- 
posed techniques to handle multiple granularities of time, and 
has a practical implementation. 

The result is an expressive extension to TQuel to support 
valid-time indeterminacy. The extension is also “transparent” 
to the user who does not use the added query language support 
for indeterminacy. The extended semantics and implement& 
tion both reduce to the previous semantics and implementation 
under the default credibility and plausibility. 

A useful extension of the current work would be to  use spans 
instead of values to express credibility and plausibility. For in- 
stance, the user could specify a range credibility of a “day” or 
a “year,” causing sets of possible chronons in the specified rela  
tions to be shrunk to the most probable day or year. Similarly, 
the ordering plausibility could make use of durations. The user 
could constrain retrieval to tuples that “overlap March, 1984” 
to “within a year” (this has been termed a “band join” [De- 
Witt et al. 19911 or a “fuzzy temporal equi-join” [Leung & 
Muntz 19911). Both possibilities can be seen as extensions of 
the present paper. 

This paper only considers the retrieve statement. The up- 
date statements (append, delete, and replace) can also be ex- 
tended in an analogous manner. Extending temporal aggregates 
(Snodgrass et al. 19931 is more challenging; the goal, shared 
with this paper, is to simultaneously maximize the expressive 
power of the language and the efficiency of query evaluation. Fi- 
nally, when a consensus temporal extension to SQL is available, 
we will apply our approach to that language to add valid-time 
inde termGnacy. 
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