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Abstract

The ability to model the temporal dimension is essen-
tial to many applications. Furthermore, the rate of increase
in database size and response time requirements has out-
paced advancements in processor and mass storage tech-
nology, leading to the need for parallel temporal database
management systems. In this paper, we introduce a variety
of parallel temporal aggregation algorithms for a shared-
nothing architecture based on the sequential Aggregation
Tree algorithm. Via an empirical study, we found that the
number of processing nodes, the partitioning of the data,
the placement of results, and the degree of data reduction ef-
fected by the aggregation impacted the performance of the
algorithms. For distributed results placement, we discov-
ered that Time Division Merge was the obvious choice. For
centralized results and high data reduction, Pairwise Merge
was preferred regardless of the number of processing nodes,
but for low data reduction, it only performed well up to 32
nodes. This led us to a centralized variant of Time Division
Merge which was best for larger configurations having low
data reduction.

1. Introduction

Aggregate functions are an essential component of data
query languages, and are heavily used in many applications
such as data warehousing. Unfortunately, aggregate com-
putation is traditionally expensive, especially in a tempo-
ral database where the problem is complicated by having to
compute the intervals of time for which the aggregate value
holds. For example, finding the (time-varying) maximum
salary of professors in the Computer Science Department
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involves computing the temporal extent of each maximum
value, which requires determining the tuples that overlap
each temporal instant.

In this paper, we present several new parallel algorithms
for the computation of temporal aggregates on a shared-
nothing architecture [8]. Specifically, we focus on the
Aggregation Tree algorithm [7] and propose several ap-
proaches to parallelize it. The performance of the parallel
algorithms relative to various data set and operational char-
acteristics is of our main interest.

The rest of this paper is organized as follows. Section 2
gives a review of related work and presents the sequential
algorithm on which we base our parallel algorithms. Our
proposed algorithms on computing parallel temporal aggre-
gates are then described in Section 3. Section 4 presents
empirical results obtained from the experiments performed
on a shared-nothing Pentium cluster. Finally, Section 5 con-
cludes the paper and gives an outlook to future work.

2. Background and Related Work

Simple algorithms for evaluating scalar aggregates and
aggregate functions were discussed by Epstein [5]. A dif-
ferent approach employing program transformation meth-
ods to systematically generate efficient iterative programs
for aggregate queries has also been suggested [6]. Tumas
extended Epstein’s algorithms to handle temporal aggre-
gates [9]; these were further extended by Kline [7]. While
the resulting algorithms were quite effective in a uniproces-
sor environment, all suffer from poor scale-up performance,
which identifies the need to develop parallel algorithms for
computing temporal aggregates.

Early research on developing parallel algorithms focused
on the framework of general-purpose multiprocessor ma-
chines. Bitton et al. proposed two parallel algorithms for
processing (conventional) aggregate functions [1]. The
Subqueries with a Parallel Merge algorithm computes par-
tial aggregates on each partition and combines the partial



Name Salary BeginEnd
Richard 40K 18 1

Karen 45K 8 20
Nathan 35K 7 12
Nathan 37K 18 21

Count BeginEnd
1 7 8
2 8 12
1 12 18
3 18 20
2 20 21
1 21 1

(a) Data Tuples (b) Result

Table 1. Sample Database and Its Temporal
Aggregation

results in a parallel merge stage to obtain a final result. An-
other algorithm, Project bylist, exploits the ability of the
parallel system architecture to broadcast tuples to multi-
ple processors. The Gamma database machine project [4]
implemented similar scalar aggregates and aggregate func-
tions on a shared-nothing architecture. More recently, par-
allel algorithms for handling temporal aggregates were pre-
sented [11], but for a shared-memory architecture.

The parallel temporal aggregation algorithms proposed
in this paper are based on the (sequential) Aggregation Tree
algorithm (SEQ) designed by Kline [7]. The aggregation
tree is a binary tree that tracks the number of tuples whose
timestamp periods contain an indicated time span. Each
node of the tree contains a start time, an end time, and a
count. When an aggregation tree is initialized, it begins with
a single node containing< 0;1; 0 > (see the initial tree in
Figure 1).

In the following example [7], there are4 tuples to be in-
serted into an empty aggregation tree (see Table 1(a)). The
start time value,18, of the first entry to be inserted splits the
initial tree, resulting in the updated aggregation tree shown
in Figure 1. Because the original node and the new node
share the same end date of1, a count of 1 is assigned to
the new leaf node< 18;1; 1 >. The aggregation tree after
inserting the rest of the records in Table 1(a) is shown in
Figure 1.

To compute the number of tuples for the period[8; 12)
in this example, we simply take the count from the leaf
node[8; 12) (which is 1), and add its parents’ count val-
ues. Starting from the root, the sum of the parents’ counts
is 0 + 0 + 1 = 1 and adding the leaf count, gives a total of
2. The temporal aggregate results are given in Table 1(b).

Though SEQ correctly computes temporal aggregates, it
is still a sequential algorithm, bounded by the resources of
a single processor machine. This makes a parallel method
for computing temporal aggregates desirable.

0 ∞ 0

18 ∞ 1

Final  Tree after insert ing [8,20) ,  [7,12) ,  [18,21)

0 ∞ 0

Init ial  Tree

After  adding [18,∞)
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0 ∞ 0
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18 ∞ 1
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12 18 0

18 20 2

20 ∞ 0

20 21 1

21 ∞ 0

Figure 1. Example run of the Sequential(SEQ)
Aggregation Tree Algorithm

3. Parallel Processing of Temporal Aggregates

In this section, we propose five parallel algorithms for
the computation of temporal aggregates. We start with two
simple parallel extensions to the SEQ algorithm, the Sin-
gle Aggregation Tree (abbreviated SAT) and Single Merge
(SM) algorithms. We then go on to introduce the Time Divi-
sion Merge with Centralizing step (TDM+C) and Pairwise
Merge (PM) algorithms, which both require more coordi-
nation, but are expected to scale better. Finally, we present
the Time Division Merge (TDM) algorithm, a variant of
TDM+C, which distributes the resulting relation, as differ-
entiated from the centralized results produced by the other
algorithms.

3.1. Single Aggregation Tree (SAT)

The first algorithm, SAT, extends the Aggregation Tree
algorithm by parallelizing disk I/O. Each worker node reads
its data partition in parallel, constructs the valid-time peri-
ods for each tuple, and sends these periods up to the coordi-
nator. The central coordinator receives the periods from all
the worker nodes, builds the complete aggregation tree, and
returns the final result to the client.

3.2. Single Merge (SM)

The second parallel algorithm, SM, is more complex
than SAT, in that it includes computational parallelism
along with I/O parallelism. Each worker node builds a local
aggregation tree, in parallel, and sends its leaf nodes to the
coordinator.



Unlike the SAT coordinator, which inserts periods into
an aggregation tree, the SM coordinator merges each of the
leaves it receives using a variant of merge-sort. The use of
this efficient merging algorithm is possible since the worker
nodes send their leaves in a temporally sorted order. Finally,
after all the worker nodes finish sending their leaves, the
coordinator returns the final result to the client.

3.3. Time Division Merge with Coordinator
(TDM+C)

Like SM, the third parallel algorithm also extends the
aggregation tree method by employing both computational
and I/O parallelism (see Figure 2). The main steps for this
algorithm are outlined in Figure 3.
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Figure 2. Time Division Merge with Centraliz-
ing Step (TDM+C) Algorithm

Step1. Client request
Step2. Build local aggregation trees
Step3. Calculate local partition sets
Step4. Calculate global partition set
Step5. Exchange data and merge
Step6. Merge local results
Step7. Return results to client

Figure 3. Major Steps for the TDM+C Algo-
rithm

3.3.1 Overall Algorithm

TDM+C starts when the coordinator receives a temporal
aggregate request from a client. Each worker node is in-
structed to build a local aggregation tree using its data par-
tition knowing the number of worker nodes,p, participating
in the query.

After each worker node constructs its local aggregation
tree, the tree is augmented in the following manner. The

node traverses its aggregation tree in DFS order, propagat-
ing the count values to the leaf nodes. The leaf nodes now
contain the full local count for the periods they represent,
and any parent nodes are discarded. After all worker nodes
complete their aggregation trees, they exchange minimum
(earliest) start time and maximum (latest) end time values
to ascertain the overall timeline of the query.
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Figure 4. Timeline divided into p partitions,
forming a global partition set

The leaves of a local aggregation tree are evenly split
into p local partitions, consisting of a period and a tuple
count. Because each partition is split to have the same (or
nearly) the same number of tuples, local partitions can have
different durations. The local partition set (containingp par-
titions) from each processing node is then sent to the coor-
dinator.

The coordinator takes allp local partition sets1 and com-
putesp global partitions (how this is done is discussed in
the next section).

After computing the global time partition set, the coor-
dinator then naively assigns the period of theith partition
to theith worker node, and broadcasts the global partition
set and respective assignments to all the nodes. The worker
nodes then use this information to decide which local ag-
gregation tree leaves to send, and to which worker nodes to
send them to. Note that periods which span more than one
global partition period are split and each part is assigned ac-
cordingly(split periods do not affect the result correctness).

Each worker node merges the leaves it receives with the
leaves it already has to compute the temporal aggregate for
their assigned global partitions. When all the worker nodes
finish merging, the coordinator polls them for their results
in sequential order. The coordinator concatenates the results
and sends the final result to the client.

1A total of p2 local partitions are created byp worker nodes.



0

5 9

10

30 350

800

1000

1500

5000

100000

50 50 50

15 15 15

30 30 30

Figure 5. Local Partition Sets from Three
Worker Nodes

3.3.2 Calculating the Global Partition Set

We examine in more detail the computation of the global
partition set by the coordinator. Recall that the coordinator
receives from each worker node a local partition set, con-
sisting ofp contiguous partitions. The goal is to temporally
distribute the computation of the final result, with each node
processing roughly the same number of leaf nodes.

As an example, Figure 5 presents9 local partitions from
3 worker nodes. The number between each hash mark seg-
menting a local timeline represents the number of leaf nodes
within that local partition. The total number of leaf nodes
from the3 nodes is50 � 3 + 15 � 3 + 30 � 3 = 285. The
best plan is having2853 = 95 leaf nodes to be processed by
each node. Figure 4 illustrates the computation of the global
partition set.

We modified the SEQ algorithm to compute the global
partition set, using the local partition information sent by
the worker nodes. We treat the worker node local parti-
tion sets as periods, inserting them into the modified ag-
gregation tree. From Figure 5, the first period to be in-
serted is [5,9)(50), the fourth is [0,30)(15), and the seventh
is [0,10)(30), and the ninth(last) is [1000,5000)(30). This
use of the Aggregation Tree is entirely separate from the use
of this same structure in computing the aggregate. Here we
are concerned only with determining a division of the time-
line intop contiguous periods, each with approximately the
same number of leaves.

There are three main differences between our Modified
Aggregation Tree algorithm used in this portion of TDM+C
and the original Aggregation Tree [7], used in step 2 of
Figure 3. First, the “count” field of this aggregation tree
node is incremented by the count value of the local parti-
tion being inserted, rather than1. Second, a parent node
must have a count value of0. When a leaf node is split and
becomes a parent node, its count is split proportionally be-
tween the two new leaf nodes based on the durations of their
respective time periods. This new parent count becomes0.
Third, during an insertion traversal for a record, if the search
traversal diverges to both subtrees, the record count is split
proportionally between the 2 sub-trees.
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Figure 6. Intermediate Aggregation Tree

As an example, suppose we inserted the first three lo-
cal partitions, and now we are inserting the fourth one
[0,30)(15). The current modified aggregation tree, before
inserting the fourth local partition, is shown in Figure 6a.
Notice that for leaf node [5,9)(50), the count value is set to
50 instead of1 (first difference).

The second and third differences are exemplified when
the fourth local partition is added. At the root node, we see
that the period for this fourth partition overlaps the periods
of the left sub-tree and the right sub-tree. In the original
aggregation tree, we simply added1 to a node’s count in the
left sub-tree and the right sub-tree at the appropriate places.
Here, we see the third difference. We split this partition
count of30 in proportion to the durations of the left and
right sub-trees. The root left sub-tree contains a period [0,5)
for a duration of5 time units. The fourth local partition
period is [0,30), or30 time units. We compute the left sub-
tree’s share of this local time partition’s count as(5�0)(30�0) �

15 = 2, while the right sub-tree’s share is15� 2 = 13. In
this case, the left sub-tree leaf node [0,5) now has a count of
2 (see Figure 6b). We now pass13 down the root right sub-
tree, increasing its right leaf node count from [5,9)(50) to
[5,9)(52) as its share of the newly added partition’s count,2,
is added, by using the same proportion calculation method.
At leaf node [9,800)(50), the inserted partition’s count is
now down to11, since2 was taken by node [5,9)(52).

Now, the second difference comes into play. Two new
leaf nodes are created by splitting [9,800)(50). The new
leaves are [9,30) and [30,800). Leaf [9,30) receives all the
remaining inserted partition’s count of11. The count of50
from [9,800)(50) is now divvied up amongst the two new
leaf nodes. The left leaf node receives(30�9)

(800�9) �50 = 1 of the
50, while the right leaf node receives49. So the new left leaf
node is now [9,30)(12), where12 comes from11 + 1, and
the new right leaf node shows as [30,800)(49). Again, see
Figure 6b for the result. Table 2 shows the leaf node values
once all9 local time partitions from Figure 5 are inserted.



Count Begin End
17 0 5
64 5 9
3 9 10
12 10 30
44 30 350
43 350 800
21 800 1000
40 1000 1500
32 1500 5000
9 5000 10000

Table 2. All leaf node values in a tabular format
once all 9 partitions from Figure 5 are inserted

Now that the coordinator has the global span leaf counts
and the optimal number of leaf nodes to be processed by
each node, it can figure out the global partition set. For each
node (except the last one), we continue adding the span leaf
counts until it matches or surpasses the optimal number of
leaf nodes. When the sum is more than the optimal number,
we break up the leaf node that causes this sum to be greater
than the optimal number, such that the leaf node count divi-
sion is done in proportion to the period duration.

As an example, refer to Table 2. We know that the
optimal number of periods per global partition is95. We
add the leaf node counts from the top until we reach node
[10,30)(12). The sum at this point is96, or 1 more than
optimal. We break up [10,30)(12) into two leaf nodes such
that the first leaf node period should contain a count of11,
and the newly created leaf node should contain only1. Us-
ing the same idea of proportional count division, we can see
that [10,28)(11) and [28,30)(1) are the two new leaf nodes.
So the first global time partition has the period [0,28) and
has a count of95.

The computation for the second global time partition
starts at [28,30)(1). Continuing on, the global time parti-
tions for this example are [0,28), [28,866), and [866,10000).

The reader should be aware that this global time partition
resolution algorithm is not perfect. The actual number of
local aggregation tree leaves assigned to each worker node
may not be identical. The reason is that the algorithm uses
the local partition sets, which are just guides for the global
partitioning. When a local partition has50 leaf nodes in pe-
riod [9,800), the global partition scheme assumes a uniform
distribution, while the actual leaf nodes distribution may be
heavily skewed.

3.3.3 Expected Performance

We expect better scalability for TDM+C as compared to the
SAT and SM algorithms because of the data redistribution
and its load-balancing effect. However, there are two global

Step1. Client request
Step2. Build local aggregation trees
Step3. While not final aggregation tree Merge

between 2 nodes
Step4. Return results to client

Figure 7. Major Steps for the PM Algorithm

synchronization steps that may limit the performance ob-
tained. First, all of the local partition sets must be com-
pleted before the global time set partitioning can begin. Sec-
ond, all of the worker nodes must complete their merges and
send their results to the coordinator before the client can re-
ceive the final result.

The next algorithm, PM, will attempt to obtain better
performance, by replacing the two global synchronization
steps withlog2 p localized synchronization steps.

3.4. Pairwise Merge (PM)

The fourth parallel algorithm, PM (see Figure 7), dif-
fers from TDM+C in two ways. First, the coordinator is
more involved than in TDM+C. Secondly, instead of all the
worker nodes merging simultaneously, as in TDM+C, pairs
of worker nodes merge when the opportunity presents itself.
Which two worker nodes are paired is determined dynami-
cally by the query coordinator.

A worker node is available for merging when its local
aggregation tree has been built. The worker node informs
the query coordinator that it has completed its aggregation
tree. The query coordinator then arbitrarily picks another
worker node that had previously completed its aggregation
tree, thereby allowing the two worker nodes to merge their
leaves. Then, the query coordinator instructs the worker
node with the least number of leaf nodes to send the leaves
to the other node, the “buddy worker node”, which does the
merging of leaves.

Once a worker node finishes transmitting leaves to its
buddy worker node, it is no longer a participant in the query.
This buddying-up continues until the query coordinator as-
certains that only one worker node is left, which contains
the completed aggregation tree. The query coordinator then
directs the sole remaining worker node to submit the results
directly to the client. Figure 8 provides a conceptual picture
of this “buddy” system.

A portion of a PM aggregation tree may be merged mul-
tiple times with other aggregation trees. The merge algo-
rithm is a merge-sort variant operating on two sorted lists
as input (the local list, and the received list). This merge is
near linear,O(n), in the number of leaf nodes to be merged.
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3.5. Time Division Merge (TDM)

The fifth parallel algorithm, TDM, is identical to
TDM+C, except that it has distributed result placement
rather than centralized result placement. This algorithm
simply eliminates the final coordinator results collection
phase and completes with each worker node having a dis-
tinct piece of the final aggregation tree. A distributed re-
sult is useful when the temporal aggregate operation is a
subquery in a much larger distributed query. This allows
further localized processing on the individual node’s aggre-
gation sub-result in a distributed and possibly more efficient
manner.

4. Empirical Evaluation

For the purposes of our evaluation, we chose the tempo-
ral aggregate operationCOUNTsince it does not require that
the attribute itself be sent. This simplifies the data struc-
tures maintained while still exhibiting the characteristics
of a temporal aggregate computation. Based on this tem-
poral aggregate operation we perform a variety of perfor-
mance evaluations on the five parallel algorithms presented.
The matrix in Table 3 summarizes the experiments we have
done.

Algorithms Covered NumProcessors
1 SAT, PM, SM, TDM, TDM+C 2, 4, 8, 16, 32, 64
2 SAT, PM, SM, TDM, TDM+C 2, 4, 8, 16, 32, 64
3 SAT, PM, SM, TDM, TDM+C 2, 4, 8, 16, 32, 64
4 PM, SM, TDM, TDM+C 16

Table 3. Experimental Case Matrix Summary

4.1. Experimental Environment

The experiments were conducted on a 64-node shared-
nothing cluster of 200MHz Pentium machines, each with
128MB of main memory and a 2GB hard disk. The ma-
chines were physically mounted on two racks of 32 ma-
chines. Connecting the machines was a 100Mbps switched
Ethernet network, having a point-to-point bandwidth of
100Mbps and an aggregate bandwidth of 2.4Gbps in all-
to-all communication.

Each machine was booted with version 2.0.30 of the
Linux kernel. For message passing between the Pen-
tium nodes, we used the LAM implementation of the MPI
communication standard [2]. With the LAM implemen-
tation, we observed an average communication latency of
790 microseconds and an average transfer rate of about 5
Mbytes/second.

4.2. Experimental Parameters

To help precisely define the parameters for each set of
tests, we established an experiment classification scheme.
Table 4 lists the different parameters, and the set of param-
eter values for each experiment.

Synthetic datasets were generated to model relations
which store time-varying information for each employee in
a database. Each tuple has three attributes, an SSN attribute
which is filled with random digits, a StartDate attribute, and
an EndDate attribute. The SSN attribute refers to an en-
try in a hypothetic employee relation. On the other hand,
the StartDate and EndDate attributes are temporal instants
which together construct a valid-time period. The data gen-
eration method varies from one experiment to another and
is described later.

NumProcessorsdepends on the type of performance
measurement. Scale-up experiments used 2, 4, 8, 16, 32,
and 64 processing nodes, while the variable reduction ex-
periment used a fixed set of 16 nodes.

To see the effects ofdata partitioningon the perfor-
mance of the temporal algorithms, the synthetic tables were
partitioned horizontally either by SSN or by StartDate.
The SSN and StartDate partitioning schemes were attempts
to model range partitioning based on temporal and non-
temporal attributes [3].

Thetuple sizewas fixed at 41 bytes/tuple. The tuple size
was intentionally kept small and unpadded so that the gener-



Parameter Exp4.3 Exp4.4 Exp4.5 Exp4.6
NumProcessors 2, 4, 8, 16, 32, 64 2, 4, 8, 16, 32, 64 2, 4, 8, 16, 32, 64 16
Partitioning by SSN by SSN by StartDate by StartDate
TupleSize 41 bytes 41 bytes 41 bytes 41 bytes

PartitionSize 65536 tuples 65536 tuples 65536 tuples 65536 tuples
NumTuples NumProcessors*65536 NumProcessors*65536 NumProcessors*65536 16*65536

DataReduction 0 % 100 % 0 % 0/20/40/60/80/100 %

Table 4. Experiment Parameters

ated datasets could have more tuples before their size made
them difficult to work with.2

All experiments except the single speed-up test used a
fixed databasepartition sizeof 65,536 tuples. This was
done to facilitate cross-referencing of results between dif-
ferent tests. Because of this, the 16-node results of the
scale-up experiments are directly comparable to the results
of the 16-node data reduction experiment.

The totaldatabase sizereflects the total number of tuples
across all the nodes participating in a particular experiment
run. For scale-up tests, the total database size increased with
the number of processing nodes.

Finally, the amount ofdata reductionis 100 minus the
ratio between the number of resulting leaves in the final
aggregation tree and the original number of tuples in the
dataset. A reduction of 100 percent means that a 100-tuple
dataset produces 1 leaf in the final aggregation tree because
all the tuples have identical StartDates and EndDates.

4.3. Baseline Scale-Up Performance: No Reduction
and SSN Partitioning

We set up our first experiment to compare the scale-up
properties of the proposed algorithms on a dataset with no
reduction. We will also use the measurements taken from
this experiment as a baseline for later comparisons with sub-
sequent experiments. The second column of Table 4 gives
the parameters for this particular experiment.

For this experiment, a synthetic dataset containing 4M
tuples was generated. Each tuple had a randomized SSN
atrribute and was associated with distinct periods of unit
length (i.e.,EndDate = StartDate+1). The dataset was
then sorted by SSN.3 and were then distributed to the 64
processing nodes.

To measure the scale-up performance of the proposed al-
gorithms, a series of 6 runs having 2, 4, 8, 16, 32, and 64
nodes, respectively, were carried out. Note that since we
fixed the size of the dataset on each node, increasing the
number of processors meant increasing the total database
size. Timing results from this experiment are plotted in Fig-
ure 9 and lead us to the following conclusions.

2The total database size for the scale-up experiment at 64 processing
nodes was 64 partitions� 65536 tuples� 41 bytes = 171,966,464 bytes.

3Since the SSN fields are generated randomly, this has the effect of
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SM performs better than SAT.Intuitively, since the
dataset exhibits no reduction, both SM and SAT sendall
periods from the worker nodes to the coordinator. The rea-
son behind SM’s performance advantage comes from the
computational parallelism provided by building local aggre-
gation trees on each worker node. Aside from potentially
reducing the number of leaves passed on to the coordina-
tor, this process of building local trees sorts the periods in
temporal order. This sorting makes compiling the results
more efficient4 than SAT’s strategy of having to insert each
valid-time period into the final aggregation tree.

SAT exhibits the worst scale-up performance.This result
is not surprising, since the only advantage SAT has over the
original sequential algorithm comes from parallelized I/O.
This single advantage does not make up for the additional
communication overhead and the coordinator bottleneck.5

The performance difference between TDM and TDM+C
increases with the number of nodes.For this observation,
it is important to remember that TDM+C is simply TDM
plus an additionalresult-collectionphase that sends all final
leaves to the coordinator, one worker node at a time. The
performance difference increases with the number of nodes

randomizing the tuples in terms of StartDate and EndDate fields.
4The SM coordinator uses a merge-sort variant in compiling and con-

structing the final results.
5In SAT, all the periods are sent to the coordinator which builds a single,

but large, aggregation tree.



because of the non-reducible nature of the dataset and the
fact that scale-up experiments work with more data as the
number of nodes increase.

Among the algorithms that provide monolithic results,
PM has the best scaleup performance up to 32 nodes.This
is attributed to the multiple merge levels needed by PM. A
PM computation needs at leastlog2 p merge levels where
p is the number of processing nodes. On the other hand,
the TDM+C algorithm only merges local trees once but has
three synchronization steps, as described in Section 3. With
this analysis in mind, we expected PM to perform better or
as well as TDM+C for 2, 4, and 8 nodes, which have 1, 2,
and 3 merge levels, respectively. We then expected TDM+C
to outperform PM as more nodes are added, but we were
suprised to realize that PM was still performing better than
TDM+C up to perhaps 50 nodes.

To find out what was going on behind the scenes, we
used the LAM XMPI package [2] to visually track the pro-
gression of messages within the various TDM+C and PM
runs. This led us to the reason why TDM+C performed
worse than PM for 2 to 32 nodes: TDM+C was slowed more
by increased waiting time due to load-imbalance (computa-
tion skew) as compared to PM.

4.4. Scale-Up Performance : 100% Reduction and
SSN Partitioning

This experiment is designed to measure the effect of a
significant amount of reduction (100% in this case) on the
scale-up properties of the proposed algorithms. Table 4
gives the parameters for this experiment.

This experiment is modeled after the first one but with a
synthetic dataset having 100% reduction. This dataset was
generated by creating 4M tuples associated with the same
period and having randomized SSN attributes. The syn-
thetic dataset was then rearranged randomly6 and split into
64 partitions each having 65,536 tuples.

This experiment, like the first one, is a scale-up experi-
ment. Hence, it was conducted in much the same way. Tim-
ing results from this experiment are plotted in Figure 10 and
leads us to the following observations.

All algorithms benefit from the 100% data reduction.
Comparing results from the baseline experiment with re-
sults from the current experiment lead us to this observation.
Because of the high degree of data reduction, the aggrega-
tion trees do not grow as large as in the first experiment.
With smaller trees, insertions of new periods take less time
because there are fewer branches to traverse before reaching
the insertion points. Because all of the presented algorithms
use aggregation trees, they all experience increased perfor-
mance.

6The aggregation tree algorithm performs at its worst case when the
dataset is sorted by time [7].
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Figure 10. Scale-Up Results (4M tuple Dataset
with 100% Reduction and SSN Partitioning)

With 100% reduction, PM and TDM+C catch up to
TDM. Aside from constructing smaller aggregation trees,
a high degree of data reduction decreases the number of ag-
gregation tree leaves exchanged between nodes. TDM does
not send its leaves to a central node for result collection, so
it does not transfer as many leaves as its peers. Because of
this, TDM is not impacted by the amount of data reduction
as much as either PM or TDM+C which end up performing
as well as TDM.

4.5. Scale-Up Performance : No Reduction and
Time Partitioning

This experiment is designed to measure the effect of time
partitioning on the scale-up properties of the proposed algo-
rithms. The settings for this experiment are summarized in
Table 4.

The dataset for this experiment was generated in a man-
ner similar to the first one, but with StartDate rather than
SSN partitioning. This was done by sorting the whole
dataset by the StartDate attribute and then splitting it into
64 partitions of 64K tuples each.

Time Partitioning did not significantly help any of the
algorithms. We originally expected TDM and TDM+C to
benefit from the time partitioning but we also realized that
for this to happen, the partitioning must closely match the
way the global time divisions are calculated. Because we
randomly assigned partitions to the nodes, TDM did not
benefit from the time partitioning. In fact, it even performed
a little bit poorer in all but the 16-node run. We attribute the
small performance gaps to differences in how the partition-
ing strategies interacting with the number of nodes made
TDM redistribute mildly varying numbers of leaves across
the runs. As for SM and PM, they exhibited no conclu-
sive improvement because they were simple enough to work
without considering how tuples were distributed across the
various partitions.
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Figure 11. Scale-Up Results (4M tuple Dataset
with No Reduction and StartDate Partitioning)
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Figure 12. Variable Reduction Experiment
(65536 tuples/node, 16 nodes, StartDate Par-
titioned)

4.6. Performance Measurement : Variable Reduc-
tion

This experiment is designed to measure the effect of a
varying amount of data reduction on the scale-up properties
of the proposed algorithms. The settings for this experi-
ment, provided in Table 4, summarizes the parameters for
this experiment.

For this experiment, six sets of partitions were generated.
Each set had 16 partitions, one for each of the 16 processing
nodes participating in the six runs. The partitions were gen-
erated having 0, 20, 40, 60, 80 and 100 percent reduction.
Timing results for this experiment are plotted on Figure 12
and lead us to the following observations.

TDM is the least affected by varying data reduction.
The low slope of TDM’s performance curve in Figure 12
shows us that it is the algorithm least affected by variations
in local reduction. The reason for this is that, among the
presented algorithms, TDM exchanges the least number of

leaves as discussed when we observed that the performance
for TDM+C and PM caught up with TDM in the second
experiment.

Increasing the amount of data reduction improved the
performance of the proposed algorithms.Like the second
experiment, increasing the amount of reduction improved
the performance of the parallel algorithms. With higher de-
grees of data reduction, aggregation trees became increas-
ingly smaller with fewer leaves to exchange between nodes.

4.7. Summary

The empirical observations confirm that dataset parti-
tioning, result placement, data reduction effected by the ag-
gregation, and the number of processing nodes affect the
proposed algorithms in different ways. SAT and SM, as
seen in Figures 9, 10, and 11, were affected most by the
number of processing nodes. Figure 12 shows that SM,
SAT, PM and TDM+C were significantly affected by low
data reduction while TDM was the least affected. Also, Fig-
ures 9, 10, and 11 show that TDM has the best performance
under all situations, but only if distributed result placement
is desired. On the other hand, PM has centralized result
placement but scales well only when data reduction is high,
as seen in Figure 10. TDM+C also provides centralized re-
sult placement but does not scale-up better than PM unless
there is low reduction and the number of processing nodes
is large. Lastly, dataset partitioning only affected the TDM
variants, and even then, not substantially.

5 Conclusions

Temporal aggregate computations are important opera-
tions in a temporal database system. Traditionally, this has
been an expensive operation in sequential database systems,
therefore, the question arises as to whether parallelism is a
cost-effective approach for improving the efficiency of tem-
poral aggregate computations.

The main contribution of this paper is a collection of
novel algorithms that parallelize the computation of tem-
poral aggregates. We ran these algorithms through a series
of performance measurements and observed how different
properties affected their behavior. From these observations,
we provide the following conclusions which should help in
the design of a parallel database system’s query optimizer
that selects the right temporal algorithm for a particular sit-
uation. Our recommendations are summarized in the matrix
in Table 5.

1. Use TDM whenever distributed result placement suf-
fices, regardless of any other parameter. As discussed
in Section 3, distributed result placement is useful for
distributed subqueries which are parts of larger dis-
tributed queries. Also, distributed result placement



Data Node Distributed Centralized
Reduction Count Results Results

HI Small TDM PM
Large TDM PM

LOW Small TDM PM
Large TDM TDM+C

Table 5. Matrix of Recommendations

suffices when the aggregation results are not required
for theentire timeline (i.e., finding the (time-varying)
salaries of all employees for the last year).

2. For centralized result placement, use PM whenever
there is a high degree of data reduction. Also, for a
small configuration of processing nodes, having rela-
tively high reduction, PM should be used.

3. For centralized result placement, low data reduc-
tion, and larger processing node configurations, use
TDM+C.

Our experimental observations lead us to the following
issues for future research.

1. Improved algorithm for assigning global partitions to
nodes. For the TDM variants, we currently assign
global partitions to worker nodes in a naive manner.
We therefore need a better global partition assignment
policy that attempts to minimize the number of leaves
redistributed. In effect, this would lower network costs
and improve performance.

2. Impact of skew.In a temporal aggregate query with
tuple placement and/or selection skew, some worker
nodes will complete its local aggregation tree faster
than other nodes. We expect PM to outperform
TDM+C in queries with heavy tuple placement skew
and/or selection skew [10]. However, the specific im-
pact of skew should be investigated.

3. Load balancing.As mentioned in the empirical sec-
tion, uneven computing time on the processing nodes
as caused by dataset characteristics, and system load
make nodes unnecessarily wait idly for more loaded
nodes. Strategies for balancing the loads among the
nodes would help reduce idle-waiting and improve par-
allel algorithm performance.

4. Real-world dataset.All the experiments we have con-
ducted so far have been on synthetic datasets. We
therefore feel that testing the parallel algorithms on an
actual dataset would provide a better understanding of
how the parallel algorithms will perform in a realistic
setting.

5. Disk-paging strategies.Our proposed algorithms rely
solely on main memory for storing runtime informa-
tion, which include merged lists, aggregation trees and,
message queues. A disk-paging strategy that is aware
of how the parallel algorithms work will allow the al-
gorithms to handle larger dataset sizes.

6. Deeper sensitivity analysis to other factors.We have
studied the effects of different parameters on the pro-
posed algorithms. It is obvious, however, that other
factors such as long-lived tuples and data distribution,
among others, would affect the proposed techniques.
Studying these effects is a ripe area for further re-
search.
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