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Abstract

Monitoring is the extraction of dynamic information concerning a computational process,
as that process executes. Distributed systems, with their qualitative and quantitative increases
in complexity, demand an intelligent monitor. The thesis of this dissertation is that monitoring
is fundamentally an information processing activity, and that the relational model, as abplied
in relational databases, is an appropriate formalization of this information. In this approach,
- the notions of entity (data structures, processes, hardware components, etc.) and relationship
(processes running on processors, messages in queues, etc.) are structured as a set of time-
varying relations. Queries on this collection of relations are translated into retrieval and

computational activities to be performed by the monitor.

Data collection is an important aspect of monitoring. After discussing a model of the
environment where data collection takes place, a flexible, strongly typed, efficient data
collection mechanism is presented. The impact of various features of the environment on this

mechanism is examined.

The user specifies the desired actions of the monitor with a high-level, non-procedural
query language called TQuel. This language is a superset of Que!, a relational database
query language, with additional syntax and semantics to incorporate time as an integral part
of the language. A formal semantics with several useful properties relating to monitoring is
presented.

Queries in TQuel must be converted into a procedural form in order to execute efficiently.
Update networks, designed for dynamic, incremental updating of derived relations, are
introduced as the target language for the TQuel translator. These structures are composed of
access nodes, which interface effectively with the system being monitored, and operator
nodes, which carry out the desired computations. The generation of update networks
involves several sophisticated techniques. Most of these techniques have their origins in

relational databases, and have been adapted to the monitoring domain.

In order to validate the relational approach, most of the components of the monitor were
implemented and instrumented. Measurements show that the monitor can generate and
process several hundred events per second, while at the same time presenting the conceptual

viewpoint of time-varying relations to the user.
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. Approach

The title of this dissertation has two components. The first component, Monitoring Dis-
tributed Systems, crisply states the problem. The second component, A Relational Approach,
provides the solution. The central thesis of this work is that the relational model is an ap-
propriate formalization of the information processed by a distributed monitor. The first part of
this dissertation demarcates the problem and motivates the approach. The second part
defines the language, first informally and then rigorously, used to query the monitor. Part Il
presents strategies for processing queries in this language, and examines an implementation
of the monitor. Several appendices provide details that would blur the focus of the main text.

The two chapters in this part expand on the title. The first chapter will discuss in more
detail what is involved in monitering distributed systems, and why it is such an interesting and
ditficult problem. The second chapter introduces the relational modei and lists the primary
issues involved in the application of this model to monitoring.
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Chapter 1
The Problem

1.1. The Cause and the Result
The cause is hidden, but the result is known.

-- Qvid, from Metamorphoses {V

In the realm of computing, as in all analytic endeavors, one must first understand the
behavior before one can understand the underlying reasons for that behavior. As the com-
putational structures employed in programs become complex, computer system designers,
implementors, and users find it increasingly rare that they can agree with Ovid that "the cause
is hidden, but [at least] the result is known." HRonitoring is & necessary first step in under-
standing a computational process, for it provides an indication of what happened, thus serv-
ing as a prerequisite to ascertaining why it happened.

The realization that monitoring is a difficult task, one that deserves study, has come only
recently to the computing community. When computing sysiems were simpler, it was pcssible
to understand adequately the system’s behavior with rather unsophisticated monitoring tools
and (considerably more sophisticated) modeling techniques. Many aspects, such as charac-
terizing the control flow or determining execution times, were so straightforward as to not
even be considered issues. Times have changed, and many of these "non-issues" are now
so problematic that present monitoring systems often do not provide any solutions to them.

1.2. Definitions

The definition of monitoring employed in this dissertation is a rather general one: monitor-
ing is the extraction of dynamic information concerning a computational process, as that
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process executes'.

A computational process is anything that can be said to compute2 . Examples include a
microprogram, a subroutine, a conventional process, a collection of processes, or even an
operating system. Computational processes vary in at least two ways concerning monitoring:
(1) the number of components to be monitored, from a single wire on a bus to the entire
system, and (2) the time frame in which the measurements take place, ranging from tens of
nanoseconds to months. The level of abstraction (the granularity) at which the monitoring
takes place has a substantial effect on the methods used to collect data.

Dynamic information may also be spread over a large range of temporal granularity, from
information concerning the sequence of microinstructions executed during a particular time
interval, to the average amount of time a routine executes, to some global statistic concerning
the execution of a whole series of programs. If the information to be collected is not dynamic,
there is no need to collect it as the process executes.

Defining a distributed system is difficult. Although John Shoch has several arguments to
support the contention that "there is nothing different about ‘distributed’ computing" [Shoch
81}, he also presents several distinctions between distributed and non-distributed systems
{his widely-shared belief is that there is a difference). The two relevant to monitoring are

o Distributed systems are characterized by a lack of central control.

o A quantitative difference in the number of system components (processors,

memaory, addressing domains, et¢.) leads to a qualitative differenced.

1There are at least two other definitions of monitor which should be mentioned. One use of the word monitor,
prevalent in the 1960's and early 1970's, is as a synonym for operating system or at least the user interface of an
operating system. The second refers to an arbiter of access to a data structure in order to ensure specified
invariants, usually relating to synchronization [Hoare 74]. Both definitions emphasize the control, rather than the
observational, aspects of monitoring. The term menitor as used in this dissertation is the (usually software) agent
pertforming the monitoring.

2. . . . .
Italics will be used for introducing new terms and for emphasis.
Boldface will be used for reserved words.
sMaLL CaPITALS will be used for names of relations. "

3At the same workshop [Liskov 81], Richard Watson added several related attributes: more heterogeneity,
distribution of state, and communication via messages. David Reed offered perhaps the best argument for
monitoring in his characterization of distributed systems: "In centralized systems, it has been possible so far for
single persons to understand the entire system (even of the size of MULTICS). This will not be possible for distributed
systems. How can we comprehend parts of the system without comprehending all of it?" Two other charac-
terizations of distributed systems have been proposed which will be quite important in monitoring: (a) a completely
accurate global clock is not available, and (b) once a remote action has been requested, the requester cannot always
determine, in a bounded time, whether or not it has occurred. [Enslow 78] provides yet another definition.
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These two aspects conspire to 1nake monitoring a distributed system a difficult (and thus
interesting) task. A precise detfinition of 'distributed’ is not important; the intent of the title is
to include the above attributes in the problem domain.

The general definitions presented above allow concepts developed in this research to be
applied to several previously unrelated domains. This section closes with a discussion of
representative utilizations of monitoring information.

One use of monitoring is to facilitate the debugging of complex programs. Debugging
proceeds in five stages [Model 79]4: (1) observe the behavior of a computer program; (2)
compare this behavior with the desired behavior; (3) analyze the differences; (4) devise
changes to the program to make its behavior conform more closely to the desired behavior;
and (5) alter the program in accordance with these changes. Monitoring is concerned with
the first two stages in this process. The third and fourth stages are still the province of the
programmer (although the Programmer’s Apprentice project [Shrobe 79] is making progress
in this area); the fifth stage is routinely accomplished using text editors, and could be
automated given the automation of the fourth step.

A second use of monitoring tools is in making efficient use of limited computing resources.
ideatly, optimization of resources wouid be done analytically, but in general a priori deter-
minaticn of runtime efficiancy is impossible. Thus it is necessary to tune the application once
it is implemented. Tuning requires feedback on the program’s efficiency, which is determined
from measurements on the application while it is running5.

A third use of monitoring is to query the system, not for performance measures, but merely
for status information, such as how far a computation has progressed, who is logged on the
system (the system status command of most time-sharing systems), the state of certain files
(the catalogue or directory commands), or the quantity and nature of hardware and software
failures.

And finally, monitoring information may also be used internally by the application program
for various purposes. For example, consider a program which varies the number of
processes dedicated to a particular function based on the request rate for that function.
Information concerning the hardware utilization and the number of outstanding requests
could be used by the program to determine whether to start up more processes to handle the
current demand (if the utilization is low and the request rate high) [Rashid 80a, Wulf et al.
75a). Monitoring information is also valuable for programs which must be reliable; the fact

4Joseph Newcomer points out that this process is essentially the scientific method.

5This tuning has been termed performance debugging: it's not enough just to show that a system works; you want
it to work well [Liskov 81].
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that a processor (containing particular processes beionging to a program) has failed, for

example, is important to the program if it must be able tc recover from such failures®.

1.3. The Impact of Complexity on Monitoring

The previous section indicted that monitoring is difficult because of the complexity and
decentralization of the process being monitored. The purpose of this section is to determine
how increased complexity impinges on the task of monitoring. The impact of decentralization
is reflected more in the specific algorithms and will be dealt with in later chapters. We will
start by investigating the monitoring of the program counter, certainly an important aspect of
the dynamic state.

In the "good old days", a program consisted of a single program executing on a monolithic
operating system on a single processor. The program counter could be traced or sampled.
Tracing, which involves storing the information each time some event occurs, is usually done
at the procedure, statement or individual instruction level, with a concomitant increase in
overhead. At the beginning of each procedure (or statement or instruction), code is inserted
by a preprocessor to increment a counter or generate a timestamp. A postprocessor is often
used to correlate the data with the source text of the program.

Sampling involves storing information asynchronously with the execution of the program.
Usually sampling is initiated by a clock tick, by an operating system call, or by a separate
process. The information gathered by sampling is stochastic; for instance, it can indicate
what percentage of execution time takes place within an individual routine, but it cannot
reliably determine how many times a routine was invoked. Sampling has the advantage that it
requires fewer resources, and thus perturbs the system to a smaller degree than tracing.

In the past two decades the programming environment has changed radically. In some
sophisticated systems being developed today, a program consists of many interacting
processes running on many geographically distributed computers communicating over high
bandwidth networks [Clark 78]. These systems differ quantitatively with systems of the past:
where there was one processor, there are now tens to hundreds; where there was one
process, there are now many per processor; where there were a few 1/0 devices, there are
now complex communication media, sophisticated encoding formats, and powerful inter-
process communication protocols, all supported by large software components; where there
was a single contiguous address space, there are now many small, separately addressable
objects, each containing code or a specific data structure.

6Eric Rosen, in an article describing a particularly interesting instability which occurred on the ARPANET,
concluded that "we need a better means of detecting that some high priority process in the Imp [a node on the
ARPANET], despite all the safeguards we put in, is still consuming too many resources.” [Rosen 81}
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Returning to the example of monitoring the program counter, we must first determine what
the "program counter” means in a distributed system. One possibility is to use the program
counter of each of the processes making up the program of interest. For the single process
example, the routine name and statement number within that routine may be quite infor-
mative; a printout of, say, fifty routine names and statement numbers is rather overwhelming.
This quantitative difference necessitates a qualitative change in the menitor, for there is one
aspect that remains unchanged: the user (and especially the information capacity of the user)
musi still interpret the monitoring data.

The presence of the user has been implicit throughout this discussion. Fundamentally, the
user is not interested in the program counter at all; instead, the user wants an understanding
of the state of the execution as it evolves through time. This state manifests itself in many
forms: the changing values of the variables in the program, the input read by the program and
the output produced, the constantly changing program counter. All are valid components of
the program state, and each may be sufficient when monitoring a single process. Individually,
and in their raw form, however, they are woefully inadequate for monitoring distributed sys-
tems, because there is simply too much information, most of it irrelevant. Instead, the monitor
must be able to express the system state (as well as other attributes of the system) in a form
useful to the user.

As an exampla, suppose the monitor could provide this descrintion of the program state:

Process A is waiting on process B to acknowledge the xxx request; process Y is
sending process Z information concerning the object yyy; and process M has
completed.

There are several aspects to note in this example. The information the monitor displayed is
both less and more than a list of program counter’s. The monitor had to understand that a
program counter in a certain range meant that process A was waiting for something, yet the
exact program counter was unimportant. Conceivably, the program counter could have been
completely different and the monitor would have displayed the same information. In addition,
the monitor had to be able to lock inside the various queues and buffers maintained by the
communication mechanism in order to be able to state that a process is waiting on another
process to acknowledge a particular request. Names had to be associated with the various
processes, objects, and requests in order to produce an intelligible state description. And
finally, the monitor had to know that the user was interested in the current state in terms of
interprocess communication. Another perhaps just as useful state description is

Process A has used 75% of its resources, while processes X, Y and Z have used
only 20% of their resources.

The decentralization inherent in distributed systems also necessitates interpretation of the
monitoring data. The mention of several processes in the previous example implies a degree
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of logical decentralization; if those processes are on different processors, then there is also
physical decentralization. To present a global view of the program state, the monitor must -
integrate data collected at geographically distinct sites. Simply determining what information
to collect and where to acquire this information becomes a difficult task. Hence the quantita-
tive and decentralized aspects of the monitored system, coupled with the limitied information
handling capabilities of the user, demand an intelligent monitor. The next section will discuss
the organizing concepts for a monitor which can collect information from a variety of sources,
interpret this information, and present it in a series of high level views in a format comprehen-
sible to the user.

1.4. Knowledge Representation

In its most general form, the process of monitoring is concerned with retrieving information
from the monitored system and presenting this information in a derived form to the user.
Viewing the monitor as the proverbial black box, it is fundamentally an information processing
agent. As the previous sections have indicated, this activity is rather sophisticated. Looking
inside this black bax, there is some form of know!edge representation to direct the monitoring
activity. Thus, there are at least two ways to view a monitor abstractly: as a knowledge
representation systern and as an information processing agent. As will be seen, both of these
views are fruitiul. The rest of this chapter wiil investigate the knowladge representation issues;
chapter 2 will pursue the information processing aspects of monitoring.

in an examination of the discussion of a possibie high-level program counter, one starts to
nctice phrases such as "the monitor had to understand.” In cne sense, the monitor can't
undersiand; it is, after all, only a computer prcgram. However, computer programs are
remarkably versatile (c.f. Church’s Thesis) and almost any type of desirable behavior can be
programmed with the correct selection of data structures and algorithms. Hence, the process
of "teaching the monitor" or "making the monitor understand” is transformed into the more
intellectually manageable task of deciding what data structures and algorithms to employ
within the monitor.

These data structures and algorithms encode the knowledge the monitor can apply to the
task at hand. Existing monitors perform little interpretation of the collected data, and thus use
rather ad hoc methods for determining what to monitor and how to perform the monitoring.
Two recent systems have addressed the monitoring of complex systems; it is useful to analyze
the character of knowledge each used to direct the data collection and interpretation.

Model’s thesis [Model 79], one of the first to approach this topic systematically, stressed the
adoption of a uniform model of a complex activity for use in monitoring. His monitor was
designed to be used with programs implemented in artificial intelligence languages such as
KRL, which are themselves implemented in Lisp. Despite the sophisticated control and data
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structures provided by these high level languages, most debugging is still done in the im-
plementation language. The complexity of programs written in these languages is seriously
limited by the lack of adequate debugging tools. Model argued that of the five stages present
in the debugging process (see section 1.2), monitoring has the most potential for improve-
ment at this time.

The monitor collected events generated by the interpreter (the monitor had no control over
which events were collected). These events were related to the program’s data and control
structures implicitly in the routines generating the events. However, some cross-referencing
was done, so that the monitor knew, for example, that some events caused other events. The
user could specify which events, as well as which fields in these events, were to be displayed.
The knowledge utilized by the monitor was wired into its code.

Gertner's thesis [Gertner 80] focussed on the flow of messages between processes in RIG
[Ball et al. 76}, a distributed system constructed at the University of Rochester. In his system,
Gertner described the computation using finite state automata, with the transitions being
events (usually messages sent between two processes in the system). Associated with each
message is a set of timestamps relating to the activity involved in processing the message.
These timestamps allow the monitor to calculate processing intervals, message counts, over-
lapping periods, etc. A hierarchy of finite state automata can be defined, with elementary
transitions at one level composed of multiple transitions at a lower level. This hierarchy allows
monitoring information to be presented at the appropriate level cof abstraction. Again, the
knowledge of how to derive informaticn from the timestamps was implicit in the monitor's
code.

Unfortunately, these approaches are simply inadequate for distributed systems. In Model's
system, events capture only the notion of state transitions. The system state must be inferred
by the user. Modeling all activity in terms of finite state automata, as in Gertner’s system,
while expressing to some degree the semantics of the periods between the events, is overly
restrictive. Sampling data (as opposed to trace data) does not integrate easily into the
scheme. The proliferation of extraneous states is also a problem which results from a total
reliance on this mode!l. Because of the restricted modules built into these systems, it is un-
clear how the systems could be extended to eliminate these problems.

In order to construct a monitor which can apply substantial knowledge concerning the
system being monitored, this knowledge must be organized in a coherent fashion. Thus a
formalism is needed to describe this knowledge. The formalism must, to some degree, en-
code the following knowledge:

e what information the monitor collects concerning the system;

e how new information can be acquired by the system,
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e what dependencies exist between various components of this information;

e how the information relates to the data and control structures within the
programs, and to the data and control structures of the underlying operating
system; and

e what information the user wants to see.

There are also three basic notions that must be characterized by this formalism: entity,
relationship, and time. The monitor must understand that there are such things as proces-
sors, processes, memory, message ports, semaphores, etc. and that certain relationships
exist between these things, such as a process running on a processor. In Model's thesis, for
example, entities were the values of certain attributes, and the relationships were the events
themselves.

The third notion is that of time. The monitor must understand that facts are only true for a
certain period of time, and that entities and relationships are temporally bounded. For in-
stance, in Model’s thesis, time was one of the fields in each event record, and queries could
specify which time period the user was interested in. Also, Model’'s monitor understood that
egvents were sequential, and thus that some events were after others. However, the concept of
something being true for a period of time hetween two events is not represented within the
rornitor, and thus the user could not request such information. Clearly, a mulliprocess
monitor must have a better understanding of time.

The aim of this chapter has been to sufficiently refine the original problem statement into
one which can be attacked in concrete terms. This chapter has argued that monitoring is
concerned with knowledge representation and information processing. The next chapter will
investigate the information processing aspects of monitoring.



Chapter 2
The Relational Model

Viewed abstractly, a monitor collects, manipulates, stores, and displays information con-
cerning the dynamic state of a computational process. It is fundamentally an information
processing agent: the information describes temporal relationships between entities involved
in the computation, and the processing is quite sophisticated, due to the cognitive limitations
of the user. Previous work on monitoring has concentrated on techniques for collecting
monitoring data. As the previous chapter demonstrated, such a view is inadequate. The
approach taken in this thesis is the information must be structured in such a way that
manipulating it is straightforward. Also, there must be powerful algorithms which can satisfy
highly variable requests from the uzer.

A great deal of rescarch has considered effective ways to process information. One of the
results of this research has been the relaticna! model [Codd 70]. The relational model
provides both a structuring of the information and operations on that information. Information
is stored in relations. A relation models a particular relationship between collections of en-
tities. Relations can be thought of as tables having a number of rows and columns. The rows
are called tuples and the columns domains. Each tuple of a relation models a particular
relationship between entities named in the domains of the tuple. For example, the relation

Employee (Name, Salary, Department)

might include the tuple (Huttinger, 44000, Commerce). New relations can be derived from’
existing ones, using one of several data manipulation languages developed for the relational
model; these query languages are syntactically simple yet are remarkably powerful in their
expressiveness. One important aspect of some query languages is that they are declarative
rather than procedural: they specify what information is desired, rather than how this infor-
mation is to be derived. One possible query on the Employee relation would be to retrieve into
a relation GivePerks (Name) all the employees making more than some minimum salary.

The central thesis of this work is that the relational mode! is an appropriate formalization of
the information processed by the monitor. The primary benefits include a simple, consistent
structure for the information and the existence of powerful declarative query languages. Pre-
vious uses of the model have been confined to static databases. The remainder of this chapter
discusses how the relational model is applied to the monitoring domain.
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2.1. Entities and Relationships

In order to use the relational model in monitoring, monitoring analogues must be specified
for each of the components of the model. We will be more formal in order to characterize the
application of the relational model to the monitoring domain precisely.

A relation is any subset of the Cartesian product of one or more domains [Ullman 82]. A
domain is simply a set of values. These values may be literal, such as integers or character
strings, or they may be names of entities. Entities are conceptual objects which exist in-
dependently within the system being monitored. Entities may have a physical realization,
such as a processor, a disk, a line on a bus, or a word in memory. Alternatively, entities may
be virtual, such as a user job, an activity queue, or a capability list. Entities have names (both
internal and user-oriented) which allow them to be identified.

There are two types of relations in the monitor: primitive and derived relations. Both
represent relationships between entities. Each tuple of a relation indicates a particular
relationship between the entities named in the domains of the tuple. An example is the
RUNNINGON relation, which has two domains: a process and a processor. The tuple
(Process17, Processor5) in this relation represents a fact concerning Process17 and
Processor5d, namely, that Process17 is running on Processor5b.

Conceptually, each primitive relation is asscciated with a predicate that is true if the
relationship is satisfied for a given set of entities. This association provides a well-defined
semantics for the relation, since a particular tuple is in the relation if and only if the predicate
returns true when applied to that tuple. The predicate for the RUNNINGON relation might be
"the process is in the run-queue of the processor.” Primitive relations may exist at any
monitoring granularity in the system. The sole requirement is the ability to specify the predi-
cate as some function of the system state accessible to the monitor.

Primitive relations are often just that. The user is probably not interested in the level of
detail present in the primitive relations; instead, the user desires more summary information
extracted from this detail. Query languages provide a powerful mechanism for specifying
exactly the information the user wants to retrieve from the monitor concerning the system. In
this way, information not anticipated by the designer of the monitor is still available to the
user, provided the basic information is available to the monitor through the defined predi-
cates. An example of a derived relation is RUNNINGONPROCESSORS, containing a Process
domain, which would contain exactly one tuple at any instant of time, the process which is
currently running on ProcessorS.

Section 1.4 listed three notions to be characterized: entity, relationship, and time. The first
two have been are modeled directly in the relational model. The third is perhaps the most
fundamental, for without the system state changing as time progresses, there is no need to
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monitor the system. Hence, it is important that the notion of time be consistently represented
within the monitor.

2.2. Time

Time goes, you say? Ah no!
Alas, Time stays, we go.

-- Austin Dobson, in "The Paradox of Time"

Time by itself does not exist; but from things themselves there exists a sense of what has
already taxen place, what is now going on, and what is to ensue. It must not be claimed that
anyone can sense time by itself apart from the movement of things or their restful immobility.

--Lucretius, in De rerum natura, Book |

Within the monitor, relations are differentiated temporally: there are event relations and
period relations. A tuple in a period relation specifies a relationship valid during the time
interval [t, t,]. The RUNNINGON relation described earlier is a period relation, since each
particular tuple is true for a finite stretch of time. Since the relation is a collection of tuples, it
is aiso a collection of periods.

A tupie in an event relation describes a change in the slate of the system which occurred at
a particular instant of time. Events delimit periods: a given event causes one or more periods
to start; other event(s) cause the period(s') to stop. An example is the STARTRUNNING event
relation, with processor and process domains. The tuple (Process17, Processor5) in this
relation represents the instantaneous event of Process17 starting to run on Processor5. This
event caused a similar tuple in the RUNNINGON period relation to be true.

Event and period relations are complete, in that a succession of system states at a par-
ticular level of abstraction {the monitoring granularity) can be determined by the appropriate
event or pericd relations. For example, either the RUNNINGON or the STARTRUNNING relations
are sufficient to specify when each process was running on each processor. Since they are
complete, they are also duals, in that the tuples in a period relation can be determined given
the appropriate event relations, and an event relation can be generated given the appropriate
period relations. Hence, knowing which events occurred provides the periods which were
started or stopped by those events, and knowing when the periods started and stopped
provides the events that occurred. Although this duality depends on a number of assump-
tions which are often difficult to satisfy in practice, it is important because it provides a way to
accommodate both sampling data, related to period relations, in that successive samples
provide the successive tuples of a period relation and tracing data, related to event relations,
which are generated by a stream of events. 4
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Because relations can be derived from other relations and relations represent events and
periods, it is possible to speciiy derived events and periods. The query language must be
augmented with additional semantics to permit the specification of such temporal relation-
ships as simultaneity and consecutivity. Figure 2-1 iilustrates how derivation and duality
interact.

2.3. Summary

This chapter has provided the fundamental thesis for this research:

The information collected by the monitor should be presented to the user as a
collection of time-varying relations which can be manipulated by a temporal query
language.

This contention was supported by considerations of programming environment complexity,
cognitive limitations of the user, and the underlying functionality of the monitor. There
remains one problem: how can the relational view as presented to the user be supported
effectively by the monitor? In this context, etfectiveness implies powerful, user-friendly, ef-
ficient and system-independent, all interrelated attributes. Relations are structurally simple,
and the query languages are straightforward. The concept of a dynamic database of infor-
mation on the behavior of the sysiem is easy to compizhend and use. The user still specifies
what information is desired; the monitor must apply all of its knowledge to determine how to
supply this information: what information to collect and what manipulations on this infor-
mation are necessary, and it must do this in an efficient manner. The goal is to construct a
monitor which can suppert the relational model in its full generality for the user, yet perform
the actual monitoring as effectively as a manually constructed monitor tailored to the specific
task.

This dissertation is loosely organized around a sequence of problem and result statements.
implicit in each problem statement are the results generated by preceding statements, be-
cause one benefit of acquired knowledge is the ability to ask further, more precise questions.
Given the framework presented so far, it is possible to ask several general questions:

Problem: How may traditional query languages be extended for use in monitor-
ing?
Problem: Is it possible to provide effective data collection mechanisms?

Problem: How can the dynamic incremental updating of temporal relations be
implemented effectively?

Problem: How can knowledge be used to direct the processing of user queries?

The following chapters will present solutions to all of these problems.
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Il. A Temporal Query Language

The two chapters in this part define the language used to query the monitoring data base.
An informal definition is given first, emphasizing the way in which the constructs of the lan-
guage may be used to make meaningful queries involving time. The second chapter then
provides a formal semantics for this language. In a first reading, the reader is encouraged to
skip most of chapter 4, reading only the introduction to the tuple calculus and the summary
(sections 4.1 and 4.6).
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Chapter 3
An Informal Definition

This chapter describes a language for querying a temporal data base such as the one
supported by the monitor. The user indirectly specifies the actions to be taken by the monitor
by describing the desired information in this language. As a result of processing the query,
the correct information is collected, processed, and presented to the user. There are two
prerequisites for this scenario to be realized: the user's query must contain a complete
specification of the desired information (with as little irrelevant detail as possible), and the
monitor must be able to take this abstract specification and "do the right things" with it. This
chapter will deal with the specification itself, the query language and the next chapter will
present a formal semantics for the language.

The language is a strict superset of Quel [Held et a/. 75], calied Temporal QUEry Language,
or TQuel. Quel, used in the Ingres relational database system [Stonebraker et al. 76], is a
relational tuple calculus language with 16 basic statement types: Append, Copy, Create,
Define, Delete, Destroy, Help, Index, Integrity, Modify, Permit, Print, Range,
Retrieve, Save, View. These statement types, presented in detail in [Held et al. 75], support
the creation and destruction of databases and relations, storage structure modification, bulk
copy of data, consistency, integrity, and concurrency control, retrieval of information, and
miscellaneous operations. Since the task of monitoring concerns primarily the retrieval of
information, only changes to the retrieve statement were investigated. A full implementation
of a monitor would also have to make modifications to several of the other statement types.
Since TQuel is a strict superset of Quel, every acceptable Quel retrieve statement is also an
acceptable TQuel statement. The complete syntax for the TQuel retrieve statement is given
in Appendix A.

TQuel augments the retrieve statement with additional syntax, and provides a more com-
prehensive semantics by treating time as an integral part of the database. Before inves-
tigating these changes, it is instructive to examine the original Quel retrieve statement. The
Quel examples all concern the following relation:

Employee (Name, Dept, Salary, Manager, Age)
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3.1. The Quel Retrieve Statement

Informally, the Quel retrieve statement selects a subset of the tuples in one or more
relations, extracts one or more domains from the tuples in this subset, and combines the
domains into result tuples. The retrieve statement works in conjunction with the range
statement (the syntax is presented in standard BNF, with ¢ designating the empty string and
nonterminals in brackets):

{range statement> ::= range of <tuple variable> is <relation>
{tuple variable> ::= <name>

{relation> ::= <{name>

The statement

range of E 1is Employee

specifies that the <tuple variable> E will be represent the tuples of the relation EMPLOYEE on
any subsequent retrieve statements, until E is redefined by another range statement. The
expressions appearing in the retrieve statement contain constants and previously defined
<tuple variable>s.

The retrieve statement creates a new relation (perhaps only temporarily, if no <relation> is
provided) with the domains named in the <target list> whose tuples satisfy the <boolean
expression>. For example, to compute the salary divided by Age - 18 for cach employee in the
Toy department:

retrieve into T (Comp = E.Salary /7 (E.Age - 18))

where E.Dept = "Toy"
results in a new relation T which has a single domain Comp calculated for each qualifying
tuple. The <target list>

(Comp = E.Salary / (E.Age - 18))
specifies the domains of the new relation. In this case, T will contain one domain called
Comp, computed from the Salary and Age domains of the tuples in EMPLOYEE. The <{where
clause>

where E.Dept = "Toy"
specifies which tuples will contribute toward the new relation. The retrieve statement thus
consists of a domain specification component (the <target list>) and a tuple selection com-
ponent (the <where clause>). Each may be defaulted; the <target list> to all the domains in one
of the underlying relations; and the <where clause> to

where true

The complete syntax is as follows:
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{retrieve statement> {retrieve head> <where clause>
{retrieve head> retrieve <into> <{target 1list>
<into> € | unique | <relation> | into <relation>

{target Tist> ::= ( <tuple variable>., all ) | ( <t-1ist> )

<t-1ist> = (t-elem> | <t-list> , <{t-elemd
{t-elem = <name> <is> <expression>

s> 1= is | o=

{where clause> ::= ¢ | where <Boolean expression>
{relation> = <{name>

3.2. Adding Time to Quel

While ladies draw their stockings on,
The ladies they were are up and gone.

--Ogden Nash, in "Time Marches On"

Since TQuel must be able to express queries on temporal relations, the retrieve statement
was augmented with additional seinantics involving time. As introduced in chapter 2, tem-
poral relations are collections of tuples, each representing either an event or a period. Hence,
each <tuple variable> appearing in a retrieve statement will constitute both an assignment of
values to domains, and a time element. The retrieve statement thus becomes a way to
specify the combination of one or more periods and/or events into a resulting period or event.
This characterization. as we will see, has far-reaching consequences on the syntax, seman-
tics, and processing of the TQuel retrieve statement.

There is a fundamental decision to be made when adding time: should the time domain be
explicit, that is, directly manipulatable by the user in the <target list> and <where clause>, or
implicit, manipulatable only through additional clauses in the language. TQuel adopts the
latter approach, for several reasons.

One reason TQuel provides separate clauses for the time domain is that the alternative,
allowing the user to manipulate time as simply another domain, attempts to ignore an impor-
tant aspect of the database. Time is fundamental in a temporal database and significantly
impacts the processing of such a database (this aspect will be considered in detail in sub-
sequent chapters). Ultimately, the fact that a tuple has a domain specifying the time it was
valid determines to a major extent the processing of that tuple. To the database management
system (i.e., the monitor), the time domain is much more important than the other domains
found in the tuple.

A second reason involves the operations allowed on the proposed time domain. The state-
ment (in an imaginary query language)
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retrieve . . . .

where A.time < B.time
implicitly states that the tuple represented by the <tuple variable> A was generated before the
tuple represented by B. Not only must the monitor discover this fact, but so must the user. A
perhaps more satisfying syntax is

retrieve . . . . .

when A before B

The semantics in the second case is clearer both to the monitor and the user.

Finally, the monitor should permit as much flexibility as possible, without enforcing inane

rules to disallow semantically incorrect queries. For example, the query

retrieve (D = A.D, Time = A.Time)

where B.Time < (A.Time or C.Time)
might have the semantics that B must be followed by A or C, and that the time of the result
tuple is to be the same as the underlying tuple, represented by the <tuple variabled>
A. However, another, quite similar, query:

retrieve (D = A.D, Time = A.Time or C.Time)

does not make sense, although the types still match. The problem is that the time domain is
being used in several different ways, yet the same syntax is being applied in all cases. In
TQuel, the first statement (in an appropriate syniax) is allowed, while the second is not.

3.3. The TQuel Retrieve Statement

For the reasons expressed above, the approach taken with TQuel was to make the time
domain an implicit one, and to extend the retrieve statement with clauses dealing with this
implicit domain. As discussed earlier, the Quel retrieve statement consists of a domain
specification component and a tuple selection component. TQuel augments the statement
with two analogous components: the temporal delimiter component and the temporal selec-
tion component:

{retrieve statement>
<retrieve tail> HE
{selection> :

<retrieve head> <retrieve tail>
<{selection> <temporal delimiter>
<where clause> <temporal selection>

n o n

The only other change is that the <target list> may be empty, specifying an event or period
relation with no explicit domains.

In TQuel, each relation represents a collection of events or periods; for simplicity, let us
restrict the discussion to periods. Each tuple (period) of the resulting relation consists of
domains from the tuples (periods) of the underlying <tuple variabled>s. The combinations of
the underlying tuples which are accessible is determined by the selection component (on the
explicit domains) and the temporal selection component (on the implicit time domains). The
domains of the result tuple are determined from the explicit domains by the domain specifica-
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tion component and the implicit time domain from the time domains of the underiying tuples
by the temporal delimiter component. Thus, for each-component of the retrieve statement
concerning the explicit domains, there is an analogous component for the implicit time
domain.

Before going into the details, an example is appropriate. The following relation will be used:
RunningOn (Process, Processor)

RUNNINGON is a period relation with two domains: a processor and a process. Each tuple in
this relation describes a period of time when a particular process was running on a particular
processor. The query’:

range of R is RunningOn

retrieve StartRunning (R.Process)

where R.Processor = Processorl

whan "3:00pm" ; R

at R.start
derives an event relation called STARTRUNNING with one domain: a process. Each tuple in this
relation describes an instant of time when a particular process started running on Processor1.
If the processor was multiplexed among many processes, there could be many tuples in
STARTRUNNING, one for each time the processes was restarted. Only events occurring after
3:00pm are included in this relation (the expression «a ; 8 specifies that a precedes /38). In this
query, the selection component consists of the <where clause> <when clause>, and the tem-
poral delimiter comnonent consists of the <at clause>.

3.3.1. TQuel Expressions

Before we discuss the additional components, we should consider the format of expres-
sions. Standard Quel domains may be of one of the following types: fixed iength character
string, integer (1, 2, and 4 bytes long), and floating point (4 and 8 bytes long). TQuel aug-
ments these domain types with a temporal type, whose value is a linear function of time. A
temporal domain is initially created using the duration function, which requires a <tuple
variable> as an argument, and whose value is the length of time the tuple is valid. A temporal
domain may be operated on by any arithmetic operator, as long as the result is either one of
the standard types or is itself a ratio of two linear functions of time (see section 6.3).

Quel allows the standard arithmetic, string, trigonometric, and type conversion operators to
be performed on domains. Quel also includes a few aggregate operators (count, average,

7Short examples of the various components of the TQuel retrieve statement will appear throughout this chapter.
A complete example may be found in section 3.7.

8This somewhat unusual syntax was taken from path expressions (see section 3.3.2). See [Shaw 80] for a review
of non-procedural notations based on regular expressions.
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sum, minimum, and maximum) which return the same value for a collection (aggregate) of
tuples. TQuel augments these operators with temporal semantics (see section 3.6).

One way to apply operations to the implicit time domain is to redefine the semantics of the
operators defined on the explicit domains. For example, addition might mean "later", sub-
traction "earlier”, and equality "at the same time". This approach may be characterized as
arbitrarily associating syntax (algebraic operators) and semantics (later, earlier, etc.). This
approach was not adopted in TQuel because it encourages quite confusing constructions,
and also suffers from most of the drawbacks mentioned earlier of making time an explicit
domain.

The approach taken in TQuel was to define three types of expressions: standard expres-
sions, <temporal expression>s, and <event expression>s. <{temporal expressicn>s evaluate to
a Boolean value indicating whether the ordering specified by the expression was satisfied.
The clause

when "3:00pm" ; R
includes a <temporal expression> specifying that two events be sequenced in time. <event
expression>s evaluate to a timestamp indicating a particular event. The clause

at R.start

contains a particularly simple <event expression>. The use of <temporal expression> and
<gvent expression> in the TQuel retrieve statement will be discussed after examining the
syntax and informal semantics of these expressions.

3.3.2. Temporal Expressions

There are several straightforward examples of <temporal expression>s: a <tuple variable>,
the ticking of a clock, a particular clock time. Since events can be derived from periods (see
section 2-1), the start and stop events of a period (the start and stop events of an event are
simply the event itself) are included, as are string and integer constants. The string constant
specifies a wall clock time (such as "3:00pm"); and the integer specifies the number of time
units (such as milliseconds) since the start of the session with the monitor. Both are examples
of temporal constants. The ticking of a clock is accommodated by a predefined event relation
cLock, which contains a tuple designating every "tick".

The above <temporal expression>s all define events, which do not specify interesting order-
ings. Any nontrivial <temporal expression> must be composed of more than one event or
period. The most straightforward is a sequence of two events, defining a simple ordering of
the events. TQuel allows more general expressions: an ordering may be specified as a
regular expression on the participating tuples (e.g., the <tuple variable>s). The syntax is that
of path expressions, which are regular expressions augmented with parallel operators
[Habermann 75, Andler 79]. Path expressions, as originally defined, specify constraints on
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the dynamic behavior of the program. In TQuel, path expressions are used in two separate
ways in <temporal expression> and <event expression>. Indeed, the original motivation does
not apply, since the operations have been performed and the event records generated before
the processing of those records commences. Path expressions are used in <{temporal
expression>s to specify the relative ordering of the tuples participating in the query. The
<{temporal expression>

"3:00pm" ; R
appeared in the above example. The other application of path expressions is in <event’
expression>s, where they are used to select an event. <event expression>s, such as R.start
appearing above, will be discussed later.

The following is the syntax for <temporal expression>s:

{t-exp> ::= <element>
{t-exp> , <{t-exp>
<{t-exp> ; <t-exp>
{t-exp> "|" <{t-exp>
{t-exp> . time
{t-exp> . start
{t-exp> . stop
( <t-exp> )
<element> ::= <tuple variable>
| <string>
| <integer>

The syntax of ". start" and ". stop” is designed to exploit the user’s mental image of access-
ing the implicit time domain of the result of the expression (sing a syntax reminiscent of
record accessing). The same observation holds true for ". time". The informal semantics are

.start indicates the starting event;

.stop indicates the stopping event;

a;f specifies that 8 must follow a in seduence;

alB specifies that at least one of the two expressions must be true; and
a,fB specifies that the two executions must overlap in time.

Examples will appear shortly.
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3.3.3. Event Expressions

<event expression>s are quite similar to <temporal expression>s. The major difference is
the selection operator, which is found in <temporal expression>s but not in <event
expression)s. The syntax is therefore almost identical to that of <temporal expression>s:

<event expression> ::= <element>

<event expression> . time

<event expression> . start

<event expression> . stop

<event expression> ; <event expression>
<event expression> , <event expression>
( <event expression> )

The informal semantics of <event expressionds are

start selects the start event;

stop selects the stop event;

a; B forms a period starting when a starts and stopping when 8 stops; and
a,f forms a period starting when the second period starts and stopping when

the first period stops, thereby determining the interval of time when both «
and B were valid.

To illustrate the difference between the two types of expressions, the <temporal

expression>

(A B)
may be used to specify the condition that the tuple associated with A occurred before that
associated with B. To select the tuple which occurred first, the following <event expression>
would be used:

(A, B).start
This expression specifies that the tuples (events) associated with A and B occur in parallel,
and that we are interested in the one occurring first.



Section 3.4 g 27

3.4. The Temporal Selection Component

The <temporal expression> and <event expression> are used in the additional constructs of
the TQuel retrieve statement. The temporal selection component, the temporal analogue to
the <where clause>, specifies the desired temporal ordering of underlying tuples participating
in the derivation:

{temporal selection> := ¢ | when <tbool-exp>
{tbool-exp> 1= Lt-exp>
| ( <tbool-exp> )
| <tbool-exp> and <tbool-exp>
| <tbool-exp> or <tbool-exp>
| not <{tbhool-exp>

The <when clause> selects tuples based on their ordering in time, rather than on the values of
their domains, as the <where clause> does. The <when clause> includes a logical expression,
which in turn contains <temporal expression>s. It is satisfied if the tuples associated with the
<tuple variable>s found in the clause do in fact satisfy the <temporal expression>. For ex-
ample, '
when A ; (B | C)

specifies that the tuple associated with A must have been generated before those associated
with B or C. Four tuple orders will be aliowed (abc, acb, bac, cab)g; the other two possible
orders (cba, bca) will be rejected and the particular combinations of tuples exhibiting a dis-
allowed order will not participate in the query‘o. The <when clause> and <where clause> work
in concert to determine which tuples associated with the <tuple variable>s appearing in the
query will be used to derive a result tuple.

3.5. The Temporal Delimiter Component

Time that takes survey of all the world
Must have a stop.

--Shakespeare, in Henry IV, Part 1

The temporal delimiter component specifies the value of the implicit time domain, just as
the domain specification component identifies the values of the explicit domains. Two
clauses, a <start clause> and a <stop clause>, are used when the result is a period relation; the
<at clause> is used when the result is an event relation. The syntax is shown below:

gHere, the convention being used is that a represents a tuple associated with the <tuple variable> A, and similarly
with b and c.

10Note that tuples must be supplied by all <tuple variable>s; hence, orders such as ab are not considered.
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{temporal delimiter>
{period delimiter>
{start clause>

{stop clause>

<at clause>

{period delimiter> | <at clause>
{start clause> <stop clause>

e | start <event expression>

e | stop <event expression>

at <event expression>

oo onon

Using the relation defined earlier,
RunningOn (Processor, Process)
the queries

range of R is RunningOn
retrieve StartRunning (R.all)
at R.start
retrieve StopRunning (R.all)
at R.stop
specify the events which temporally delimit the RUNNINGON relation. The query

range of C is Clock(100)

retrieve SampledRunning (R.all)

at C
specifies an event relation with tuples at every 100 milliseconds designating which processes
were running on which processors at that time. The tuples in the RUNNINGON relation valid at
the time the clock ticks are placed in the SAMPLEDRUNNING relation. The monitor will implement
this derived relation by sampling each processor every 100 milliseconds to determine which
process is currently running.

3.6. Aggregate Operators

Quel uses the aggregate operators count, sum, avg, min, max, and any (the value is 1 if
any tuples satisfy the qualification) to aggregate a computed expression over a set of tuples.
The argument of such an operator can be either a single <tuple variable> or any expression
involving constants, arithmetic operators, or domains of a single relation. The following query
determines the total payroll (using the EMPLOYEE relation introduced at the beginning of this
chapter):

range of E is Employee

retrisve (PayRoll = Sum(E.Salary))
The argument of the aggregate operator can be qualified; this query determines how many
employees work in the toy department:

retrieve (Number=Count(E.Name where E.Dept = "Toy"))
Both queries are examples of simple aggregates, which evaluate to a single scalar value.
Aggregate functions, on the other hand, partition the set of qualifying tuples into groups, each
of which is assigned a value for the expression. The query

retrieve (E.Name, MS = Min(E.Salary by E.Dept))
returns a list of employees, each with the minimum salary of his or her department. Opera-
tionally, avg partitions the tuples into groups by department, then assigns a value (the
average salary) to the tuples in the group. Each tuple receives the same value.
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Aggregate operators are more complicated in TQuel, due to the time-varying behavior of
relations. Aggregate operators on event relations are cumulative, in that they take all
previously valid tuples into account in their computation. For instance, the Count operator
on an event relation would count the number of events which had occurred. Figure 3-1a
depicts a series of events. Figure 3-1b show the periods and their values for the query

retrieve (Value = Count(E))

As another example, the following query implements a simple clock:

range of C is Clock(1000)

retrieve (ClockTime = Count(C))
Since the clock "ticks" every second (1000 msec), there would be an event generated every
second. The ClockTime domain would record the number of seconds that had passed before
the current "tick".

There are two versions of aggregates on period relations, the cumulative and instantaneous
versions. Since the instantaneous version is the default for aggregates applied to periods; the
CountC operator is used to indicate the cumulative version, which works exactly as it does on
event relations. The result of the (instantaneous) Count operator will in general go up and
down as the periods come and go, while the value of the CountC operator must monotoni-
cally increase over time. In Figure 3-1c¢, a collection of periods is shown. Figure 3-1d shows
the result of the Count operator, whereas Figure 3-1e shows the result of the CountC
operator. Note that the derived periods of the CountC operator only involve the leading edge
of the underlying periods, while those of the Count operator involve both edges.

The avgc operator is slightly different, since it takes the length of time the tuple was valid
into account when computing the average. The value of the argument of the avgc operator is
weighted by the duration of the tuple, and intervening periods (when no tuple is valid) are
treated as tuples with a value of O for the argument.

Note that the presence of an aggregate operator in a retrieve statement automatically
implies that the resulting relation will be a period relation. The <at clause> may be used to
specify that an event relation is to be derived. The conversion from single event relations to
period relations is handled by the ExtendC aggregate operator, which extends an event to a
period stretching to the next event. It is cumulative since the derived period depends on the
preceding event.
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Figure 3-1: Instantaneous versus Cumulative Count

3.7. An Example

To illustrate the actions of the monitor, we will examine how a particular program running
on Cm* is monitored. The program solves Laplace’s partial differential equation with given
boundary conditions (Dirichlet’s problem) by the method of finite differences. The equation

0%ulxy) azgg,y)

0x? =0

is solved for points on an m by n rectangular grid, where only the values at the outer edges of
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the grid are given. The solution is found iteratively. On each iteration, the new value of each
element is set to the arithmetic average of the values of its four adjacent neighbors.

Several processes and several processors work on the grid simultaneously. The grid is
partitioned into regions, with one process responsible for each region. The configuration is
shown in Figure 3-2. Note that the solvers require access to adjacent regions to derive new
values for points on the boundary of their region.

There are many possible ways to synchronize the processes, the most efficient being the
purely asynchronous method. The processes are only synchronized at the beginning of the
computation. This means that, due to differences in the scheduling and in the data that each
process is working on, some processes may perform many more iterations than others.

The proposed experiment will investigate the relative synchrony of two of the processes
operating on adjacent regions. If one of the processes (call it P1) gets behind the other
process (P»), then the second process will be using older values for the points on the bound-
ary, possibly slowing the convergence for the entire grid. This experiment will focus on those
periods of time when P gets significantly behind P5 (i.e., more than one iteration).

One sensor is needed, a traced event sensor which generates an event record each time
the soiver process begins a new iteration. Since this sensor, called lieration, is traced, the
events are automatically converted into a primitive period relation (also calied ITERATION) by
the monitor. Thus, the primitive period lteration is defined, with two domains: Process, the
name of the process generating the event record, and IterNum, an integer designating the
iteration which has just begun. Derived relations can now be specified using the Ilteration
relation.

A period begins whenever the lterNum domain changes, with the tuples partitioned into
groups according to the Process domain. The query

range of A is Iteration
range of B is Iteration
retrieve AOverB (Diff = B.IterNum - A.IterNum)
where A.Process = P4 and B.Process = Pj
and A.IterNum > B.IterNum + 1
finds the periods of time in which P2 is behind P4 by at least 2 iterations. The start and stop
clause>s default to the most conservative situation (see section 4.5.2), that is, the resuit tuple

will be valid only as long as both underlying tuples were valid.

The periods in the AOVERB relation represent the times where process Po was significantly
behind process P1. To determine the percentage of time this was the case, use the query

range of AB is AOverB
retrieve Over (Percent=AvgC(AB) * 100)

The aggregate operator used here is the cumulative average operator. Since a single <tuple
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Figure 3-2: Configuration of the PDE task force

variable> appears as an argument to the avgc operator, the result will range from 0 (no tuples
ever occurred) to 1 (tuples are always present).

And finally, to determine the times P» caught up with P4,

retrieve Catch
where A.Process = P4 and B.Process = Pp
and A.IterNum = B.IterNum

when A.Start ; B.Start

at B.start
Since no target domains were specified, the CATCH relation will only contain the implicit time
domain. The <when clause> says that Po started a new iteration during an iteration of Pq.
Since the IterNum is always increasing, P2 (B) can catch up with P4 only in this manner. The
alternative,

when B.start ; A.start

specifies that the iteration numbers were equal after P4 has started a new iteration, implying
that Po was already ahead. The <at clause> indicates the exact time that P, does catch up.
Of course, Pq will probably start its next iteration shortly, leaving P2 behind once again.

Finally, to view the results of these derivations,
display Over, Catch
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3.8.

Summary

33

Date lists eight criteria to be applied in the evaluation of conceptual views of data which are
also helpful in evaluating query languages [Date 76]. It is useful to examine TQuel in relation
to these criteria, and, more specifically, in relation to the language from which it was derived,

Quel.

1.

3.

4,

The number of basic constructs should be small.

The Quel retrieve statement consists of a domain specification component (the
{target list>) and a tuple selection component (the <where clause>). The TQuel
retrieve statement consists of precisely the same components, so at this level,
the number of basic components has remained small.

At the syntactic level, TQuel augments the <target list> and <where clause> with
(a) the <at clause>, <start clause>, and <stop clause> (temporal analogues of the
Ctarget list>) and (b) the <when clause> (the temporal analogue fo the <where
clause>). Hence, the syntax is more complex, but not overly so.

. Distinct concepts should be cleanly separated.

The most important example is the distinction between the temporal delimiter
component and the temporal selection component. Although the expressions
found in these two components may be quite similar, the very dissimilar seman-
tics is made clear through the use of separate reserved words (start, stop, and
at versus when).

Symmetry should be preserved.

Symmetry should arise between the explicit domains and the implicit temporal
domairis, as well as between the start and stop domains. In the former case, both
sets of domains are associated with a domain specification component and a
tuple selection component. In the latter case, TQuel associates quite similar
syntax and semantics with the start and stop domains.

Redundancy should be controlled.

This objective is concerned more with the information being stored in the
database than with the query language.
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5. The number of operator types should be small.

TQuel adds only a few temporal operators (three binary and three unary) and one
aggregate operator. Much of the language design involved incorporating time
into the semantics of the existing operators. '

6. Very high-level operators should be available.

The sequence (;), alternation (]), and concurrency (,) operators are high-level in
that they indicate which properties the resulting tuples should have, rather than
specifying how the properties are to be obtained.

7. Behavior must be totally predictable and should accord with the user’s intuitive
expectations.

This objective is dealt with in detail in the next chapter, especially with regard to
aggregates, defaults, and semantics when the time domain is fixed.

8. The language should be founded conceptually on a solid base of theory.

The presence of a complete formal semantics for the TQue! retrieve statement,
as presented in the next chapter, satisfies this objective.

In summary, the Quel language has been augmented syntactically and semantically to
incorporate time. The syntactic changes included four new keywords, when, start, stop, at;
several new functions; and two new types of expressions, <temporal expression>s and <event
expression>s. Semantic changes included a new domain type, temporal; additional selection
and specification components; and additional semantics for aggregate operators. Examples
indicate that TQuel allows complex queries to be specified in a straightforward manner with
little irrelevant detail. Hence, TQuel is an existence proof that

Result: Traditional query languages can be augmented syntactically and
semantically to include time.

This introduces a new issue, to be addressed in the next chapter:

Problem: How can the semantics of TQuel be formalized?
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Chapter 4
Semantics of the TQuel Retrieve Statement

The story is told of the Russian poet Samuel Marshak that when he was first in London, and
did not know English very well, he went up to a man in the street and asked, 'Please, what is
time?' The man looked very surprised and replied, ‘But that’s a philosophical question. Why
ask me?’

--G. J. Whitrow, in The Nature of Time

It is impossible to meditate on time ... without an overwhelming emotion of the limitations of
human intelligence.

--A. N. Whitehead

4.1. Tuple Calculus

The semantics of the TQuel retrieve statement is an extension of that of the standard Quel
retrieve statement. The semantics of both will be given as tuple calculus expressions, which
are of the form

{01y (1)}

where the variable t denotes a tuple of some fixed length i, and ¥ (t) is a first order proposi-
tional calculus expression containing only one free tuple variable t. Y(t) defines the tuples
contained in the relation specified by the retrieve statement. The atoms of ¢ are of three
types:

¢ R(s), where R is a relation name and s is a tuple variable, asserting that s is a tuple
in relation R;

e g[i] 8 u[j], where s and u are tuple variables and @ is an arithmetic comparison
operator, asserting that the it component of s stands in relation @ to the
i"component of u; and
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e 5[i] § a and a 6 sfi], where a is a constant, having a similar meaning.
For example, the intersection of R and S (both of arity i) is expressed by the calculus expres-
sion

{tD[R() A S}
A more detailed presentation of tuple calculus can be found in [Ullman 82].

The Quel statement
range of tq is Rq
range of ty is Ry

retrieve ( tig - D1+ ..oy by
where ¥

is equivalent to the tuple calculus statement
{u]@t) - @R ) A - AR ()
AUl1] =4 1A - Aulr] =t [i/]
AY)}
which states that t; is in R;, that the result tuple u is composed of r particular components of
the t/'s, that D, is the im"‘ atiribute of the relation R; . and that the condition ¥ (modified
trivially for domain names and some Quel syntax conventions) holds for u. In the first example
given in the previous chapter (using the EMPLOYEE (Name, Dept, Salary, Manager, Age)

relation),

range of E is Employee
retrieve into T (Comp = E.Salary / (E.Age - 18))
where E.Dept = "Toy"

the corresponding tuple calculus statement is
{ | (3E) (Employee(E)
A u[1] = E[3] / (E[5] - 18)
AE[2] = "Toy") }

The result is a set of single domain tuples, each with the property that the domain is computed
from the third and fifth domains of a tuple from the EMPLOYEE relation which has a value for the
second domain equal to "Toy". In the remainder of this chapter, domain names, rather than
domain indices, will be used. Hence, this statement can be rewritten

{ u® | (3E) (Employee(E)

A u[Comp] = E[Salary] / (E[Age] - 18)
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A E[Dept] = "Toy" )}

To review, the primary additions incorporated into TQuel were the selection (when) and
specification (start, stop, and at) components. The temporal expressions in the when clause
serve to select tuples to participate in the rest of the query. The temporal expression specifies
an ordering on the tuples. Conceptually, each possibie set of tuples, one for each tuple
variable, is applied to the temporal expression. If the tuples satisfy the specified ordering,
they will be used for further processing in the query. The specification component uses event
expressions yielding events instead of a Boolean. In this framework, every clause in the event
expression takes one or more events or periods and yields a value which is either an event or
a period, with the complete event expression yielding an event.

4.2. Path Expressions in TQuel

The syntax of both temporal and event expressions is drawn from path expressions. Path
expressions were originally proposed as a high-level synchronization construct specifying the
allowable sequences of operations on an object of an associated abstract data type. The
following is a list of path expression constructs, with a and B representing path expressions
and w denoting an operation on an object:

empty path €

elementary operation o

parallel a,p a occurs in parallel with 8
sequence a; B a is followed in time by 8
selection alB either a or 8 occurs
repetition a+ one or more consecutive execution sequences
ofa
a* (=¢| a +) zero or more consecutive execution

sequences of a

concurrency w# one or more concurrent execution
sequences of w

When path expressions are used in TQuel, the operations are replaced by tuple variables.
The path expression then specifies a (Boolean or event) value derived from the tuples as-
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sociated with the tuple variables appearing in the expression. If only the selection, sequence,
and parallel operators appear in the expression, then one tuple is associated with each tuple
variable. This has the same semantics as the Quel retrieve statement, since each resulting
tuple is derived from one tuple associated with each tuple variable appearing in the query. If
the repetition or concurrency unary operators are used, then each tuple variable appearing in
the expressions involved with these operators can be associated with multiple tuples. For
instance, the path expression

A*
specifies a sequence of non-overlapping tuples, all associated with the tuple variable A and all
participating in the derivation of a single result tuple. Allowing multiple tuples per tuple
variable complicates the processing of the query. More importantly, the semantics for the
Quel retrieve statement given earlier is predicated on one tuple per tuple variable (per output
tuple). Therefore, allowing multiple input tuples per tuple variable greatly alters the semantics
of the expression. The assumption will be that there is one tuple per tuple variable, and thus

that no temporal or event expression contains repetition (‘+' and ‘*’) or concurrency (‘' #')
operators.

The semantics for the two uses of path expressions, returning a Boolean and returning an
event, will be dealt with separately. Returning an event is closer semantically to expression
evaluation, and will thus be considered first.

4.2.1. The Start, Stop, and At Clauses

As discussed previously, the temporal delimiter component specifies the time during which
the derived tuple is valid. For derived periods, the start and stop clauses are used; for derived
events, the at clause is used. In all three clauses, an event expression is used to specify an
event. ltis important to note that the event returned by the event expression will in fact be one
of the events originally involved in that expression. Hence, the event expression is not ac-
tually deriving a new event from the given events; rather, it is selecting one of the given events
to return as a value. Of course, the selection criteria can be, and indeed usually is, a function
of the relative temporal ordering of the original events.

When full path expressions are allowed in event expressions, they can be ambiguous when
returning an event. The problem is the selection operator. There are two possibilities for
interpreting the following temporal expression as returning an event:

alB

Either the system must ensure that a and 8 are disjoint, so that only one will return a value, or
ensure that both yield the same value. Hence, the temporal expression

(a;(blc)) .stop
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must not be allowed, for the selection terms are not disjoint, nor do they yield the same value.
If the temporal ordering of the tuple variables was bac, then this expression would return the
event associated with ¢ (b is ignored in this case). However, if instead the temporal ordering
was abc, the event associated with either b or ¢ could be returned.

Determining whether the selection terms are disjoint or return the same value is difficult.
The solution is to not allow the selection operator in event expressions.

One aspect remains to be specified; what is the value of "(a , 8)"? There are two reason-
able interpretations; the overlap (o) interpretation, where the result is valid only when both
underlying tuples are valid, and the coverage (c) interpretation, where the result is valid if
either of the underlying tuples is valid. The difference between the two interpretations is
illustrated in Figure 4-1. Although the overlap interpretation seems more natural, and was
used in the previous chapter, the distinction from a semantic viewpoint is minimal, so seman-
tics for both interpretations will be presented.

The syntax of event expressions defines a parse tree containing the following node types:
<tuple variable>, {.start>, <.stop>, <parallel>, and <{sequence>. The <tuple variable> nodes are
the leaves of the parse tree; the <.start> and <.stop> nodes have one descendant, and the
<{sequence> and <{parallel> nodes have two descendants. This tree can be executed directly
in a bottom-up fashion: the <tuple variable> nodes will yield either an event (i.e., a timestamp)
or a peried (a pair of timestamps); the <.start> and <.stop> nodes will take a period and yield
an event (the first or second of the timestamps, respectively); the <sequence> node will accept
two periods or events and yield a period. The action of the parallel node will depend on
whether the overlap or coverage interpretation is used; in either case, its action is well-
defined. The result of the top node of the tree will be an event from one of the tuple variables
in the event expression.

The semantics is now straightforward to specify. Each event expression can be trans-
formed into an expression on the terminals using the parse tree; the expression will contain
the following functions (E ranges over timestamps):

Start: E2— E Parallel(c), :EXE— E2

Stop: E2— E Parallel(c),: E2X E— E?
Sequential, : EX E— E2 Parallel(c), : E X E2— E?
Sequential, : E X E2— E? Parallel(c), : E2 x E?— E?

Sequential, : E2 X E— E? Parallel(0), :EXE2— E
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Underlying Periods

i Overlap Interpretation

I 1 Coverage Interpretation

Figure 4-1: The Overlap versus Coverage Interpretations for Combining Periods

Sequential, : E2 X E2— E? Paral'lel(o)2 E2XE— E?
Event: Tuple Variable — E Parallel(o), : E2 X E? — E?
Period: Tuple Variable — E2

There are four separate sequential functions, to accommodate all possible combinations of
events and periods: (event ; event), (event ; period), (period ; event) and (period ; period). All
yield periods. The parallel operator under the overlap interpretation has no semantics for
(event , event). Event expressions under this interpretation will consider such cases to be
errors.

Let ®, be the function resulting from the transformations on 7. The use of ®, will be
examined after the semantics of the when clause has been discussed.

4.2.2. The When Clause

Several researchers have proposed a formal semantics for particular variations on path
expressions, involving denotational and axiomatic definitions [Berzins&Kapur 77], or transfor-
mations into Petri nets [Lauer&Campbell 75] or parallel programs [Andler 79]. The approach
taken here transforms the temporal expressions directly into a set of execution histories on
the tuple variables involved in the expression. Each execution history specifies a valid order-
ing of the tuples referenced by the expression. For example, the temporal expression, where
A, B, and C are tuple variables denoting event relations,
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(A;B),C

will be translated into the set
{ ABC, ACB, CAB }

An assignment of tuples to the tuple variables, when ordered by time, must correspond to one
of the execution histories in the set. Hence, by providing the transformations and proving that
they yield a set of execution histories when applied to a temporal expression, we will have
defined the semantics of such expressions.

The syntax of the temporal expressions is as follows:

<t-exp> i = <element>
| <t-exp> . time
| <t-exp> . start
| <t-exp> . stop
| <t-exp> ; <t-exp>
| <t-exp> "|" <t-exp>
| <t-exp>, <t-exp>
| (<t-exp>)

Before the transformations are made to the temporal expressions, all tuple variables as-
sociated with period relations are replaced with (P.start ; P.stop), where P is the relevant tuple
variable. All instances of P . start, P . stop, E, and E . time, where E is any tuple variable
associated with an event relation, will be referred to as terminals. Each terminal specifies an
event in the temporal expression.

The transformation system defining the semantics of temporal expressions is comprised of
seventeen productions (where a and b are terminals, and a, 8, and y are arbitrary temporal
expressions):

(1) a.start =a

(2) (a]|pB).start = (a . start| B . start)

(3) (a;p).start = a . start

4) (a,pB).start = (a.start; 8 .start) | (8 . start; « . start)

(5) a.stop =a
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(6) (alB).stop = (a]B)

(f) (a; B).stop ‘=>/3.stop

(8) (a,p).stop =>(a.stop|p.stop)
©) () = a

(10)a,(B;7) =a

(1) a,BIl7) = (a,B) | (a,7)

(12) («18) ¥ =(a, V)| (B.7)
(13)(a; a),b =(a;b;a)|(a;(a,b))
(14)(a1;---;a,-),(b1:---;»bk) = (a,; b, b, ;@) (a;] by)
(18) a; (B 1Y) = (a; B) | (a;7)

(18) Blv)ia =B;a)l(y;a)

Since these productions define the meaning of temporal expressions, it is important that
the reader is convinced that each production matches his or her intuitive understanding of the
various constructs. Productions (1), (2), (5), (15), and (16) are straightforward. Production (9)
is used to remove extraneous parentheses; a must not be a binary expression to apply this
production.

Production (3) can best be understood when examined as part of a larger temporal expres-
sion:

(a;B).start; 8

expresses two possible constraints on the ordering of a, 8, and §: (a) 8 must follow a in time,
and (b) 8 must follow the beginning of the period begun when a started and ended when 8
finished. Since . start was explicitly specified, only constraint (b) is taken as the semantics for
this expression. To express constraint (a), the user must add the clause "

Ala;B)

to the expression. Constraint (b) is indicated by replacing the subexpression (a ; B) . start
with « . start. Therefore, the production would map the example into
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(a.start; §)

Similar comments apply to production (7). With regard to production (6), consider

(a]B).stop; 8

This states that the end of either a or 8 must be followed by §. This statement is equivalent to
saying that either a or 8 must be followed by §, or

(x]|B); 8

Productions (4) and (8) are initially confusing: although the left hand sides are similar, the
right hand sides look quite different. As with previous productions, their effect can be under-
stood in terms of their containing expression. For production (4), examine this expression

(a,B).start;

a and B occur in parallel; § must follow the beginning of this parallel activity. In the overlap
interpretation, (a , B8) is valid at the point when both a and 8 become valid. Since a . start and
B . start are both events (independent of the internal structure of a and ), they can be
ordered:

(a, B) . start= ((« . start; B . start) | (8 . start; « . start)) . stop

= (a . start; B . start) | (8 . start ; a . start) (by (6))

Similarly, for'production (8), examine

(a,B).stop;

In the overlap interpretation, § may start when either a or 8 have stopped. Again, since
a . stop and B . stop are events,

(a,B).stop = ((a .stop; B .stop) | (B . stop; a . stop)) . start
= (a . stop| B . stop) (by (2) and (3))

The next six productions define the semantics of the parallel operator interacting with the
sequence and selection operators. Except for (11) and (12), which allow distribution of the
parallel operator over selection, the productions all involve at least one terminal. The reason-
ing behind these productions can be seen by considering a production not on this list:

a,B;7)= (a,.B);IBi(a, ]?

The problem is that a may occur in parallel with 8, in parallel with v, or in parallel with both
(remember that a can have an arbitrary internal structure). (10) substitutes the terminal a,
which is guaranteed not to have any internal structure, for a. In the overlap interpretation the
result of an event occurring in parallel with a period is simply that event. Of course, a side
condition is that a must occur after B8 . start and before y . stop. As with (3) and (7), this
condition must be stated explicitly by the user.
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(13) and (14) also use this technique. In (13), b can either be between a and the start of a,or
during a.

Production (14) is a generalization of (13), and is thus more complex. In the overlap inter-
pretation, the result starts as soon as both sequences start, and ends when either sequence
end. Since a, and b, (and a; and by) are events, they temporally delimit the respective se-
quences. They can also be ordered. Hence

(a;;---;a),(by;---;b) =(a;; by |b;;a,).stop; (a;; by | by ; @) . start
= (a,; b, |b1 ;31);(aj|bk) (by (6), (2), (3))

The usefulness of these productions is evident in the following theorem:

Conversion Theorem:

The productions (1) through (16) transform an arbitrary temporal expression into
a relational expression (involving only the sequence and selection operators) in
standard form (a selection of sequences):

(a;ay;-5a) 1 (by;---5b) ] -+ [(zy5-+-52)

The proof is somewhat involved, and is given in appendix B. The standard form provides
the set of execution histories defined by the original temporal expression.

4.3. Formal Semantics

It is now possible to specify a formal semantics for the TQuel retrieve statement. Let 7/ be
the temporal expression 7 with the tuple variables t; which correspond to periods replaced
with (t; . start ; t; . stop), the t, . start terms replaced with §;, the t; . stop terms replaced with
8; .1, and the t; . time terms (and t; terms, for those tuple variables corresponding to events)
replaced with §;. The §; serve as terminals in the rest of the analysis. This somewhat unusual
numbering scheme is necessary in order to make t; . start and t; . stop unique terminals. Define

7(8;) = 7, [starttime] if i < k, and 7; [stoptime] otherwise

The starttime and stoptime domains are the implicit domains associated with all tuples. Let
Order (1) = 8,,,1 s 6,,,,1, where n is the number of unique terminals in 7/,
7/ contains 8,,,,., and T(Bmi) < 1-(8,,,I.+1), fort<i<n-1

Order defines a sequence of terminals aordered by the time values of the tuples associated
with those terminals. This definition of temporal order assumes that metric time is being used,
where time is modeled as the real number line, and the "before" relation is isomorphic to "<"
for reals (i.e., the time of Newtonian physics). In the context of monitoring distributed sys-
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tems, the measured time must be global and satisfy the before relation. Finally, let W(7) be the
set of sequences generated from 7 by the productions as shown by the theorem.

With all of this mechanism, the semantics of the TQuel retrieve statement
range of tq is Rq
range of ty is Ry
retrieve (t1-1 S EIE £ P Dp )
where ¢
when r

start »
stop x

is quite straightforward:
{ulr+3@Et) ... @4 (R (t) A ... AR (t)
Aull] =t WIA . AU = [
AY
A Order(1’) € W(1')

A u[starttime] = @, (t, , ... ,tkp)
A u[stoptime] = Py s - ,tmq)
) }

Note that p is defined to be the number of unique tuple variables in », and q the number of
unique tuple variables in x. ®, was defined in section 4.2.1 to be the function derived from
the event expression » on the tuple variable in the expression. The superscript (r + 2) in-
dicates that the tuple u has r explicit domains and 2 implicit domains, the starttime and
stoptime domains (events will have only one implicit domain).

The when clause specifies that the tuples, when ordered temporally, correspond to one of
the execution histories in the set of execution histories defined by the temporal expression.
The start and stop clauses specify the values of the starttime and stoptime domains through
the functions defined by the event expressions appearing in those clauses.

There are two aspects remaining to be covered: aggregates and indeterminacy. Although
the tuple calculus semantics for Quel retrieve statements without aggregate operators may be
found in [Ullman 82], no such semantics is given for the more general case. Indeterminacy is
totally absent from Ingres and Quel; the information in the database is assumed to be consis-
tent and complete for the aspects of the real world at a particular time being modeled by the
database. Such an approach is infeasible when using temporal databases in monitoring.
First, a semantics will be developed for aggregates, and then all of the semantics will be
extended to include indeterminacy.
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4.4. Aggregate Operators

The semantics of standard Quel aggregate operators (c.f., section 3.6) is best handled by
defining the result of the aggregate, and then using this result in the tuple calculus expression
for the entire statement (the implementation performs an analogous extraction of the ag-
gregate expressions). Simple aggregates result in a scalar value; using an example from the
previous chapter:

retrieve (Number = Count(E.Name where E.Dept = "Toy"))
= Num = cardinality of ’
{ n) | (3E)(Employee(E) A E[Dept] = "Toy" A n[1] = E[Name]) }
{ u | (3E) (Employee(E) A u[Number] = Num}
Since the tuple variable did not appear outside of an aggregate expression, it can be
eliminated in the second tuple calculus expression:
{ u'|u[Number] = Num } = { Num }

Aggregate functions require intermediate relations:
retrieve (E.Name, MS = Min(E.Salary by E.Dept))
= MS = { m?| (VE) ((Empicyee(E) A E[Dept] = m{1]) D m[2] < E[Salary])

A (3F) (Employee(F) A F[Dept] = m[1] A m[2] = F[Salary]) }

This statement defines a relation MS, with two domains, a department and a minimum salary.
The first clause states that all employees of that department make at least the minimum salary
of the department; the second clause says that at least one employee does indeed make the
minimum salary. Both clauses are necessary to correctly define the minimum salary. The
calculus statement defining the result of the retrieve statement uses this temporary relation:

{uv?| (3E)(3m) (Empldyee(E) A MS(m) A m[1] = E[Dept]

A u[Name] = E[Name] A u[MS]=m[2] }

The correct minimum salary is selected from the MS relation using the department domain. It
is evident that the semantics for an arbitrary Quel aggregate would be similar to the above
expressions.

As with the other constructs, the semantics of the TQuel aggregate operators will be ob-
tained by extending the tuple calculus statements just presented. The central issue is how to
incorporate time into the predicates of the calculus statement. Before this issue can be
addressed, however, the informal semantics must be well-understood.
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4.4.1. Informal Semantics

Extending Quel aggregates to include the passage of time is surprisingly complex. The
most important goal is to ensure that the semantics are as natural as possible. A second goal
is to ensure that, when time is stopped, say, by considering an aggregate at a single instant of
time, the semantics are equivalent to the standard Quel semantics (i.e., they reduce to the
Quel tuple calculus equivalents). '

In Quel, the aggregate operator partitions the tuples into groups, and then applies the
operator to each group. In TQuel, the composition of the groups changes over time (by
adding and removing tuples), so the value of the function also changes over time. The value
returned by an aggregate operator may be instantaneous, that is, derived at each instant in
time from the values of tuples valid at that particular time, or cumulative, derived potentially
from tuples valid at previous instances of time. The instantaneous version of Count, for
instance, determines the number of tuples valid at each instant of time. The cumulative
version of Count has as a value at a particular instant of time the number of tuples which are
valid at that time, or were valid previously. The cumulative version increases monotonically,
whereas the instantaneous version does not. Aggregate operations on event relations must
be cumulative, since the probability that two or more events occur simultaneously becomes
arbitrarily small as the timestamp granularity decreases. For period relations, two versions of
each aggregate operator are provided. Note that for cumulative aggregate operators, there
must be some designation of when time started. For instance, the cumulative count will be
zero until the first period occurs. The initial tuple will have a value of O starting at the
designated time and ending when the first tuple starts.

There is one other aspect concerning aggregate operators on temporal relations which
should be addressed. The instantaneous Count operator can count periods easily. However,
how does one cumulatively count a collection of periods? More specifically, if one period
starts at t, and ends at t,, and another period with exactly the same values for the domains
starts at t, and ends at t,, then should the count be 1 or 2?

This situation is similar to the issue of duplicate tuples in Ingres. Certain operators such as
projection often generate duplicate tuples. These duplicates are usually tolerated, since
eliminating them can be computationally expensive. However, aggregate operators such as
Count will return different results depending on the presence of duplicate tuples. Ingres
provides two versions of count, sum, and avg. Count returns the number of (possibly
duplicate) occurrences and CountU returns the number of unique occurrences. Note that
the other aggregate operators (min, max, any) do not have this problem. Hence, there is
only one version of these operators.

In TQuel, there are two dimensions of duplication: identical tuples valid at the same instant
of time, and identical tuples (in the explicit domains) valid at different instants (or periods) of
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time. In the first dimension, relevant to instantaneous aggregates, duplicates are eliminated
(e.g., only the analogue to the CountU operator is provided). In the second dimension, the
temporal dimension, the issue is more complex.

There are at least three possible resulits for the situation of a period starting at the same
time the previous period ended. The most straightforward is 2, since there are 2 tuples. This
solution corresponds to the Ingres Count operator for the similar situation of duplicate tuples.
The second possible answer is 1, since there was one contiguous period of time for which the
relationship was valid. This approach would count the number of contiguous periods of time,
with the periods separated by intervals when a tuple was not valid. This solution is analogous
to the Ingres CountU operator. Implementation of this approach on a temporal database is
difficult in the presence of indeterminacy. The third answer is neither, that the value of count
in the integral of the number of periods over time. This solution is not strictly necessary for
the count operator, since the same effect could be obtained using sum(duration(T)), where
T is a <tuple variable>. Similarly, the integral sumc operator on T.Domain can be obtained
using

T.Domain * sum(duration(T))

In chapter 3, the simplest option to implement, solution 1, was chosen.

There exists a.potential avgc operator for every form of sumc and countc, since avgce is
defined to be sumc / countc. In fact, even when only the integral characterization is used,
there is some choice involved. There is one instantaneous version, and at least four versions
of the integral avgc operator possible. The instantaneous version exhibits changes at both
the start and stop events of the tuple. Versions 1 and 2 of the integral avgc operator exhibit
changes in the aggregate whenever a new tuple begins, and ignore the duration of the tuple.
They differ in whether a period starting at the same time as the previous period ends is
considered one or two tuples. Version 3 weights the value by the duration of the tuple.
However, the time periods when no tuple is valid are ignored, causing the resulting value of
remain constant over those periods. Version 4 treats the intervening periods as tuples with a
value of 0. Hence, the value of this version of avgc will, in the absence of tuples, asymptoti-
cally approach 0. Version 4 was chosen, since it seemed to be the most intuitive when applied
to sample queries.

4.4.2. Formal Semantics

Now that a clear definition of the aggregate operator has been given, it is appropriate to be
more formal. Recall that each tuple contains one or two implicit time domains, starttime and
stoptime. These domains can be used to define a predicate indicating when a tuple was valid:

valid(u, t) £u[starttime] < t < u[stoptime]
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Since time is represented using timestamps, this predicate involves comparing three real
numbers (again, metric time is assumed). The instantaneous Count operator can now be
defined as returning the number of tuples valid at any instant of time. Formalizing this state-
ment in an example:

retrieve (Number = Count(E.Name where E.Dept = "Toy"))
= Num; = cardinality of
{ n1+2) | (JE)(Employee(E) A valid(E,t) A E[Dept] < "Toy"
A n[1] = E[Name]) }

{ uC+3) | (vt)(valid(u, t) D u[Number] = Num, }

The first statement defines a scalar function Num;, the number of employees in the toy depart-
ment at time t. The second statement specifies that the Number domain of u contains the
number of employees in the toy department during the time u is valid. Unfortunately, the
period of time u is valid has been incompletely specified; in particular, the result relation
should have only one tuple for every period of time when the count is constant, rather than
several (perhaps overlapping) tuples containing the same count. The statement can be
amended by defining the macro

Maximal (u, t, V) = (3t)(' = t A —wvalid(u, ) AV; = VY)
O EYY AT Y)Y (@ 1D V) AV, = V)

This macro ensures that u is valid for the entire period when V has the same value, by
specifying that, given u is valid at time t and has a value V; for the relevant domain, if u is not
valid at another time t/, yet has the same value, then there must have existed an intermediate
time when the value was different. The Maximal predicate can then be used as follows:

{ut+2 | (vt) valid (u, t) = ((u[Number] = Numj) A Maximal(u,t,Num)) }
The following is a slightly more complex example.

retrieve (E.Name, MinSalary=Min(E.Salary by E.Dept))

Taking it one step at a time, the non-temporal version appears on page 46. The first
(incorrect) temporal version is

MS; = { m® | (3E) ((Employee(E) A valid (E, ) A E[Dept] = m[1])
D m[2] < E[Salary])
A (3F) (Employee(F) A valid(F, t) A F[Dept] = m[1]
A m[2] = F[Salary])}
{ ue+2) | (v t) (valid(u, t) D (3E)( 3m) (Employee(E) A valid(E, t) AMS; (m)

A m[1] = E[Dept] A u[Name] = E[Name] A u[MinSalary] = m[2]))
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}

Again, the period of time u has been valid has been incompletely specified. To specify the
maximal period, first define

Vi (d) £v such that (JE)(3m)(Employee(E) A valid(E', t) AMS; (m)
A m[1] = E[Dept] Av = E[Name] Am[2] = d
The correct temporal semantics is then
{u+2 | (vt) valid(u, t) = (u[MinSalary] = V,(u[Name]))
A Maximal(u,t,V(u[Name])) }
The semantics of the cumulative CountC operator (version 1) looks quite similar to that of
the instantaneous Count operator:
retrieve (Number = CountC(E.Name where E.Dept = "Toy"))
= NumC; = cardinality of
{n+2 | (3t) (3ENEmployee(E) A t <t A valid(E, t)

A E[Dept] = "Toy" A n{1] = E[Name]) }

{ ul+2) | (3t) valid(u, t) = ((u[Number] = NumC,) A Maximal(u,t NumC)) }
in English, this says that the cardinality, at any instant. is equal to the number of employees
working in the toy department at any time prior to the instant in question. The reader may find
it useful to compare these statemznts with their nontemporal counterparts. Note that the
function NumC, does not chieck for contiguous periods; it counts 2 contiguous periods as two
periods, rather than as one.

The semantics of the avgc operator is more complex, since the duration of the period is
involved. For the query which determines the average salary by department over time,
retrieve (E.Dept, AS=avgc(E.Salary by E.Dept))

= {u®+3 | (vt) (valid(u, t) = (U[AS] = A(u[Dept], 1)))}

T

where A(T, d) £ -.1i.—- / Z V(E, (valid(E, t) AE[Dept] = d))dt
§ E€Employee

and V(E, P, d) £ E[Salary] if P and O otherwise

There are several assumptions being made in the above statement. In addition to assuming
that time is metric (isomorphic to the real numbers) it is assumed that time is equal tempered,
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that is, the "distance" from t, to t, + Atis equivalent to that fromt,to t, + At. Otherwise the
average is meaningless. Also, it is assumed that there is a designated time t = 0. This time is
arbitrary, but has a great impact on the value returned by the aggregate. t = 0 will usually
correspond to the beginning of the experiment. Note that the semantics are independent of
the unit of time chosen; the same values will result whether time is measured in
microseconds, minutes, or years.

At this point, a formal semantics for the entire TQuel retrieve statement has been
presented. However, this semantics has totally ignored the effects of incomplete information.
The remainder of this chapter will examine the sources of incomplete information in the
process of monitoring, and will extend the semantics to include this indeterminacy.

4.5. Indeterminacy

The development of the semantics presented above assumed complete and accurate infor-
mation in the relations being used to derive new relations. Unfortunately, there are many
sources of incomplete and incorrect information. Collecting all the events concerning a
relation may be impossible, due to inadequate processing or bandwidth resources, or the
inability to generate the correct types of events. Sampling is another scurce of incomplete
information. 1t is impossible to sample a relation continuonusly, and the slower the sampling
frequency, the more changes in the relation are overlocked. Finally, the ¢locks in a distributed
systems cannot be totally synchronized, introducing further uncertainty (see section 5.5.2).

The monitor must be able to deal in some way with these limitations, and to determine how
valid the collected information is. If it is impossible to acquire the necessary events concern-
ing the primitive relations being monitored, then the monitor must revert to sampling at least a
subset of the relations. If the sampling frequency is excessive, then it must be lowered. Each
step represents a decrease in the precision of the information available to the user. Such
limitations will always be imposed on a monitoring system; it is important that the system can
gracefully handle varying amounts of monitoring information, making as much use of this
limited information as possible.

A second problem relating to incomplete information is the loss or delay of samples, and
the loss of event information. The ramifications of missing or delayed sampies should be
confined to (a) an increased probability that a condition became true after the last sample and
was subsequently invalidated before the next sample, and (b) a certain amount of ‘definite’
knowledge reduced to ‘possible’ knowledge.

The problem of lost events (which were generated but never recorded by the monitor) is a
more serious one. Probably the only way to successfully deal with this problem is to provide
the monitor with the knowledge necessary to detect inconsistencies in the data being col-



52 1 Semantics of the TQuel Retrieve Statement Monitoring Distributed Systems

lected and (a) generate the missing events, with an appropriate occurrence uncertainty, or (b)
at least revise previous information to account for the increased uncertainty. The mechanism
presented below is adequate in the presence of samples; handling lost events is beyond the
scope of this thesis.

To cope with the presence of incomplete information, all information is classified as
determinant (i.e., true), indeterminant, or false. The closed world interpretation (c.f., [Reiter
78]) is adopted, so the statement that the truth value of an atomic formula is false is
represented by the absence of a tuple from the appropriate relation. Hence, only determinant
or indeterminate information need be explicitly represented.

Events as measured are not instantaneous, but are associated with a with a "fuzzy" period
specifying when the event might have actually occurred [Kahn&Gorry 75] (see Figure 4-2).
Periods are composed of three underlying periods: the time in which they are possibly valid
(the initial portion), the time they are definitely valid (the definite portion), and the time they
are possibly invalid (the final portion). These uncertainty components are included in the
calculation of derived periods and events by the monitor, and are delimited by the designated
times. Spacial fuzziness is handied in a similar manner in [McDermott 80].

4.3.1. Semantics

In TQuel, indeterminacy is handled automatically during the execution of the query. There
are no special constructs provided for the user to specify how incomplete information is to be
processed; instead, existing constructs are associated with semantics describing how an
arbitrary degree of indeterminacy is dealt with. In the limiting case, that of no indeterminacy,
the semantics should be identical to those just presented. The primary goal in the specifica-
tion of the semantics is to preserve as much information as possible in the derived relations,
while ensuring that such an equivalence is true.

Since the representation of events and periods has just been modified from that assumed
earlier, the semantics of the retrieve statement must also be changed. Instead of one implicit
domain for events, starttime, there are now two (see Figure4-2): start-indeterminant (or istart)
and start-determinant (or dstart). Similarly, the two implicit domains for periods, starttime and
stoptime, are replaced by four: istart, dstart, dstop, and istop. Metric time is still assumed; in
particular, the following relationship must hold for all event and period tuples:

istart < dstart < dstop < istop

(the four implicit domains are each real-valued timestamps). The starttime and stoptime
domains appeared in four places in the tuple calculus semantics presented above: in the
definition of Order, in the term associated with the start clause, in the term associated with the
stop clause, and in the terms associated with the aggregate operators. Each occurrence
must be rewritten using the new implicit domains.
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Events without indeterminacy:
/\ /\ /\ /\

Events with indeterminacy:

/
istart N dstart

(@)

Periods without indeterminacy:

I | — A
Periods with indeterminacy:
P -4 -—---4 -
~,
istart \ dstart dstop / N istop

(b)

Figure 4-2: Representing Uncertainty

The Order function defines a temporal ordering on the events provided as arguments. This
temporal ordering is tested for membership in a set of execution histories derived from the
temporal expression in the when clause. However, when indeterminacy is considered, a strict
temporal ordering of events may not be possible, due to the overlap of the indeterminant
portion of two events or periods. The solution is to instead test each execution history against
the argument events, with three possible outcomes: (1) no execution history was satisfied by
the given events, (2) one or more execution histories were satistied, or (3) one or more
execution histories may have been satisfied, but the indeterminacy of the events prevents a
definite decision. Since each execution history is a sequence of events, these tests involve
repeated application of the predicate before:

before (a, b) £ a[starttime] < b[starttime]
As an example, the temporal expression
(A;B),C

is translated into the following set of execution histories
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{ ABC, ACB, CAB }
which may easily be translated into the propositional calculus statement
(before(A, B) A before(B, C)) v (before(A, C) A before(C, B))
V (before(C, A) A before(A, B))

Since indeterminacy requires this predicate to have three results, true, false, and indeter-
minant (), the tuple calculus must be a three-valued logic system [Rescher 68]. We will base
this system upon the following truth tables (where a and B are arbitrary truth values)'*:

FAa=F aANF =F TAT=T otherwisea A 8 = Q
TVa=T avT=T FVF=F otherwisea vV 8 = @
~F=T Q=0 -T=F

The existential and universal quantifiers behave like iterated vand A, respectively. In the tuple
calculus statement,

{ula}

if @ has a truth value of true. then u is in the set; if a has a truth value of false, then u is not in
the set (the closed world interpretation); and if a has the truth value Q, then u is in the set but
is indeterminant,

The before predicate has two parameters, both events, and is defined as follows:

before (a, b) £ T if a[dstart] < b[istart], F if a[istart] > b[dstart], and @ otherwise

Hence, before(a, b) is true if the entire period when a may be valid occurs prior to any time
when b might have occurred, false if b occurs completely before a might have occurred, and
indeterminant otherwise. To complete the details, let 7/ be as defined previously, and W/(1)
be the propositional calculus expression derived from W(7’) as described above, translating a
set of execution histories into a disjunction of conjunctions. Define

11Many systems of 3-valued logic have been proposed. The system adopted here was introduced in 1938 by S.C.
Kleene [Kleene 38]. In this system, a proposition is to bear the third truth value  if the proposition is unknown. This
characterization is in contrast to other systems, such as the one proposed by Lukasiewicz, where Q is considered
somewhere between true and false. Lukasiewicz's system was motivated in part by concerns of "future
contingency,” whose occurrence, such as that of a sea battle tomorrow (Aristotle’s example) is not determinable,
especially given free will. Future contingencies are handled in a more elegant fashion with temporal logic [Rescher
71]. Although time appears throughout in the semantics presented here, the application of temporal logic is not
necessary, since the formulae only involve temporally definite statements about the past. The primary operational
difference between the two 3-valued systems lies in the truth value form € ). Kleene's system defines « DB as
=a V 3,502 D2 Q. InLukasiewicz’s system, a _Da is a tautology, so @ D2 —> T.
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T, (§;) = r/listart] if i <k, and 7;[dstop] otherwise

T, (8;) = ; [dstart] if i < k, and 7; [istop] otherwise

T, defines the start of the indefinite portion of the event in question, and T, defines the end of
the indefinite portion. Using there functions, before can be defined:

before (§;, 8;) = Tif T,(8)) <T,(8)), Fif T, (§;) = T, (§;), and @ otherwise
That is, an event is before a second event if it is certain to have occurred before the second
event might have occurred. An event is not before a second event if the latter event
definitely occurred before the former event might have occurred.

To account for indeterminacy, rewrite

A Order(7’) eW(1')

AW(r")

Since the tuple calculus used here is a three-valued logic system, W/(r) may also have a
value of Q. In that case, there is no definite portion in the derived period.

The terms associated with the start and stop clauses are not hard to generalize. Since the
function ® now returns a pair of timestamps (istart, dstart) rather than an individual times-
tamp, each term is rewritten as two terms:

A ulistart] = @, (PAPERE ,tkp)-[istart]

Auldstart] = @, (t;, .-, t p)[dstart]
A u[dstop] = P, (t,,,1 RPN tmq)[istart]
A ufistop] = o, (tm, - ,tmq)[dstart]

Of course, the functions contained in ® will be slightly different. For instance, in the function

Start: E2— E

E ranges over pairs of timestamps (real numbers) instead of individual timestamps.

4.5.2. Defaults

The semantics should also specify the defaults assumed in the language. The defaults for
the additional clauses in TQuel should be natural to the user. If only one tuple variable (say,
A) is used, and it is associated with a period relation, then the defaults are
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start A.start

stop A.stop
These defaults say that the result tuple is to start when the underlying tuple started and stop
when the underlying tuple stopped. When an event relation is associated with the one tuple
variable, the default is

at A

specifying simply that the result tuple was valid at the same instant the underlying tuple was
valid.

When two or more tuple variables are used, the situation is more complex. Let us assume
initially that all the tuple variables are associated with period relations. The retrieve statement
with defaulted temporal constructs looks identical to a standard Quel retrieve statement; thus
it should have an identical semantics. An Ingres database is not temporal; instead, it ad-
vances in discrete jumps. Whenever a relation is updated, the "clock" advances, and the
database is assumed consistent at the new time. Hence, the tuples participating in a retrieval
are all valid at the time the query is executed. Extending this semantics to a temporal
database is now straightforward: the result tuple is valid at all the points in time when all the
underlying tuples were valid. Thus, if the tuple variables t,, t,, . . . ,t; are involved in the query,
then the default temporal clauses are

when (t,.start,....t,.start).stop ; (t,.stop,...,t,.stop).start
start (t,.start, ..., ,t,.start).stop
stop (t,.stop,...,t,.ston).start

The start clause specifies that the result tuple is to start the instant ali the underlying tuples
are valid: the stop clause specifies that the result tuple is to end as soon as any underlying
tuple is no longer valid. The when clause states that all the tuples should ke valid for a finite
petiod of time, and is equivalent to

when (t, , ..., tg)

which indicates that all the tuple overlap each other. If a particular tuple variable t; is as-
sociated with an event relation, simply replace ‘t;.start’ and ‘t; . stop’ in the above clauses with
‘t;.time’, or simply, ‘t;. '

When aggregate operators are used in period relations, the decision needs to be made
whether to consider the instantaneous or cumulative version to be the default. An argument
similar to the one above concerning multiple tuple variables concludes that the instantaneous
version more closely preserves the semantics of standard Quel. Hence the Count operator
will be the instantaneous version; CountC must be used if the cumulative version is desired.
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4.5.3. Indeterminacy and Aggregate Operators

As before, to formally define the semantics of aggregate operators given indeterminacy, the
informal semantics must first be understood. Without indeterminacy, the aggregate operator
partitioned the tuples valid at any instant (or valid at any time prior to the instant, for cumula-
tive aggregate operators) into groups, and assigned a value to the tuples in each group. Due
to tuples which start and stop at indeterminate times, the resulting value 1s also indeterminate.
Hence, it is impossible to assign a single value to each tuple (see Figure 4-3a).

There are three possible strategies in dealing with this anomaly. The first is the easiest and
least satisfying: restrict the value of Count to be an integer or the special value undefined at
any point in time. The value will vacillate between a determinate integer and undefined Of
course, there still won’t be a single valued count for each tuple, but at least there will be a
value for each instant of time (see Figure 4-3b).

The second strategy is only slightly more appealing: for those periods when the first
strategy assigned undefined, provide a value which makes Count well-behaved, for an ap-
progriate characterization of "well-behaved" (see Figure 4-3c), and make the tuple com-
pietely indeterminant (i.e., no definite portion). This allows Count to have an integer value
over ali time, but is somewhat arbitrary as to the value assigned to indeterminant portions.

The third strategy is to contend with multiple values of Couni (see Figure 4-3d). On the
one hand, this strategy keeps the most information, which might be useful in further deriva-
ticns. On the other hand, it suffers in at least two aspects. Implementation is much more
difficult because an instant might be represented by several indeterminate tuples, with dif-
ferent values. Also, the information is difficult to deal with: is it helpful to know that the Count
of something at 3 pm was perhaps 3, or maybe 5, or even 16?

The first strategy corresponds to extending the domains with null values [Vassiliou
79, Lipski 79, Codd 79]. There are many possible semantics for null values; the one relevant
here is "value unknown'". The second strategy assigns the truth value @ to the entire tuple.
The third strategy implies a many valued logic, with its inherent complexity. Since the second
strategy is most consistent with the representation of periods described previously, it was
selected for the initial version of the system.

At this point, there exists an asymmetry in the expressive power of the language. The at
clause aliows an event relation to be derived from period relations, and the start and stop
clauses allow a period relation to be derived from other period and event relations. However,
there is no way to derive a period relation from a single event relation. One use of this
functionality is the conversion from traced events to the corresponding periods. In this case,
the delimiting events are available, and the user specifies that the period be derived. Another
use is the conversion from sampled events to the corresponding events. These conversions
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Figure 4-3: Different Strategies for Handling Indeterminacy wiith Aggregate Operators

differ only in the indeterminacy of the resulting periods. In the case of traced events, the
indeterminacy is limited to the indeterminacy in the underlying events; in the case of sampled
events, exactly the opposite is true: the determinacy is limited to that of the underlying events.

The appropriate conversion operator depends on whether the underlying relation is
sampled or traced. There is also the issue of converting a derived event relation into a period
relation. Determining whether a derived relation may be considered "traced" for the pur-
poses of converting into a period relation requires substantial knowledge of the functional
dependencies of the domains in the relation. Instead, an alternative was adopted requiring
less sophistication in the monitor. Traced events, which the monitor knows are traced, are
immediately converted to periods. To obtain the underlying events, the at clause may be
used. Only one conversion operator is provided for the user; ExtendC assumes the under-
lying events are sampled. This assumption is correct in the best case; in the worst case the
resulting relation will be completely indeterminant.
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The formal semantics is now straightforward. The only place indeterminacy appears in the
semantics of aggregate operators is in the definition of valid, which may be defined using the
new implicit domains as

valid(u, t) £ T if (u[dstart] <) A (t < u[dstop]), F if (u[istart] > t) A (t > u[istop]),

and € otherwise

As with W/(7), if the truth value for valid is Q for some time t, then the tuple calculus statement
reduces to

{ulQ} :

for the time t, in which case u is indeterminant at time t.

It remains to be shown that, in the absence of indeterminacy, the semantics just presented
is equivalent to that discussed in the first part of this chapter. Clearly, without indeterminacy,
the initial and final portions are absent and the following holds for all event and period tuples:

istart = dstart and dstop = istop

in this limiting case,
T, (8)) = Ty(&))

and thus the before and valid predicates may only have the truth values true and false. Qs
eliminated as a truth value, reducing cverything to the standard two-valued logic system, with
an identical semantics to that defined initially.

4.6. Summary

This chapter has presented a complete formal semantics for the entire TQuel retrieve state-
ment. The chapter proceeded in an incremental fashion, starting with the basic Quel seman-
tics, then adding the new TQuel clauses and additional semantics for aggregate operators,
and finally, adding semantics for indeterminacy. After a short review of tuple calculus and a
discussion of the application of palh expressions in TQuel, the semantics of event expres-
sions was described as functions on events or pairs of events (periods), ultimately yielding an
event. A transformation system provides the semantics of temporal expressions, yielding a
set of execution histories on the tuples participating in the expression. At that point, a tuple
calculus expression for TQuel retrieve statements without aggregates was presented.

The semantics of Quel aggregates involved an auxiliary relation which was then used in the
primary tuple calculus statement. Time was added by using a predicate indicating when a
tuple was valid. Indeterminacy involved several changes: use of 3-valued logic, a more com-
plex definition of the before and valid predicates, and a slightly altered semantics for the when
clause.
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As a result, the semantics of a TQuel retrieve statement is defined in terms of a tuple
calculus statement which can be mechanically produced from the TQuel statement. Sum-
marizing,

Result: A formal semantics may be defined for the entire TQuel retrieve state-
ment. This semantics has the following properties: (a) it reduces to the standard
Quel semantics when the time domain is fixed at a particular time; (b) it includes
aggregate operators in a uniform fashion; and (c) it accommodates an arbitrary
degree of indeterminacy.
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1. Realization

To verify the thesis that the relational model is an appropriate formalization of the infor-
mation processed by a distributed monitor, it is necessary to show that the monitor can take a
query in a temporal query language (in this case, TQuel) and subsequently gather the correct
low level information, process it as directed by the query, and present the high leve! infor-
mation to the user, all in a relatively efficient manner. This part describes in some detail the
mechanisms and techniques enabling the monitor to accomplish these objectives.
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Chapter 5
A Low Level Data Collection Mechanism

Data collection techniques have been at the center of attention in previous work in monitor-
ing, to the exclusion of other areas such as data representation and manipulation. Most
papers on the monitoring of user programs are variations on the technique of profiling in a
variety of programming languages. This approach involves execution counts or timing at the
procedure, statement, or instruction level, using sampling or tracing. However, there have
been few advances since the early 1960's, when sampling and tracing were first
introduced [Plattner&Nievergelt 81]. Data collection for monitoring of operating systems has
relied on sampling or tracing [Nutt 79]. Techniques for using special hardware have been
more innovative: since additional logic imposes no overhead on the computation, capabilities
such as event counters, combinational and sequential logic on events, comparators, and
histogram generators can be provided [Bonner 69, Wuif et a‘. 81]. Netwerk data collection has
concentrated on perforrnance evaluation issues and has, in general, been confined to tech-
niques mentioned above [Abrams&Treu 77, Nutt 79].

Recent systems have taken a more integrated appioach to monitoring, aitempting to
reduce the great effort necessary when using the low-leve! tools previously available. A
unified set of facilities for monitoring a packet radio network was developed at UCLA [Tobagi
et al. 76]. Gertner's system [Gertner 80), described earlier in section 1.4, allowed relatively
painless monitoring of a distributed system at the message passing fevel. The Computer
Network Monitoring System (CNMS), a rather ambitious system designed at the University of
Waterloo, used a sophisticated combination of hardware and software to monitor a
geographically distributed network [Morgan et al. 75].

In spite of these developments, an integrated approach to monitoring data collection is still
lacking. One possible strategy for developing such an approach is to start with the relational
model described in the previous chapter. Unfortunately, the relational model is too general to
be of much help in characterizing the data to be collected. Another possible strategy
proceeds by developing a conceptual model of the behavior of the program to be monitored,
and attempts to represent that behavior within the relational model. This strategy will be the
one pursued in the present chapter. The next section begins with a comparison of data
collection as performed by a conventional data base system and by a monitor. A model of the
environment where the data collection takes place is then presented, followed by a discussion
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of the properties an effective mecnanism must have. The remainder of this chapter will
present such a mechanism and examine how various aspects of the environment impact it.
The discussion will be independent of any particular operating system; details of the im-
plementation of the mechanism in two operating systems can be found in chapter 8.
However, it is assumed that the monitor is partitioned into two communicating components: a
resident portion, performing those functions requiring close interaction with the monitored
system, and a remote portion, performing the functions requiring close interaction with the
user. Both portions together comprise the complete monitor. This separation is necessary
when monitoring a distributed system, where a resident monitor would exist at each proces-
sor, sending collected data to the centralized remote monitor, which may or may not execute
on one of the processors being monitored. Functionally, the resident monitor collects the
event records and interacts with the operating system, and the remote monitor analyzes and
displays the monitoring data. These functions will be discussed in more detail in Chapter 8.

5.1. The Environment

Data collection in the monitoring domain differs from that in conventional database systems
in several ways. In most information processing systems, the emphasis is on information
manipulation and retrieval, with minimal aids for data collection. Alihough some systems
provide tools for key entry and point-of-saie data acquisition, dala collection remains difficult
to automate, because the highly-structurad databases must interface with much less regi-
mented mechanisms: written and oral communication, multiple incompatible data represen-
tations, psychological and societal constraints. The monitor, as an information processing
system, has much more control over the collection of data, since that data is already available
in digitized form, either resident on a bus line or network link, or stored in registers, main
memory, or on disk, certainly in a more convenient format.

The availability of monitoring information results in a second distinction between data col-
lection as performed by conventional database systems and by the monitor: the monitor in
general must contend with massive quantities of data, only a small portion of which may be
useful to the user. For example, suppose that the monitor receives a value-time pair for each
change in the program counter. The monitor would have to run on a machine several orders
of magnitude faster than the one being monitored merely to store the information. However, if
only routine timings were desired, the grain of data will be much coarser. As another ex-
ample, suppose that timings were desired only for a single routine. Unless the data collection
mechanism supports filtering, where only data satisfying specified constraints is actually col-
lected, the monitor will have to contend with data concerning all routines. Extraneous data is
expensive, because computing resources are required to collect it and to decide to discard it.
Thus, data collection for monitoring involves careful selection of data, rather than access and
conversion to a more useful representation, as in conventional information processing sys-
tems.
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In order to discuss the data colleciion mechanising, it is necessary to characterize the
environment in which the mechanism executes. The model employed here has been used in
several recent operating systems [Wuif et al. 81, Jones et al. 78] and languages [Ichbiah et al.
79, Shaw 81], although the model can be used to conceptualize program behavior in any
system [Jones 77]. The environment is defined to be a collection of strongly typed objects,
both passive (e.g., data structures) and active (e.g., processes). Type managers export func-
tions to be applied to objects of the type(s) supported by the manager; all operations on an
object are performed by the type manager through well-defined interfaces (implying the exist-
ence of a type-checking mechanism). This mode! thus identifies the operation being per-
formed on the object by the performer (the type manager) as a result of a request by an
initiator. The user can create new types by defining the representation of the object and
specifying the operations which can be performed on objects of that type. The mode! applies
to all levels of granularity; in particular, a type manager may be implemented in hardware,
firmware, or software.

Examples of type managers include an encapsulation of a set of routines (c.f., Ada
packages [Ichbiah et al. 79], or a task force [Jones&Schwans 79] or even a data type and
supporting proceduies as found in Pascal [Wirth 71]). The more general term used here, type
manager, avoids limiting the mcdel to a particular language or operating system. The model is
especially applicable to monitoring because it forces state changes to be precisaly specified:
any change to the representation of a data structure (i.e., object) must occcur within a function
of the type manager as a result of performing a defined operation. Control flow can also be
characterized in this mannei: all changes iin the execution state of an active object (a process)
can be accounted for by examining the sequence of cperations performed by the process.

There are severai properties which should be satisfied hy the data collection mechanism.
The mechanism should support strong typing, in that typing violations are not necessary to
perform the data collection. Multiple type managers should be permitted. The mechanism
should rely as little as possible on cooperation by the type managers, to ailow additional data
types and type managers to be monitored easily. The mechanism should be efficient, espe-
cially when disabled. The mechanism should be selective, allowing the monitor to specify
exactly the information to be coliected, thereby supporting filtering. The latter t